Pass 'global'

This commit is contained in:
David Gonzalez Martin 2025-06-12 17:02:48 -06:00
parent 7f5d0834ae
commit b9d7212169

View File

@ -6238,7 +6238,30 @@ parse = fn (module: &Module) void
if (!is_global_keyword)
{
#trap();
>initial_value = parse_value(module, scope, zero);
skip_space(module);
expect_character(module, ';');
>global_storage = new_value(module);
global_storage.& = {
.id = .global,
zero,
};
>global = new_global(module);
global.& = {
.variable = {
.storage = global_storage,
.type = global_type,
.scope = scope,
.name = global_name,
.line = global_line,
.column = global_column,
},
.initial_value = initial_value,
.linkage = .internal, // TODO: linkage
zero,
};
}
}
}
@ -10829,14 +10852,14 @@ emit = fn (module: &Module) void
continue;
}
>global_pointer_type = global.variable.storage.type;
assert(global_pointer_type.id == .pointer);
>global_value_type = global_pointer_type.content.pointer.element_type;
switch (global.variable.storage.id)
{
.function, .forward_declared_function =>
{
>global_pointer_type = global.variable.storage.type;
assert(global_pointer_type.id == .pointer);
>global_value_type = global_pointer_type.content.pointer.element_type;
>function_type = &global_value_type.content.function;
>semantic_argument_types = function_type.base.semantic_argument_types;
>semantic_return_type = function_type.base.semantic_return_type;
@ -11063,394 +11086,409 @@ emit = fn (module: &Module) void
assert(!module.current_macro_instantiation);
assert(!module.current_macro_declaration);
if (global.variable.storage.id == .function)
if (global.emitted)
{
module.current_function = global;
continue;
}
>function = global.variable.storage;
assert(function.id == .function);
>pointer_type = function.type;
assert(pointer_type.id == .pointer);
>value_type = pointer_type.content.pointer.element_type;
assert(value_type == global.variable.type);
assert(value_type.id == .function);
>function_type = &value_type.content.function;
>semantic_argument_types = function_type.base.semantic_argument_types;
>llvm_function = function.llvm;
assert(llvm_function != zero);
>llvm_abi_argument_buffer: [64]&LLVMValue = undefined;
>llvm_abi_arguments = llvm_abi_argument_buffer[..function_type.abi.abi_argument_types.length];
LLVMGetParams(llvm_function, &llvm_abi_argument_buffer[0]);
>entry_block = LLVMAppendBasicBlockInContext(module.llvm.context, llvm_function, "entry");
>return_block = LLVMAppendBasicBlockInContext(module.llvm.context, llvm_function, "return_block");
function.content.function.llvm.return_block = return_block;
LLVMPositionBuilderAtEnd(module.llvm.builder, entry_block);
LLVMSetCurrentDebugLocation2(module.llvm.builder, zero);
>return_abi = &function_type.abi.return_abi;
switch (return_abi.flags.kind)
switch (global.variable.storage.id)
{
.function,
.forward_declared_function,
=>
{
.ignore => {},
.indirect =>
{
#trap();
},
.in_alloca =>
{
#trap();
},
else =>
{
>alloca = create_alloca(module, {
.type = return_abi.semantic_type,
.name = "return_value",
zero,
});
function.content.function.llvm.return_alloca = alloca;
},
}
>arguments = function.content.function.arguments;
>argument_abis = function_type.abi.argument_abis;
assert(arguments.length == argument_abis.length);
module.current_function = global;
for (i: 0..semantic_argument_types.length)
{
>argument = &arguments[i];
>argument_abi = &argument_abis[i];
// TODO: double slice
>argument_abi_arguments = llvm_abi_arguments[#extend(argument_abi.abi_start)..];
argument_abi_arguments = argument_abi_arguments[..#extend(argument_abi.abi_count)];
>function = global.variable.storage;
assert(function.id == .function);
>pointer_type = function.type;
assert(pointer_type.id == .pointer);
>value_type = pointer_type.content.pointer.element_type;
assert(value_type == global.variable.type);
assert(value_type.id == .function);
>function_type = &value_type.content.function;
>semantic_argument_types = function_type.base.semantic_argument_types;
>llvm_function = function.llvm;
assert(llvm_function != zero);
>semantic_argument_storage: &LLVMValue = zero;
>llvm_abi_argument_buffer: [64]&LLVMValue = undefined;
>llvm_abi_arguments = llvm_abi_argument_buffer[..function_type.abi.abi_argument_types.length];
LLVMGetParams(llvm_function, &llvm_abi_argument_buffer[0]);
switch (argument_abi.flags.kind)
>entry_block = LLVMAppendBasicBlockInContext(module.llvm.context, llvm_function, "entry");
>return_block = LLVMAppendBasicBlockInContext(module.llvm.context, llvm_function, "return_block");
function.content.function.llvm.return_block = return_block;
LLVMPositionBuilderAtEnd(module.llvm.builder, entry_block);
LLVMSetCurrentDebugLocation2(module.llvm.builder, zero);
>return_abi = &function_type.abi.return_abi;
switch (return_abi.flags.kind)
{
.direct, .extend =>
{
>first_argument = argument_abi_arguments[0];
>coerce_to_type = abi_get_coerce_to_type(argument_abi);
if (coerce_to_type.id != .struct and argument_abi.attributes.direct.offset == 0 and type_is_abi_equal(module, coerce_to_type, argument_abi.semantic_type))
.ignore => {},
.indirect =>
{
assert(argument_abi.abi_count == 1);
>is_promoted: u1 = 0;
>v = first_argument;
if (coerce_to_type.llvm.abi != LLVMTypeOf(v))
{
#trap();
}
if (is_promoted)
{
#trap();
}
// TODO: this we can get rid of because we handle all of this inside `create_alloca`, load, stores, etc
if (is_arbitrary_bit_integer(argument_abi.semantic_type))
{
>bit_count = get_bit_size(argument_abi.semantic_type);
>abi_bit_count = align_bit_count(bit_count);
>is_signed = type_is_signed(argument_abi.semantic_type);
>destination_type = integer_type(module, { .bit_count = abi_bit_count, .signed = is_signed });
>alloca = create_alloca(module, {
.type = destination_type,
.name = argument.variable.name,
zero,
});
>result: &LLVMValue = undefined;
if (bit_count < abi_bit_count)
{
>llvm_type = destination_type.llvm.memory;
if (is_signed)
{
result = LLVMBuildSExt(module.llvm.builder, first_argument, llvm_type, "");
}
else
{
result = LLVMBuildZExt(module.llvm.builder, first_argument, llvm_type, "");
}
}
else
{
#trap();
}
create_store(module, {
.source = result,
.destination = alloca,
.type = destination_type,
zero,
});
semantic_argument_storage = alloca;
}
else
{
>alloca = create_alloca(module, {
.type = argument_abi.semantic_type,
.name = argument.variable.name,
zero,
});
create_store(module, {
.source = first_argument,
.destination = alloca,
.type = argument_abi.semantic_type,
zero,
});
semantic_argument_storage = alloca;
}
}
else
#trap();
},
.in_alloca =>
{
#trap();
},
else =>
{
>is_fixed_vector_type: u1 = 0;
if (is_fixed_vector_type)
{
#trap();
}
if (coerce_to_type.id == .struct and coerce_to_type.content.struct.fields.length > 1 and argument_abi.flags.kind == .direct and !argument_abi.flags.can_be_flattened)
{
>contains_homogeneous_scalable_vector_types: u1 = 0;
if (contains_homogeneous_scalable_vector_types)
{
#trap();
}
}
>alloca = create_alloca(module, {
.type = argument_abi.semantic_type,
.name = argument.variable.name,
zero,
});
.type = return_abi.semantic_type,
.name = "return_value",
zero,
});
function.content.function.llvm.return_alloca = alloca;
},
}
>pointer: &LLVMValue = undefined;
>pointer_type: &Type = undefined;
>arguments = function.content.function.arguments;
>argument_abis = function_type.abi.argument_abis;
assert(arguments.length == argument_abis.length);
if (argument_abi.attributes.direct.offset > 0)
{
#trap();
}
else
{
pointer = alloca;
pointer_type = argument_abi.semantic_type;
}
for (i: 0..semantic_argument_types.length)
{
>argument = &arguments[i];
>argument_abi = &argument_abis[i];
// TODO: double slice
>argument_abi_arguments = llvm_abi_arguments[#extend(argument_abi.abi_start)..];
argument_abi_arguments = argument_abi_arguments[..#extend(argument_abi.abi_count)];
if (coerce_to_type.id == .struct and coerce_to_type.content.struct.fields.length > 1 and argument_abi.flags.kind == .direct and argument_abi.flags.can_be_flattened)
{
>struct_size = get_byte_size(coerce_to_type);
>pointer_element_size = get_byte_size(pointer_type);
>is_scalable: u1 = 0;
>semantic_argument_storage: &LLVMValue = zero;
if (is_scalable)
{
#trap();
}
else
{
>source_size = struct_size;
>destination_size = pointer_element_size;
>address_alignment = get_byte_alignment(argument_abi.semantic_type);
switch (argument_abi.flags.kind)
{
.direct, .extend =>
{
>first_argument = argument_abi_arguments[0];
>coerce_to_type = abi_get_coerce_to_type(argument_abi);
>address: &LLVMValue = undefined;
if (source_size <= destination_size)
{
address = alloca;
}
else
{
address = create_alloca(module, {
.type = coerce_to_type,
.name = "coerce",
.alignment = address_alignment,
});
}
>fields = coerce_to_type.content.struct.fields;
assert(fields.length == #extend(argument_abi.abi_count));
resolve_type_in_place(module, coerce_to_type);
for (i: 0..fields.length)
{
>field = &fields[i];
>gep = LLVMBuildStructGEP2(module.llvm.builder, coerce_to_type.llvm.abi, address, #truncate(i), "");
create_store(module, {
.source = argument_abi_arguments[i],
.destination = gep,
.type = fields[i].type,
zero,
});
}
if (source_size > destination_size)
{
>u64_type = uint64(module);
resolve_type_in_place(module, u64_type);
>memcpy_size = LLVMConstInt(u64_type.llvm.abi, destination_size, 0);
LLVMBuildMemCpy(module.llvm.builder, pointer, address_alignment, address, address_alignment, memcpy_size);
}
}
}
else
if (coerce_to_type.id != .struct and argument_abi.attributes.direct.offset == 0 and type_is_abi_equal(module, coerce_to_type, argument_abi.semantic_type))
{
assert(argument_abi.abi_count == 1);
>abi_argument_type = function_type.abi.abi_argument_types[argument_abi.abi_start];
>destination_size: u64 = get_byte_size(pointer_type) - #extend(argument_abi.attributes.direct.offset);
>is_volatile: u1 = 0;
create_coerced_store(module, argument_abi_arguments[0], abi_argument_type, pointer, pointer_type, destination_size, is_volatile);
>is_promoted: u1 = 0;
>v = first_argument;
if (coerce_to_type.llvm.abi != LLVMTypeOf(v))
{
#trap();
}
if (is_promoted)
{
#trap();
}
// TODO: this we can get rid of because we handle all of this inside `create_alloca`, load, stores, etc
if (is_arbitrary_bit_integer(argument_abi.semantic_type))
{
>bit_count = get_bit_size(argument_abi.semantic_type);
>abi_bit_count = align_bit_count(bit_count);
>is_signed = type_is_signed(argument_abi.semantic_type);
>destination_type = integer_type(module, { .bit_count = abi_bit_count, .signed = is_signed });
>alloca = create_alloca(module, {
.type = destination_type,
.name = argument.variable.name,
zero,
});
>result: &LLVMValue = undefined;
if (bit_count < abi_bit_count)
{
>llvm_type = destination_type.llvm.memory;
if (is_signed)
{
result = LLVMBuildSExt(module.llvm.builder, first_argument, llvm_type, "");
}
else
{
result = LLVMBuildZExt(module.llvm.builder, first_argument, llvm_type, "");
}
}
else
{
#trap();
}
create_store(module, {
.source = result,
.destination = alloca,
.type = destination_type,
zero,
});
semantic_argument_storage = alloca;
}
else
{
>alloca = create_alloca(module, {
.type = argument_abi.semantic_type,
.name = argument.variable.name,
zero,
});
create_store(module, {
.source = first_argument,
.destination = alloca,
.type = argument_abi.semantic_type,
zero,
});
semantic_argument_storage = alloca;
}
}
else
{
>is_fixed_vector_type: u1 = 0;
if (is_fixed_vector_type)
{
#trap();
}
semantic_argument_storage = alloca;
}
},
.indirect =>
if (coerce_to_type.id == .struct and coerce_to_type.content.struct.fields.length > 1 and argument_abi.flags.kind == .direct and !argument_abi.flags.can_be_flattened)
{
>contains_homogeneous_scalable_vector_types: u1 = 0;
if (contains_homogeneous_scalable_vector_types)
{
#trap();
}
}
>alloca = create_alloca(module, {
.type = argument_abi.semantic_type,
.name = argument.variable.name,
zero,
});
>pointer: &LLVMValue = undefined;
>pointer_type: &Type = undefined;
if (argument_abi.attributes.direct.offset > 0)
{
#trap();
}
else
{
pointer = alloca;
pointer_type = argument_abi.semantic_type;
}
if (coerce_to_type.id == .struct and coerce_to_type.content.struct.fields.length > 1 and argument_abi.flags.kind == .direct and argument_abi.flags.can_be_flattened)
{
>struct_size = get_byte_size(coerce_to_type);
>pointer_element_size = get_byte_size(pointer_type);
>is_scalable: u1 = 0;
if (is_scalable)
{
#trap();
}
else
{
>source_size = struct_size;
>destination_size = pointer_element_size;
>address_alignment = get_byte_alignment(argument_abi.semantic_type);
>address: &LLVMValue = undefined;
if (source_size <= destination_size)
{
address = alloca;
}
else
{
address = create_alloca(module, {
.type = coerce_to_type,
.name = "coerce",
.alignment = address_alignment,
});
}
>fields = coerce_to_type.content.struct.fields;
assert(fields.length == #extend(argument_abi.abi_count));
resolve_type_in_place(module, coerce_to_type);
for (i: 0..fields.length)
{
>field = &fields[i];
>gep = LLVMBuildStructGEP2(module.llvm.builder, coerce_to_type.llvm.abi, address, #truncate(i), "");
create_store(module, {
.source = argument_abi_arguments[i],
.destination = gep,
.type = fields[i].type,
zero,
});
}
if (source_size > destination_size)
{
>u64_type = uint64(module);
resolve_type_in_place(module, u64_type);
>memcpy_size = LLVMConstInt(u64_type.llvm.abi, destination_size, 0);
LLVMBuildMemCpy(module.llvm.builder, pointer, address_alignment, address, address_alignment, memcpy_size);
}
}
}
else
{
assert(argument_abi.abi_count == 1);
>abi_argument_type = function_type.abi.abi_argument_types[argument_abi.abi_start];
>destination_size: u64 = get_byte_size(pointer_type) - #extend(argument_abi.attributes.direct.offset);
>is_volatile: u1 = 0;
create_coerced_store(module, argument_abi_arguments[0], abi_argument_type, pointer, pointer_type, destination_size, is_volatile);
}
semantic_argument_storage = alloca;
}
},
.indirect =>
{
#trap();
},
else =>
{
unreachable;
},
}
assert(semantic_argument_storage != zero);
>storage = new_value(module);
>value_type = argument.variable.type;
storage.& = {
.type = get_pointer_type(module, value_type),
.id = .argument,
.llvm = semantic_argument_storage,
zero,
};
argument.variable.storage = storage;
if (module.has_debug_info)
{
#trap();
},
else =>
{
unreachable;
},
}
assert(semantic_argument_storage != zero);
>storage = new_value(module);
>value_type = argument.variable.type;
storage.& = {
.type = get_pointer_type(module, value_type),
.id = .argument,
.llvm = semantic_argument_storage,
zero,
};
argument.variable.storage = storage;
if (module.has_debug_info)
{
emit_debug_argument(module, argument, entry_block);
}
}
analyze_block(module, function.content.function.block);
>current_basic_block = LLVMGetInsertBlock(module.llvm.builder);
if (current_basic_block)
{
assert(!LLVMGetBasicBlockTerminator(current_basic_block));
if (!LLVMGetFirstInstruction(current_basic_block) or !LLVMGetFirstUse(#pointer_cast(current_basic_block)))
{
LLVMReplaceAllUsesWith(#pointer_cast(return_block), #pointer_cast(current_basic_block));
LLVMDeleteBasicBlock(return_block);
}
else
{
#trap();
}
}
else
{
>has_single_jump_to_return_block: u1 = 0;
>first_use = LLVMGetFirstUse(#pointer_cast(return_block));
>user: &LLVMValue = zero;
if (first_use)
{
>second_use = LLVMGetNextUse(first_use);
>has_one_use = first_use != zero and first_use == zero;
if (has_one_use)
{
user = LLVMGetUser(first_use);
has_single_jump_to_return_block = LLVMIsABranchInst(user) != zero and? LLVMIsConditional(user) != 0 and? LLVMGetSuccessor(user, 0) == return_block;
emit_debug_argument(module, argument, entry_block);
}
}
if (has_single_jump_to_return_block)
analyze_block(module, function.content.function.block);
>current_basic_block = LLVMGetInsertBlock(module.llvm.builder);
if (current_basic_block)
{
#trap();
assert(!LLVMGetBasicBlockTerminator(current_basic_block));
if (!LLVMGetFirstInstruction(current_basic_block) or !LLVMGetFirstUse(#pointer_cast(current_basic_block)))
{
LLVMReplaceAllUsesWith(#pointer_cast(return_block), #pointer_cast(current_basic_block));
LLVMDeleteBasicBlock(return_block);
}
else
{
#trap();
}
}
else
{
emit_block(module, return_block);
}
}
>has_single_jump_to_return_block: u1 = 0;
if (module.has_debug_info)
{
LLVMSetCurrentDebugLocation2(module.llvm.builder, zero);
>subprogram = LLVMGetSubprogram(llvm_function);
LLVMDIBuilderFinalizeSubprogram(module.llvm.di_builder, subprogram);
}
>first_use = LLVMGetFirstUse(#pointer_cast(return_block));
>user: &LLVMValue = zero;
>semantic_return_type = return_abi.semantic_type;
if (semantic_return_type == noreturn_type(module) or function.content.function.attributes.naked)
{
#trap();
}
else if (semantic_return_type == void_type(module))
{
LLVMBuildRetVoid(module.llvm.builder);
}
else
{
>return_value: &LLVMValue = zero;
switch (return_abi.flags.kind)
{
.direct, .extend =>
if (first_use)
{
>return_alloca = function.content.function.llvm.return_alloca;
>coerce_to_type = abi_get_coerce_to_type(return_abi);
if (type_is_abi_equal(module, coerce_to_type, semantic_return_type) and? return_abi.attributes.direct.offset == 0)
>second_use = LLVMGetNextUse(first_use);
>has_one_use = first_use != zero and first_use == zero;
if (has_one_use)
{
>store = llvm_find_return_value_dominating_store(module.llvm.builder, return_alloca, semantic_return_type.llvm.abi);
if (store)
user = LLVMGetUser(first_use);
has_single_jump_to_return_block = LLVMIsABranchInst(user) != zero and? LLVMIsConditional(user) != 0 and? LLVMGetSuccessor(user, 0) == return_block;
}
}
if (has_single_jump_to_return_block)
{
#trap();
}
else
{
emit_block(module, return_block);
}
}
if (module.has_debug_info)
{
LLVMSetCurrentDebugLocation2(module.llvm.builder, zero);
>subprogram = LLVMGetSubprogram(llvm_function);
LLVMDIBuilderFinalizeSubprogram(module.llvm.di_builder, subprogram);
}
>semantic_return_type = return_abi.semantic_type;
if (semantic_return_type == noreturn_type(module) or function.content.function.attributes.naked)
{
#trap();
}
else if (semantic_return_type == void_type(module))
{
LLVMBuildRetVoid(module.llvm.builder);
}
else
{
>return_value: &LLVMValue = zero;
switch (return_abi.flags.kind)
{
.direct, .extend =>
{
>return_alloca = function.content.function.llvm.return_alloca;
>coerce_to_type = abi_get_coerce_to_type(return_abi);
if (type_is_abi_equal(module, coerce_to_type, semantic_return_type) and? return_abi.attributes.direct.offset == 0)
{
return_value = LLVMGetOperand(store, 0);
>alloca = LLVMGetOperand(store, 1);
assert(alloca == return_alloca);
LLVMInstructionEraseFromParent(store);
LLVMInstructionEraseFromParent(alloca);
>store = llvm_find_return_value_dominating_store(module.llvm.builder, return_alloca, semantic_return_type.llvm.abi);
if (store)
{
return_value = LLVMGetOperand(store, 0);
>alloca = LLVMGetOperand(store, 1);
assert(alloca == return_alloca);
LLVMInstructionEraseFromParent(store);
LLVMInstructionEraseFromParent(alloca);
}
else
{
return_value = create_load(module, {
.type = semantic_return_type,
.pointer = return_alloca,
zero,
});
}
}
else
{
return_value = create_load(module, {
.type = semantic_return_type,
.pointer = return_alloca,
zero,
});
#trap();
}
}
else
{
#trap();
}
},
.indirect =>
{
#trap();
},
},
.indirect =>
{
#trap();
},
}
LLVMBuildRet(module.llvm.builder, return_value);
}
LLVMBuildRet(module.llvm.builder, return_value);
}
// END OF SCOPE
module.current_function = zero;
// END OF SCOPE
module.current_function = zero;
},
.global =>
{
#trap();
},
else => { report_error(); },
}
global = global.next;
@ -11783,6 +11821,7 @@ names: [_][]u8 = [
"pointer_cast",
"u1_return",
"local_type_inference",
"global",
];
[export] main = fn [cc(c)] (argument_count: u32, argv: &&u8, envp: &&u8) s32