2024-08-09 12:50:31 +02:00

5335 lines
152 KiB
C

#include "lib.h"
#define clang_path "/usr/bin/clang"
struct StringMapValue
{
String string;
u32 value;
};
typedef struct StringMapValue StringMapValue;
struct StringMap
{
u32* pointer;
u32 length;
u32 capacity;
};
typedef struct StringMap StringMap;
fn StringMapValue* string_map_values(StringMap* map)
{
assert(map->pointer);
return (StringMapValue*)(map->pointer + map->capacity);
}
fn s32 string_map_find_slot(StringMap* map, u32 original_index, String key)
{
s32 result = -1;
if (map->pointer)
{
auto it_index = original_index;
auto existing_capacity = map->capacity;
auto* values = string_map_values(map);
for (u32 i = 0; i < existing_capacity; i += 1)
{
auto index = it_index & (existing_capacity - 1);
u32 existing_key = map->pointer[index];
// Not set
if (existing_key == 0)
{
result = index;
break;
}
else
{
auto pair = &values[index];
if (s_equal(pair->string, key))
{
result = index;
break;
}
else
{
trap();
}
}
it_index += 1;
}
}
return result;
}
struct StringMapPut
{
u32 value;
u8 existing;
};
typedef struct StringMapPut StringMapPut;
fn void string_map_ensure_capacity(StringMap* map, Arena* arena, u32 additional)
{
auto current_capacity = map->capacity;
auto half_capacity = current_capacity >> 1;
auto destination_length = map->length + additional;
if (destination_length > half_capacity)
{
u32 new_capacity = MAX(round_up_to_next_power_of_2(destination_length), 32);
auto new_capacity_bytes = sizeof(u32) * new_capacity + new_capacity * sizeof(StringMapValue);
void* ptr = arena_allocate_bytes(arena, new_capacity_bytes, MAX(alignof(u32), alignof(StringMapValue)));
memset(ptr, 0, new_capacity_bytes);
auto* keys = (u32*)ptr;
auto* values = (StringMapValue*)(keys + new_capacity);
auto* old_keys = map->pointer;
auto old_capacity = map->capacity;
auto* old_values = (StringMapValue*)(map->pointer + current_capacity);
map->length = 0;
map->pointer = keys;
map->capacity = new_capacity;
for (u32 i = 0; i < old_capacity; i += 1)
{
auto key = old_keys[i];
if (key)
{
unused(values);
unused(old_values);
trap();
}
}
for (u32 i = 0; i < old_capacity; i += 1)
{
trap();
}
}
}
fn StringMapPut string_map_put_at_assume_not_existent_assume_capacity(StringMap* map, u32 hash, String key, u32 value, u32 index)
{
u32 existing_hash = map->pointer[index];
map->pointer[index] = hash;
auto* values = string_map_values(map);
auto existing_value = values[index];
values[index] = (StringMapValue) {
.value = value,
.string = key,
};
map->length += 1;
assert(existing_hash ? s_equal(existing_value.string, key) : 1);
return (StringMapPut)
{
.value = existing_value.value,
.existing = existing_hash != 0,
};
}
fn StringMapPut string_map_put_assume_not_existent_assume_capacity(StringMap* map, u32 hash, String key, u32 value)
{
assert(map->length < map->capacity);
auto index = hash & (map->capacity - 1);
return string_map_put_at_assume_not_existent_assume_capacity(map, hash, key, value, index);
}
fn StringMapPut string_map_put_assume_not_existent(StringMap* map, Arena* arena, u32 hash, String key, u32 value)
{
string_map_ensure_capacity(map, arena, 1);
return string_map_put_assume_not_existent_assume_capacity(map, hash, key, value);
}
fn StringMapPut string_map_get(StringMap* map, String key)
{
u32 value = 0;
Hash long_hash = hash_bytes(key);
auto hash = (u32)long_hash;
assert(hash);
auto index = hash & (map->capacity - 1);
auto slot = string_map_find_slot(map, index, key);
u8 existing = slot != -1;
if (existing)
{
existing = map->pointer[slot] != 0;
auto* value_pair = &string_map_values(map)[slot];
value = value_pair->value;
}
return (StringMapPut) {
.value = value,
.existing = existing,
};
}
fn StringMapPut string_map_put(StringMap* map, Arena* arena, String key, u32 value)
{
Hash long_hash = hash_bytes(key);
auto hash = (u32)long_hash;
assert(hash);
auto index = hash & (map->capacity - 1);
auto slot = string_map_find_slot(map, index, key);
if (slot != -1)
{
auto* values = string_map_values(map);
auto* key_pointer = &map->pointer[slot];
auto old_key_pointer = *key_pointer;
*key_pointer = hash;
values[slot].string = key;
values[slot].value = value;
return (StringMapPut) {
.value = value,
.existing = old_key_pointer != 0,
};
}
else
{
if (map->length < map->capacity)
{
trap();
}
else if (map->length == map->capacity)
{
auto result = string_map_put_assume_not_existent(map, arena, hash, key, value);
assert(!result.existing);
return result;
}
else
{
trap();
}
}
}
// fn void string_map_get_or_put(StringMap* map, Arena* arena, String key, u32 value)
// {
// assert(value);
// auto hash = hash_bytes(key);
// auto index = hash & (map->capacity - 1);
// auto slot = string_map_find_slot(map, index, key);
// if (slot != -1)
// {
// auto* values = string_map_values(map);
// auto* key_pointer = &map->pointer[slot];
// todo();
// // auto old_key_pointer = *key_pointer;
// // *key_pointer = hash;
// // values[slot].string = key;
// // values[slot].value = value;
// // return (StringMapPut) {
// // .value = value,
// // .existing = old_key_pointer != 0,
// // };
// }
// else
// {
// if (map->length < map->capacity)
// {
// todo();
// }
// else if (map->length == map->capacity)
// {
// todo();
// // auto result = string_map_put_assume_not_existent(map, arena, hash, key, value);
// // assert(!result.existing);
// // return result;
// }
// else
// {
// todo();
// }
// }
// }
fn int file_write(String file_path, String file_data)
{
int file_descriptor = syscall_open(string_to_c(file_path), O_WRONLY | O_CREAT | O_TRUNC, 0644);
assert(file_descriptor != -1);
auto bytes = syscall_write(file_descriptor, file_data.pointer, file_data.length);
assert(bytes >= 0);
assert((u64)bytes == file_data.length);
int close_result = syscall_close(file_descriptor);
assert(close_result == 0);
return 0;
}
fn String file_read(Arena* arena, String path)
{
String result = {};
int file_descriptor = syscall_open(string_to_c(path), 0, 0);
assert(file_descriptor != -1);
struct stat stat_buffer;
int stat_result = syscall_fstat(file_descriptor, &stat_buffer);
assert(stat_result == 0);
u64 file_size = stat_buffer.st_size;
result = (String){
.pointer = arena_allocate_bytes(arena, file_size, 64),
.length = file_size,
};
// TODO: big files
ssize_t read_result = syscall_read(file_descriptor, result.pointer, result.length);
assert(read_result >= 0);
assert((u64)read_result == file_size);
auto close_result = syscall_close(file_descriptor);
assert(close_result == 0);
return result;
}
fn void print_string(String message)
{
#if SILENT == 0
ssize_t result = syscall_write(1, message.pointer, message.length);
assert(result >= 0);
assert((u64)result == message.length);
#else
unused(message);
#endif
}
typedef enum ELFSectionType : u32
{
ELF_SECTION_NULL = 0X00,
ELF_SECTION_PROGRAM = 0X01,
ELF_SECTION_SYMBOL_TABLE = 0X02,
ELF_SECTION_STRING_TABLE = 0X03,
ELF_SECTION_RELOCATION_WITH_ADDENDS = 0X04,
ELF_SECTION_SYMBOL_HASH_TABLE = 0X05,
ELF_SECTION_DYNAMIC = 0X06,
ELF_SECTION_NOTE = 0X07,
ELF_SECTION_BSS = 0X08,
ELF_SECTION_RELOCATION_NO_ADDENDS = 0X09,
ELF_SECTION_LIB = 0X0A, // RESERVED
ELF_SECTION_DYNAMIC_SYMBOL_TABLE = 0X0B,
ELF_SECTION_INIT_ARRAY = 0X0E,
ELF_SECTION_FINI_ARRAY = 0X0F,
ELF_SECTION_PREINIT_ARRAY = 0X10,
ELF_SECTION_GROUP = 0X11,
ELF_SECTION_SYMBOL_TABLE_SECTION_HEADER_INDEX = 0X12,
} ELFSectionType;
struct ELFSectionHeaderFlags
{
u64 write:1;
u64 alloc:1;
u64 executable:1;
u64 blank:1;
u64 merge:1;
u64 strings:1;
u64 info_link:1;
u64 link_order:1;
u64 os_non_conforming:1;
u64 group:1;
u64 tls:1;
u64 reserved:53;
};
typedef struct ELFSectionHeaderFlags ELFSectionHeaderFlags;
static_assert(sizeof(ELFSectionHeaderFlags) == sizeof(u64));
struct ELFSectionHeader
{
u32 name_offset;
ELFSectionType type;
ELFSectionHeaderFlags flags;
u64 address;
u64 offset;
u64 size;
u32 link;
u32 info;
u64 alignment;
u64 entry_size;
};
typedef struct ELFSectionHeader ELFSectionHeader;
static_assert(sizeof(ELFSectionHeader) == 64);
decl_vb(ELFSectionHeader);
typedef enum ELFBitCount : u8
{
bits32 = 1,
bits64 = 2,
} ELFBitCount;
typedef enum ELFEndianness : u8
{
little = 1,
big = 2,
} ELFEndianness;
typedef enum ELFAbi : u8
{
system_v_abi = 0,
linux_abi = 3,
} ELFAbi;
typedef enum ELFType : u16
{
none = 0,
relocatable = 1,
executable = 2,
shared = 3,
core = 4,
} ELFType;
typedef enum ELFMachine : u16
{
x86_64 = 0x3e,
aarch64 = 0xb7,
} ELFMachine;
typedef enum ELFSectionIndex : u16
{
UNDEFINED = 0,
ABSOLUTE = 0xfff1,
COMMON = 0xfff2,
} ELFSectionIndex;
struct ELFHeader
{
u8 identifier[4];
ELFBitCount bit_count;
ELFEndianness endianness;
u8 format_version;
ELFAbi abi;
u8 abi_version;
u8 padding[7];
ELFType type;
ELFMachine machine;
u32 version;
u64 entry_point;
u64 program_header_offset;
u64 section_header_offset;
u32 flags;
u16 elf_header_size;
u16 program_header_size;
u16 program_header_count;
u16 section_header_size;
u16 section_header_count;
u16 section_header_string_table_index;
};
typedef struct ELFHeader ELFHeader;
static_assert(sizeof(ELFHeader) == 0x40);
typedef enum ELFSymbolBinding : u8
{
LOCAL = 0,
GLOBAL = 1,
WEAK = 2,
} ELFSymbolBinding;
typedef enum ELFSymbolType : u8
{
ELF_SYMBOL_TYPE_NONE = 0,
ELF_SYMBOL_TYPE_OBJECT = 1,
ELF_SYMBOL_TYPE_FUNCTION = 2,
ELF_SYMBOL_TYPE_SECTION = 3,
ELF_SYMBOL_TYPE_FILE = 4,
ELF_SYMBOL_TYPE_COMMON = 5,
ELF_SYMBOL_TYPE_TLS = 6,
} ELFSymbolType;
struct ELFSymbol
{
u32 name_offset;
ELFSymbolType type:4;
ELFSymbolBinding binding:4;
u8 other;
u16 section_index; // In the section header table
u64 value;
u64 size;
};
typedef struct ELFSymbol ELFSymbol;
decl_vb(ELFSymbol);
static_assert(sizeof(ELFSymbol) == 24);
// DWARF
struct DWARFCompilationUnit
{
u32 length;
u16 version;
u8 type;
u8 address_size;
u32 debug_abbreviation_offset;
};
typedef struct DWARFCompilationUnit DWARFCompilationUnit;
struct NameReference
{
u32 offset;
u32 length;
};
typedef struct NameReference NameReference;
typedef struct Thread Thread;
typedef enum TypeId : u32
{
// Simple types
TYPE_BOTTOM = 0,
TYPE_TOP,
TYPE_LIVE_CONTROL,
TYPE_DEAD_CONTROL,
// Not simple types
TYPE_INTEGER,
TYPE_TUPLE,
TYPE_COUNT,
} TypeId;
typedef struct BackendType BackendType;
struct TypeIndex
{
u32 index;
};
typedef struct TypeIndex TypeIndex;
#define index_equal(a, b) (a.index == b.index)
static_assert(sizeof(TypeIndex) == sizeof(u32));
declare_slice(TypeIndex);
#define RawIndex(T, i) (T ## Index) { .index = (i) }
#define Index(T, i) RawIndex(T, (i) + 1)
#define geti(i) ((i).index - 1)
#define validi(i) ((i).index != 0)
#define invalidi(T) RawIndex(T, 0)
struct TypeInteger
{
u64 constant;
u8 bit_count;
u8 is_constant;
u8 is_signed;
u8 padding1;
u32 padding;
};
typedef struct TypeInteger TypeInteger;
static_assert(sizeof(TypeInteger) == 16);
struct TypeTuple
{
Slice(TypeIndex) types;
};
typedef struct TypeTuple TypeTuple;
struct Type
{
Hash hash;
union
{
TypeInteger integer;
TypeTuple tuple;
};
TypeId id;
};
typedef struct Type Type;
static_assert(offsetof(Type, hash) == 0);
decl_vb(Type);
struct NodeIndex
{
u32 index;
};
typedef struct NodeIndex NodeIndex;
declare_slice(NodeIndex);
decl_vb(NodeIndex);
struct Function
{
String name;
NodeIndex start;
NodeIndex stop;
TypeIndex return_type;
};
typedef struct Function Function;
decl_vb(Function);
typedef enum NodeId : u8
{
NODE_START,
NODE_STOP,
NODE_CONTROL_PROJECTION,
NODE_DEAD_CONTROL,
NODE_SCOPE,
NODE_PROJECTION,
NODE_RETURN,
NODE_REGION,
NODE_REGION_LOOP,
NODE_IF,
NODE_PHI,
NODE_INTEGER_ADD,
NODE_INTEGER_SUBSTRACT,
NODE_INTEGER_MULTIPLY,
NODE_INTEGER_UNSIGNED_DIVIDE,
NODE_INTEGER_SIGNED_DIVIDE,
NODE_INTEGER_UNSIGNED_REMAINDER,
NODE_INTEGER_SIGNED_REMAINDER,
NODE_INTEGER_UNSIGNED_SHIFT_LEFT,
NODE_INTEGER_SIGNED_SHIFT_LEFT,
NODE_INTEGER_UNSIGNED_SHIFT_RIGHT,
NODE_INTEGER_SIGNED_SHIFT_RIGHT,
NODE_INTEGER_AND,
NODE_INTEGER_OR,
NODE_INTEGER_XOR,
NODE_INTEGER_NEGATION,
NODE_INTEGER_COMPARE_EQUAL,
NODE_INTEGER_COMPARE_NOT_EQUAL,
NODE_CONSTANT,
NODE_COUNT,
} NodeId;
struct NodeCFG
{
s32 immediate_dominator_tree_depth;
s32 loop_depth;
s32 anti_dependency;
};
typedef struct NodeCFG NodeCFG;
struct NodeConstant
{
TypeIndex type;
};
typedef struct NodeConstant NodeConstant;
struct NodeStart
{
NodeCFG cfg;
TypeIndex arguments;
Function* function;
};
typedef struct NodeStart NodeStart;
struct NodeStop
{
NodeCFG cfg;
};
typedef struct NodeStop NodeStop;
struct ScopePair
{
StringMap values;
StringMap types;
};
typedef struct ScopePair ScopePair;
struct StackScope
{
ScopePair* pointer;
u32 length;
u32 capacity;
};
typedef struct StackScope StackScope;
struct NodeScope
{
StackScope stack;
};
typedef struct NodeScope NodeScope;
struct NodeProjection
{
String label;
u32 index;
};
typedef struct NodeProjection NodeProjection;
struct NodeControlProjection
{
NodeProjection projection;
NodeCFG cfg;
};
typedef struct NodeControlProjection NodeControlProjection;
struct NodeReturn
{
NodeCFG cfg;
};
typedef struct NodeReturn NodeReturn;
struct NodeDeadControl
{
NodeCFG cfg;
};
typedef struct NodeDeadControl NodeDeadControl;
struct Node
{
Hash hash;
u32 input_offset;
u32 output_offset;
u32 dependency_offset;
u16 output_count;
u16 input_count;
u16 dependency_count;
u16 input_capacity;
u16 output_capacity;
u16 dependency_capacity;
u16 thread_id;
TypeIndex type;
NodeId id;
union
{
NodeConstant constant;
NodeStart start;
NodeStop stop;
NodeScope scope;
NodeControlProjection control_projection;
NodeProjection projection;
NodeReturn return_node;
NodeDeadControl dead_control;
};
};
typedef struct Node Node;
declare_slice_p(Node);
static_assert(offsetof(Node, hash) == 0);
decl_vb(Node);
decl_vbp(Node);
struct ArrayReference
{
u32 offset;
u32 length;
};
typedef struct ArrayReference ArrayReference;
decl_vb(ArrayReference);
struct File
{
String path;
String source;
StringMap values;
StringMap types;
};
typedef struct File File;
struct FunctionBuilder
{
Function* function;
File* file;
NodeIndex scope;
NodeIndex dead_control;
};
typedef struct FunctionBuilder FunctionBuilder;
struct InternPool
{
u32* pointer;
u32 length;
u32 capacity;
};
typedef struct InternPool InternPool;
typedef u64 BitsetElement;
decl_vb(BitsetElement);
declare_slice(BitsetElement);
struct Bitset
{
VirtualBuffer(BitsetElement) arr;
u32 length;
};
typedef struct Bitset Bitset;
const u64 element_bitsize = sizeof(u64) * 8;
fn u8 bitset_get(Bitset* bitset, u64 index)
{
auto element_index = index / element_bitsize;
if (element_index < bitset->arr.length)
{
auto bit_index = index % element_bitsize;
auto result = (bitset->arr.pointer[element_index] & (1 << bit_index)) != 0;
return result;
}
return 0;
}
fn void bitset_ensure_length(Bitset* bitset, u64 max)
{
auto length = (max / element_bitsize) + (max % element_bitsize != 0);
auto old_length = bitset->arr.length;
if (old_length < length)
{
auto new_element_count = length - old_length;
unused(vb_add(&bitset->arr, new_element_count));
}
}
fn void bitset_set_value(Bitset* bitset, u64 index, u8 value)
{
bitset_ensure_length(bitset, index + 1);
auto element_index = index / element_bitsize;
auto bit_index = index % element_bitsize;
bitset->arr.pointer[element_index] |= (!!value) << bit_index;
}
fn void bitset_clear(Bitset* bitset)
{
memset(bitset->arr.pointer, 0, bitset->arr.capacity);
bitset->arr.length = 0;
bitset->length = 0;
}
struct WorkList
{
VirtualBuffer(NodeIndex) nodes;
Bitset visited;
Bitset bitset;
u32 mid_assert:1;
};
typedef struct WorkList WorkList;
struct Thread
{
Arena* arena;
struct
{
VirtualBuffer(Type) types;
VirtualBuffer(Node) nodes;
VirtualBuffer(NodeIndex) uses;
VirtualBuffer(u8) name_buffer;
VirtualBuffer(ArrayReference) use_free_list;
VirtualBuffer(Function) functions;
} buffer;
struct
{
InternPool types;
InternPool nodes;
} interned;
struct
{
TypeIndex bottom;
TypeIndex top;
TypeIndex live_control;
TypeIndex dead_control;
struct
{
TypeIndex top;
TypeIndex bottom;
TypeIndex zero;
TypeIndex u8;
TypeIndex u16;
TypeIndex u32;
TypeIndex u64;
TypeIndex s8;
TypeIndex s16;
TypeIndex s32;
TypeIndex s64;
} integer;
} types;
WorkList worklist;
s64 main_function;
struct
{
u64 total;
u64 nop;
} iteration;
};
typedef struct Thread Thread;
fn NodeIndex thread_worklist_push(Thread* thread, NodeIndex node_index)
{
if (validi(node_index))
{
if (!bitset_get(&thread->worklist.bitset, geti(node_index)))
{
bitset_set_value(&thread->worklist.bitset, geti(node_index), 1);
*vb_add(&thread->worklist.nodes, 1) = node_index;
}
}
return node_index;
}
fn NodeIndex thread_worklist_pop(Thread* thread)
{
auto result = invalidi(Node);
auto len = thread->worklist.nodes.length;
if (len)
{
auto index = len - 1;
auto node_index = thread->worklist.nodes.pointer[index];
thread->worklist.nodes.length = index;
bitset_set_value(&thread->worklist.bitset, index, 0);
result = node_index;
}
return result;
}
fn void thread_worklist_clear(Thread* thread)
{
bitset_clear(&thread->worklist.visited);
bitset_clear(&thread->worklist.bitset);
thread->worklist.nodes.length = 0;
}
fn Type* thread_type_get(Thread* thread, TypeIndex type_index)
{
assert(validi(type_index));
auto* type = &thread->buffer.types.pointer[geti(type_index)];
return type;
}
fn Node* thread_node_get(Thread* thread, NodeIndex node_index)
{
assert(validi(node_index));
auto* node = &thread->buffer.nodes.pointer[geti(node_index)];
return node;
}
fn void thread_node_set_use(Thread* thread, u32 offset, u16 index, NodeIndex new_use)
{
thread->buffer.uses.pointer[offset + index] = new_use;
}
fn NodeIndex thread_node_get_use(Thread* thread, u32 offset, u16 index)
{
NodeIndex i = thread->buffer.uses.pointer[offset + index];
return i;
}
fn NodeIndex node_input_get(Thread* thread, Node* node, u16 index)
{
assert(index < node->input_count);
NodeIndex result = thread_node_get_use(thread, node->input_offset, index);
return result;
}
fn NodeIndex node_output_get(Thread* thread, Node* node, u16 index)
{
assert(index < node->output_count);
NodeIndex result = thread_node_get_use(thread, node->output_offset, index);
return result;
}
fn NodeIndex scope_get_control(Thread* thread, Node* node)
{
assert(node->id == NODE_SCOPE);
auto control = node_input_get(thread, node, 0);
return control;
}
fn NodeIndex builder_get_control_node_index(Thread* thread, FunctionBuilder* builder)
{
auto* scope_node = thread_node_get(thread, builder->scope);
auto result = scope_get_control(thread, scope_node);
return result;
}
typedef struct NodeDualReference NodeDualReference;
struct UseReference
{
NodeIndex* pointer;
u32 index;
};
typedef struct UseReference UseReference;
fn UseReference thread_get_node_reference_array(Thread* thread, u16 count)
{
u32 free_list_count = thread->buffer.use_free_list.length;
for (u32 i = 0; i < free_list_count; i += 1)
{
if (thread->buffer.use_free_list.pointer[i].length >= count)
{
trap();
}
}
u32 index = thread->buffer.uses.length;
auto* node_indices = vb_add(&thread->buffer.uses, count);
return (UseReference)
{
.pointer = node_indices,
.index = index,
};
}
fn void node_ensure_capacity(Thread* thread, u32* offset, u16* capacity, u16 current_length, u16 additional)
{
auto current_offset = *offset;
auto current_capacity = *capacity;
auto desired_capacity = current_length + additional;
if (desired_capacity > current_capacity)
{
auto* ptr = vb_add(&thread->buffer.uses, desired_capacity);
u32 new_offset = ptr - thread->buffer.uses.pointer;
memcpy(ptr, &thread->buffer.uses.pointer[current_offset], current_length * sizeof(NodeIndex));
memset(ptr + current_length, 0, (desired_capacity - current_length) * sizeof(NodeIndex));
*offset = new_offset;
*capacity = desired_capacity;
}
}
fn void node_add_one_assume_capacity(Thread* thread, NodeIndex node, u32 offset, u16 capacity, u16* length)
{
auto index = *length;
assert(index < capacity);
thread->buffer.uses.pointer[offset + index] = node;
*length = index + 1;
}
fn void node_add_one(Thread* thread, u32* offset, u16* capacity, u16* count, NodeIndex node_index)
{
node_ensure_capacity(thread, offset, capacity, *count, 1);
node_add_one_assume_capacity(thread, node_index, *offset, *capacity, count);
}
fn NodeIndex node_add_output(Thread* thread, NodeIndex node_index, NodeIndex output_index)
{
auto* this_node = thread_node_get(thread, node_index);
node_add_one(thread, &this_node->output_offset, &this_node->output_capacity, &this_node->output_count, output_index);
return node_index;
}
fn NodeIndex intern_pool_remove_node(Thread* thread, NodeIndex node_index);
fn void node_unlock(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
if (node->hash)
{
auto old_node_index = intern_pool_remove_node(thread, node_index);
assert(index_equal(old_node_index, node_index));
node->hash = 0;
}
}
fn s32 node_find(Slice(NodeIndex) nodes, NodeIndex node_index)
{
s32 result = -1;
for (u32 i = 0; i < nodes.length; i += 1)
{
if (index_equal(nodes.pointer[i], node_index))
{
result = i;
break;
}
}
return result;
}
fn void thread_node_remove_use(Thread* thread, u32 offset, u16* length, u16 index)
{
auto current_length = *length;
assert(index < current_length);
auto item_to_remove = &thread->buffer.uses.pointer[offset + index];
auto substitute = &thread->buffer.uses.pointer[offset + current_length - 1];
*item_to_remove = *substitute;
*length = current_length - 1;
}
fn Slice(NodeIndex) node_get_inputs(Thread* thread, Node* node)
{
auto result = (Slice(NodeIndex)) {
.pointer = &thread->buffer.uses.pointer[node->input_offset],
.length = node->input_count,
};
return result;
}
fn Slice(NodeIndex) node_get_outputs(Thread* thread, Node* node)
{
auto result = (Slice(NodeIndex)) {
.pointer = &thread->buffer.uses.pointer[node->output_offset],
.length = node->output_count,
};
return result;
}
fn u8 node_remove_output(Thread* thread, NodeIndex node_index, NodeIndex use_index)
{
auto* node = thread_node_get(thread, node_index);
auto outputs = node_get_outputs(thread, node);
auto index = node_find(outputs, use_index);
assert(index != -1);
thread_node_remove_use(thread, node->output_offset, &node->output_count, index);
return node->output_count == 0;
}
fn void move_dependencies_to_worklist(Thread* thread, Node* node)
{
assert(node->dependency_count == 0);
for (u32 i = 0; i < node->dependency_count; i += 1)
{
unused(thread);
trap();
}
}
fn String node_id_to_string(Node* node)
{
switch (node->id)
{
case_to_name(NODE_, START);
case_to_name(NODE_, STOP);
case_to_name(NODE_, CONTROL_PROJECTION);
case_to_name(NODE_, DEAD_CONTROL);
case_to_name(NODE_, SCOPE);
case_to_name(NODE_, PROJECTION);
case_to_name(NODE_, RETURN);
case_to_name(NODE_, REGION);
case_to_name(NODE_, REGION_LOOP);
case_to_name(NODE_, IF);
case_to_name(NODE_, PHI);
case_to_name(NODE_, INTEGER_ADD);
case_to_name(NODE_, INTEGER_SUBSTRACT);
case_to_name(NODE_, INTEGER_MULTIPLY);
case_to_name(NODE_, INTEGER_UNSIGNED_DIVIDE);
case_to_name(NODE_, INTEGER_SIGNED_DIVIDE);
case_to_name(NODE_, INTEGER_UNSIGNED_REMAINDER);
case_to_name(NODE_, INTEGER_SIGNED_REMAINDER);
case_to_name(NODE_, INTEGER_UNSIGNED_SHIFT_LEFT);
case_to_name(NODE_, INTEGER_SIGNED_SHIFT_LEFT);
case_to_name(NODE_, INTEGER_UNSIGNED_SHIFT_RIGHT);
case_to_name(NODE_, INTEGER_SIGNED_SHIFT_RIGHT);
case_to_name(NODE_, INTEGER_AND);
case_to_name(NODE_, INTEGER_OR);
case_to_name(NODE_, INTEGER_XOR);
case_to_name(NODE_, INTEGER_NEGATION);
case_to_name(NODE_, CONSTANT);
case_to_name(NODE_, COUNT);
case_to_name(NODE_, INTEGER_COMPARE_EQUAL);
case_to_name(NODE_, INTEGER_COMPARE_NOT_EQUAL);
break;
}
}
fn u8 node_is_unused(Node* node)
{
return node->output_count == 0;
}
fn u8 node_is_dead(Node* node)
{
return node_is_unused(node) & ((node->input_count == 0) & (!validi(node->type)));
}
fn void node_kill(Thread* thread, NodeIndex node_index)
{
node_unlock(thread, node_index);
auto* node = thread_node_get(thread, node_index);
// print("[NODE KILLING] (#{u32}, {s}) START\n", node_index.index, node_id_to_string(node));
assert(node_is_unused(node));
node->type = invalidi(Type);
auto inputs = node_get_inputs(thread, node);
while (node->input_count > 0)
{
auto input_index = node->input_count - 1;
node->input_count = input_index;
auto old_input_index = inputs.pointer[input_index];
// print("[NODE KILLING] (#{u32}, {s}) Removing input #{u32} at slot {u32}\n", node_index.index, node_id_to_string(node), old_input_index.index, input_index);
if (validi(old_input_index))
{
thread_worklist_push(thread, old_input_index);
u8 no_more_outputs = node_remove_output(thread, old_input_index, node_index);
if (no_more_outputs)
{
// print("[NODE KILLING] (#{u32}, {s}) (NO MORE OUTPUTS - KILLING) Input #{u32}\n", node_index.index, node_id_to_string(node), old_input_index.index);
node_kill(thread, old_input_index);
}
}
}
assert(node_is_dead(node));
// print("[NODE KILLING] (#{u32}, {s}) END\n", node_index.index, node_id_to_string(node));
}
fn NodeIndex node_set_input(Thread* thread, NodeIndex node_index, u16 index, NodeIndex new_input)
{
auto* node = thread_node_get(thread, node_index);
assert(index < node->input_count);
node_unlock(thread, node_index);
auto old_input = node_input_get(thread, node, index);
if (!index_equal(old_input, new_input))
{
if (validi(new_input))
{
node_add_output(thread, new_input, node_index);
}
thread_node_set_use(thread, node->input_offset, index, new_input);
if (validi(old_input))
{
if (node_remove_output(thread, old_input, node_index))
{
node_kill(thread, old_input);
}
}
move_dependencies_to_worklist(thread, node);
}
return new_input;
}
fn NodeIndex builder_set_control(Thread* thread, FunctionBuilder* builder, NodeIndex node_index)
{
return node_set_input(thread, builder->scope, 0, node_index);
}
fn NodeIndex node_add_input(Thread* thread, NodeIndex node_index, NodeIndex input_index)
{
node_unlock(thread, node_index);
Node* this_node = thread_node_get(thread, node_index);
node_add_one(thread, &this_node->input_offset, &this_node->input_capacity, &this_node->input_count, input_index);
if (validi(input_index))
{
node_add_output(thread, input_index, node_index);
}
return input_index;
}
fn NodeIndex builder_add_return(Thread* thread, FunctionBuilder* builder, NodeIndex node_index)
{
return node_add_input(thread, builder->function->stop, node_index);
}
struct NodeCreate
{
NodeId id;
Slice(NodeIndex) inputs;
};
typedef struct NodeCreate NodeCreate;
fn NodeIndex thread_node_add(Thread* thread, NodeCreate data)
{
auto input_result = thread_get_node_reference_array(thread, data.inputs.length);
memcpy(input_result.pointer, data.inputs.pointer, sizeof(NodeIndex) * data.inputs.length);
auto* node = vb_add(&thread->buffer.nodes, 1);
auto node_index = Index(Node, node - thread->buffer.nodes.pointer);
memset(node, 0, sizeof(Node));
node->id = data.id;
node->input_offset = input_result.index;
node->input_count = data.inputs.length;
node->type = invalidi(Type);
// print("[NODE CREATION] #{u32} {s} | INPUTS: { ", node_index.index, node_id_to_string(node));
for (u32 i = 0; i < data.inputs.length; i += 1)
{
NodeIndex input = data.inputs.pointer[i];
// print("{u32} ", input.index);
if (validi(input))
{
node_add_output(thread, input, node_index);
}
}
// print("}\n");
return node_index;
}
fn void node_pop_inputs(Thread* thread, NodeIndex node_index, u16 input_count)
{
node_unlock(thread, node_index);
auto* node = thread_node_get(thread, node_index);
auto inputs = node_get_inputs(thread, node);
for (u16 i = 0; i < input_count; i += 1)
{
auto old_input = inputs.pointer[node->input_count - 1];
node->input_count -= 1;
if (validi(old_input))
{
if (node_remove_output(thread, old_input, node_index))
{
trap();
}
}
}
}
fn void scope_push(Thread* thread, FunctionBuilder* builder)
{
auto* scope = thread_node_get(thread, builder->scope);
auto current_length = scope->scope.stack.length;
auto desired_length = current_length + 1;
auto current_capacity = scope->scope.stack.capacity;
if (current_capacity < desired_length)
{
auto optimal_capacity = MAX(round_up_to_next_power_of_2(desired_length), 8);
auto* new_pointer = arena_allocate(thread->arena, ScopePair, optimal_capacity);
memcpy(new_pointer, scope->scope.stack.pointer, current_length * sizeof(ScopePair));
scope->scope.stack.capacity = optimal_capacity;
scope->scope.stack.pointer = new_pointer;
}
memset(&scope->scope.stack.pointer[current_length], 0, sizeof(ScopePair));
scope->scope.stack.length = current_length + 1;
}
fn void scope_pop(Thread* thread, FunctionBuilder* builder)
{
auto scope_index = builder->scope;
auto* scope = thread_node_get(thread, scope_index);
auto index = scope->scope.stack.length - 1;
auto popped_scope = scope->scope.stack.pointer[index];
scope->scope.stack.length = index;
auto input_count = popped_scope.values.length;
node_pop_inputs(thread, scope_index, input_count);
}
fn ScopePair* scope_get_last(Node* node)
{
assert(node->id == NODE_SCOPE);
return &node->scope.stack.pointer[node->scope.stack.length - 1];
}
fn NodeIndex scope_define(Thread* thread, FunctionBuilder* builder, String name, TypeIndex type_index, NodeIndex node_index)
{
auto scope_node_index = builder->scope;
auto* scope_node = thread_node_get(thread, scope_node_index);
auto* last = scope_get_last(scope_node);
string_map_put(&last->types, thread->arena, name, geti(type_index));
auto existing = string_map_put(&last->values, thread->arena, name, scope_node->input_count).existing;
NodeIndex result;
if (existing)
{
result = invalidi(Node);
}
else
{
result = node_add_input(thread, scope_node_index, node_index);
}
return result;
}
fn NodeIndex scope_update_extended(Thread* thread, FunctionBuilder* builder, String name, NodeIndex node_index, s32 nesting_level)
{
NodeIndex result = invalidi(Node);
if (nesting_level >= 0)
{
auto* scope_node = thread_node_get(thread, builder->scope);
auto* string_map = &scope_node->scope.stack.pointer[nesting_level].values;
auto lookup_result = string_map_get(string_map, name);
if (lookup_result.existing)
{
auto index = lookup_result.value;
auto old_index = node_input_get(thread, scope_node, index);
auto* old_node = thread_node_get(thread, old_index);
if (old_node->id == NODE_SCOPE)
{
trap();
}
if (validi(node_index))
{
auto result = node_set_input(thread, builder->scope, index, node_index);
return result;
}
else
{
return old_index;
}
}
else
{
return scope_update_extended(thread, builder, name, node_index, nesting_level - 1);
}
}
return result;
}
fn NodeIndex scope_lookup(Thread* thread, FunctionBuilder* builder, String name)
{
auto* scope_node = thread_node_get(thread, builder->scope);
return scope_update_extended(thread, builder, name, invalidi(Node), scope_node->scope.stack.length - 1);
}
fn NodeIndex scope_update(Thread* thread, FunctionBuilder* builder, String name, NodeIndex value_node_index)
{
auto* scope_node = thread_node_get(thread, builder->scope);
auto result = scope_update_extended(thread, builder, name, value_node_index, scope_node->scope.stack.length - 1);
return result;
}
fn u8 type_equal(Type* a, Type* b)
{
u8 result = 0;
if (a == b)
{
result = 1;
}
else
{
assert(a->hash);
assert(b->hash);
if ((a->hash == b->hash) & (a->id == b->id))
{
switch (a->id)
{
case TYPE_INTEGER:
{
result =
((a->integer.constant == b->integer.constant) & (a->integer.bit_count == b->integer.bit_count))
&
((a->integer.is_signed == b->integer.is_signed) & (a->integer.is_constant == b->integer.is_constant));
} break;
case TYPE_TUPLE:
{
result = a->tuple.types.length == b->tuple.types.length;
if (result)
{
for (u32 i = 0; i < a->tuple.types.length; i += 1)
{
if (!index_equal(a->tuple.types.pointer[i], b->tuple.types.pointer[i]))
{
todo();
}
}
}
} break;
default:
trap();
}
}
}
return result;
}
fn Hash hash_type(Thread* thread, Type* type);
fn Hash node_get_hash_default(Thread* thread, Node* node, NodeIndex node_index, Hash hash)
{
unused(thread);
unused(node);
unused(node_index);
return hash;
}
fn Hash node_get_hash_projection(Thread* thread, Node* node, NodeIndex node_index, Hash hash)
{
unused(thread);
unused(node_index);
auto projection_index = node->projection.index;
auto proj_index_bytes = struct_to_bytes(projection_index);
for (u32 i = 0; i < proj_index_bytes.length; i += 1)
{
hash = hash_byte(hash, proj_index_bytes.pointer[i]);
}
return hash;
}
fn Hash node_get_hash_control_projection(Thread* thread, Node* node, NodeIndex node_index, Hash hash)
{
unused(thread);
unused(node_index);
auto projection_index = node->control_projection.projection.index;
auto proj_index_bytes = struct_to_bytes(projection_index);
for (u32 i = 0; i < proj_index_bytes.length; i += 1)
{
hash = hash_byte(hash, proj_index_bytes.pointer[i]);
}
return hash;
}
fn Hash node_get_hash_constant(Thread* thread, Node* node, NodeIndex node_index, Hash hash)
{
unused(node_index);
assert(hash == fnv_offset);
// auto type_index = node->type;
auto* type = thread_type_get(thread, node->type);
auto type_hash = hash_type(thread, type);
// print("Hashing node #{u32} (constant) (type: #{u32}) (hash: {u64:x})\n", node_index.index, type_index.index, type_hash);
return type_hash;
}
fn Hash node_get_hash_scope(Thread* thread, Node* node, NodeIndex node_index, Hash hash)
{
unused(thread);
unused(node);
unused(node_index);
return hash;
}
fn NodeIndex node_idealize_substract(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
auto inputs = node_get_inputs(thread, node);
auto left_node_index = inputs.pointer[1];
auto right_node_index = inputs.pointer[2];
auto* left = thread_node_get(thread, left_node_index);
auto* right = thread_node_get(thread, right_node_index);
if (index_equal(left_node_index, right_node_index))
{
trap();
}
else if (right->id == NODE_INTEGER_NEGATION)
{
trap();
}
else if (left->id == NODE_INTEGER_NEGATION)
{
trap();
}
else
{
return invalidi(Node);
}
}
fn NodeIndex node_idealize_compare(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
auto inputs = node_get_inputs(thread, node);
auto left_node_index = inputs.pointer[1];
auto right_node_index = inputs.pointer[2];
auto* left = thread_node_get(thread, left_node_index);
auto* right = thread_node_get(thread, right_node_index);
if (index_equal(left_node_index, right_node_index))
{
trap();
}
if (node->id == NODE_INTEGER_COMPARE_EQUAL)
{
if (right->id != NODE_CONSTANT)
{
if (left->id == NODE_CONSTANT)
{
todo();
}
else if (left_node_index.index > right_node_index.index)
{
todo();
}
}
// TODO: null pointer
if (index_equal(right->type, thread->types.integer.zero))
{
todo();
}
}
// TODO: phi constant
return invalidi(Node);
}
struct TypeGetOrPut
{
TypeIndex index;
u8 existing;
};
typedef struct TypeGetOrPut TypeGetOrPut;
fn TypeGetOrPut intern_pool_get_or_put_new_type(Thread* thread, Type* type);
typedef NodeIndex NodeIdealize(Thread* thread, NodeIndex node_index);
typedef TypeIndex NodeComputeType(Thread* thread, NodeIndex node_index);
typedef Hash TypeGetHash(Thread* thread, Type* type);
typedef Hash NodeGetHash(Thread* thread, Node* node, NodeIndex node_index, Hash hash);
fn TypeIndex thread_get_integer_type(Thread* thread, TypeInteger type_integer)
{
Type type;
memset(&type, 0, sizeof(Type));
type.integer = type_integer;
type.id = TYPE_INTEGER;
auto result = intern_pool_get_or_put_new_type(thread, &type);
return result.index;
}
fn NodeIndex peephole(Thread* thread, Function* function, NodeIndex node_index);
fn NodeIndex constant_int_create_with_type(Thread* thread, Function* function, TypeIndex type_index)
{
auto node_index = thread_node_add(thread, (NodeCreate){
.id = NODE_CONSTANT,
.inputs = array_to_slice(((NodeIndex []) {
function->start,
}))
});
auto* node = thread_node_get(thread, node_index);
node->constant = (NodeConstant) {
.type = type_index,
};
// print("Creating constant integer node #{u32} with value: {u64:x}\n", node_index.index, thread_type_get(thread, type_index)->integer.constant);
auto result = peephole(thread, function, node_index);
return result;
}
fn NodeIndex constant_int_create(Thread* thread, Function* function, u64 value)
{
auto type_index = thread_get_integer_type(thread, (TypeInteger){
.constant = value,
.bit_count = 0,
.is_constant = 1,
.is_signed = 0,
});
auto constant_int = constant_int_create_with_type(thread, function, type_index);
return constant_int;
}
struct NodeVirtualTable
{
NodeComputeType* const compute_type;
NodeIdealize* const idealize;
NodeGetHash* const get_hash;
};
typedef struct NodeVirtualTable NodeVirtualTable;
struct TypeVirtualTable
{
TypeGetHash* const get_hash;
};
typedef struct TypeVirtualTable TypeVirtualTable;
fn Hash hash_type(Thread* thread, Type* type);
fn NodeIndex idealize_null(Thread* thread, NodeIndex node_index)
{
unused(thread);
unused(node_index);
return invalidi(Node);
}
fn TypeIndex compute_type_constant(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
assert(node->id == NODE_CONSTANT);
return node->constant.type;
}
fn Hash type_get_hash_default(Thread* thread, Type* type)
{
unused(thread);
assert(!type->hash);
Hash hash = fnv_offset;
// u32 i = 0;
for (auto* it = (u8*)type; it < (u8*)(type + 1); it += 1)
{
hash = hash_byte(hash, *it);
if (type->id == TYPE_INTEGER)
{
// print("Byte [{u32}] = 0x{u32:x}\n", i, (u32)*it);
// i += 1;
}
}
return hash;
}
fn Hash type_get_hash_tuple(Thread* thread, Type* type)
{
Hash hash = fnv_offset;
for (u64 i = 0; i < type->tuple.types.length; i += 1)
{
auto* tuple_type = thread_type_get(thread,type->tuple.types.pointer[i]);
auto type_hash = hash_type(thread, tuple_type);
for (u8* it = (u8*)&type_hash; it < (u8*)(&type_hash + 1); it += 1)
{
hash = hash_byte(hash, *it);
}
}
return hash;
}
fn u8 node_is_projection(Node* n)
{
return (n->id == NODE_CONTROL_PROJECTION) | (n->id == NODE_PROJECTION);
}
fn NodeIndex projection_get_control(Thread* thread, Node* node)
{
assert(node_is_projection(node));
auto node_index = node_input_get(thread, node, 0);
return node_index;
}
fn s32 projection_get_index(Node* node)
{
assert(node_is_projection(node));
switch (node->id)
{
case NODE_CONTROL_PROJECTION:
return node->control_projection.projection.index;
case NODE_PROJECTION:
return node->projection.index;
default:
trap();
}
}
fn TypeIndex compute_type_projection(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
assert(node_is_projection(node));
auto control_node_index = projection_get_control(thread, node);
auto* control_node = thread_node_get(thread, control_node_index);
auto* control_type = thread_type_get(thread, control_node->type);
if (control_type->id == TYPE_TUPLE)
{
auto index = projection_get_index(node);
auto type_index = control_type->tuple.types.pointer[index];
return type_index;
}
else
{
return thread->types.bottom;
}
}
fn NodeIndex idealize_control_projection(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
assert(node->id == NODE_CONTROL_PROJECTION);
auto control_node_index = projection_get_control(thread, node);
auto* control_node = thread_node_get(thread, control_node_index);
auto* control_type = thread_type_get(thread, control_node->type);
auto index = node->control_projection.projection.index;
if (control_type->id == TYPE_TUPLE)
{
if (index_equal(control_type->tuple.types.pointer[index], thread->types.dead_control))
{
trap();
}
if (control_node->id == NODE_IF)
{
trap();
}
}
if (control_node->id == NODE_IF)
{
trap();
}
return invalidi(Node);
}
fn NodeIndex return_get_control(Thread* thread, Node* node)
{
return node_input_get(thread, node, 0);
}
fn NodeIndex return_get_value(Thread* thread, Node* node)
{
return node_input_get(thread, node, 1);
}
fn TypeIndex intern_pool_put_new_type_at_assume_not_existent_assume_capacity(Thread* thread, Type* type, u32 index)
{
auto* result = vb_add(&thread->buffer.types, 1);
auto buffer_index = result - thread->buffer.types.pointer;
auto type_index = Index(Type, buffer_index);
*result = *type;
u32 raw_type = *(u32*)&type_index;
thread->interned.types.pointer[index] = raw_type;
assert(raw_type);
thread->interned.types.length += 1;
return type_index;
}
fn TypeIndex intern_pool_put_new_type_assume_not_existent_assume_capacity(Thread* thread, Type* type)
{
assert(thread->interned.types.length < thread->interned.types.capacity);
Hash hash = type->hash;
assert(hash);
auto index = hash & (thread->interned.types.capacity - 1);
return intern_pool_put_new_type_at_assume_not_existent_assume_capacity(thread, type, index);
}
typedef enum InternPoolKind
{
INTERN_POOL_KIND_TYPE,
INTERN_POOL_KIND_NODE,
} InternPoolKind;
// This assumes the indices are not equal
fn u8 node_equal(Thread* thread, Node* a, Node* b)
{
u8 result = 0;
assert(a != b);
assert(a->hash);
assert(b->hash);
if (((a->id == b->id) & (a->hash == b->hash)) & (a->input_count == b->input_count))
{
auto inputs_a = node_get_inputs(thread, a);
auto inputs_b = node_get_inputs(thread, b);
result = 1;
for (u16 i = 0; i < a->input_count; i += 1)
{
if (!index_equal(inputs_a.pointer[i], inputs_b.pointer[i]))
{
result = 0;
break;
}
}
if (result)
{
switch (a->id)
{
case NODE_CONSTANT:
result = index_equal(a->constant.type, b->constant.type);
break;
case NODE_START:
result = a->start.function == b->start.function;
break;
default:
trap();
}
}
}
return result;
}
fn u8 node_index_equal(Thread* thread, NodeIndex a, NodeIndex b)
{
u8 result = 0;
if (index_equal(a, b))
{
result = 1;
}
else
{
auto* node_a = thread_node_get(thread, a);
auto* node_b = thread_node_get(thread, b);
assert(node_a != node_b);
result = node_equal(thread, node_a, node_b);
}
return result;
}
[[gnu::hot]] fn s32 intern_pool_find_node_slot(Thread* thread, u32 original_index, NodeIndex node_index)
{
assert(validi(node_index));
auto it_index = original_index;
auto existing_capacity = thread->interned.nodes.capacity;
s32 result = -1;
// auto* node = thread_node_get(thread, node_index);
for (u32 i = 0; i < existing_capacity; i += 1)
{
auto index = it_index & (existing_capacity - 1);
u32 key = thread->interned.nodes.pointer[index];
if (key == 0)
{
assert(thread->interned.nodes.length < thread->interned.nodes.capacity);
result = index;
break;
}
else
{
NodeIndex existing_node_index = *(NodeIndex*)&key;
// Exhaustive comparation, shortcircuit when possible
if (node_index_equal(thread, existing_node_index, node_index))
{
result = index;
break;
}
}
it_index += 1;
}
return result;
}
fn NodeIndex intern_pool_get_node(Thread* thread, NodeIndex key, Hash hash)
{
auto original_index = hash & (thread->interned.nodes.capacity - 1);
auto slot = intern_pool_find_node_slot(thread, original_index, key);
auto* pointer_to_slot = &thread->interned.nodes.pointer[slot];
return *(NodeIndex*)pointer_to_slot;
}
fn NodeIndex intern_pool_put_node_at_assume_not_existent_assume_capacity(Thread* thread, NodeIndex node, u32 index)
{
u32 raw_node = *(u32*)&node;
assert(raw_node);
thread->interned.nodes.pointer[index] = raw_node;
thread->interned.nodes.length += 1;
return node;
}
fn NodeIndex intern_pool_put_node_assume_not_existent_assume_capacity(Thread* thread, Hash hash, NodeIndex node)
{
auto capacity = thread->interned.nodes.capacity;
assert(thread->interned.nodes.length < capacity);
auto original_index = hash & (capacity - 1);
auto slot = intern_pool_find_node_slot(thread, original_index, node);
if (slot == -1)
{
fail();
}
auto index = (u32)slot;
return intern_pool_put_node_at_assume_not_existent_assume_capacity(thread, node, index);
}
fn void intern_pool_ensure_capacity(InternPool* pool, Thread* thread, u32 additional, InternPoolKind kind)
{
auto current_capacity = pool->capacity;
auto current_length = pool->length;
auto half_capacity = current_capacity >> 1;
auto destination_length = current_length + additional;
if (destination_length > half_capacity)
{
u32 new_capacity = MAX(round_up_to_next_power_of_2(destination_length), 32);
u32* new_array = arena_allocate(thread->arena, u32, new_capacity);
memset(new_array, 0, sizeof(u32) * new_capacity);
auto* old_pointer = pool->pointer;
auto old_capacity = current_capacity;
auto old_length = current_length;
pool->length = 0;
pool->pointer = new_array;
pool->capacity = new_capacity;
u8* buffer;
u64 stride;
switch (kind)
{
case INTERN_POOL_KIND_TYPE:
buffer = (u8*)thread->buffer.types.pointer;
stride = sizeof(Type);
assert(pool == &thread->interned.types);
break;
case INTERN_POOL_KIND_NODE:
buffer = (u8*)thread->buffer.nodes.pointer;
stride = sizeof(Node);
assert(pool == &thread->interned.nodes);
break;
}
for (u32 i = 0; i < old_capacity; i += 1)
{
auto key = old_pointer[i];
if (key)
{
auto hash = *(Hash*)(buffer + (stride * (key - 1)));
assert(hash);
switch (kind)
{
case INTERN_POOL_KIND_TYPE:
{
auto type_index = *(TypeIndex*)&key;
auto* type = thread_type_get(thread, type_index);
assert(type->hash == hash);
} break;
case INTERN_POOL_KIND_NODE:
{
auto node_index = *(NodeIndex*)&key;
auto* node = thread_node_get(thread, node_index);
assert(node->hash == hash);
intern_pool_put_node_assume_not_existent_assume_capacity(thread, hash, node_index);
} break;
}
}
}
assert(old_length == pool->length);
assert(pool->capacity == new_capacity);
for (u32 i = 0; i < old_capacity; i += 1)
{
auto key = old_pointer[i];
if (key)
{
auto hash = *(Hash*)(buffer + (stride * (key - 1)));
assert(hash);
switch (kind)
{
case INTERN_POOL_KIND_TYPE:
{
auto type_index = *(TypeIndex*)&key;
unused(type_index);
trap();
} break;
case INTERN_POOL_KIND_NODE:
{
auto node_index = *(NodeIndex*)&key;
auto* node = thread_node_get(thread, node_index);
assert(node->hash == hash);
auto result = intern_pool_get_node(thread, node_index, hash);
assert(validi(node_index));
assert(index_equal(node_index, result));
} break;
}
}
}
}
}
fn TypeIndex intern_pool_put_new_type_assume_not_existent(Thread* thread, Type* type)
{
intern_pool_ensure_capacity(&thread->interned.types, thread, 1, INTERN_POOL_KIND_TYPE);
return intern_pool_put_new_type_assume_not_existent_assume_capacity(thread, type);
}
fn s32 intern_pool_find_type_slot(Thread* thread, u32 original_index, Type* type)
{
auto it_index = original_index;
auto existing_capacity = thread->interned.types.capacity;
s32 result = -1;
for (u32 i = 0; i < existing_capacity; i += 1)
{
auto index = it_index & (existing_capacity - 1);
u32 key = thread->interned.types.pointer[index];
// Not set
if (key == 0)
{
result = index;
break;
}
else
{
TypeIndex existing_type_index = *(TypeIndex*)&key;
Type* existing_type = thread_type_get(thread, existing_type_index);
if (type_equal(existing_type, type))
{
result = index;
break;
}
}
it_index += 1;
}
return result;
}
fn TypeGetOrPut intern_pool_get_or_put_new_type(Thread* thread, Type* type)
{
auto existing_capacity = thread->interned.types.capacity;
auto hash = hash_type(thread, type);
auto original_index = hash & (existing_capacity - 1);
auto slot = intern_pool_find_type_slot(thread, original_index, type);
if (slot != -1)
{
u32 index = slot;
TypeIndex type_index = *(TypeIndex*)&thread->interned.types.pointer[index];
u8 existing = validi(type_index);
if (!existing)
{
type_index = intern_pool_put_new_type_at_assume_not_existent_assume_capacity(thread, type, index);
}
return (TypeGetOrPut) {
.index = type_index,
.existing = existing,
};
}
else
{
if (thread->interned.types.length < existing_capacity)
{
trap();
}
else if (thread->interned.types.length == existing_capacity)
{
auto result = intern_pool_put_new_type_assume_not_existent(thread, type);
return (TypeGetOrPut) {
.index = result,
.existing = 0,
};
}
else
{
trap();
}
}
}
fn TypeGetOrPut type_make_tuple(Thread* thread, Slice(TypeIndex) types)
{
Type type;
memset(&type, 0, sizeof(Type));
type.tuple = (TypeTuple){
.types = types,
};
type.id = TYPE_TUPLE;
auto result = intern_pool_get_or_put_new_type(thread, &type);
return result;
}
fn TypeIndex type_make_tuple_allocate(Thread* thread, Slice(TypeIndex) types)
{
auto gop = type_make_tuple(thread, types);
// Need to reallocate the type array
if (!gop.existing)
{
auto* type = thread_type_get(thread, gop.index);
assert(type->tuple.types.pointer == types.pointer);
assert(type->tuple.types.length == types.length);
type->tuple.types = arena_allocate_slice(thread->arena, TypeIndex, types.length);
memcpy(type->tuple.types.pointer, types.pointer, sizeof(TypeIndex) * types.length);
}
return gop.index;
}
fn TypeIndex compute_type_return(Thread* thread, NodeIndex node_index)
{
Node* node = thread_node_get(thread, node_index);
auto control_type = thread_node_get(thread, return_get_control(thread, node))->type;
auto return_type = thread_node_get(thread, return_get_value(thread, node))->type;
Slice(TypeIndex) types = array_to_slice(((TypeIndex[]) {
control_type,
return_type,
}));
auto result = type_make_tuple_allocate(thread, types);
return result;
}
fn NodeIndex idealize_return(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
auto control_node_index = return_get_control(thread, node);
auto* control_node = thread_node_get(thread, control_node_index);
if (index_equal(control_node->type, thread->types.dead_control))
{
return control_node_index;
}
else
{
return invalidi(Node);
}
}
fn TypeIndex compute_type_dead_control(Thread* thread, NodeIndex node_index)
{
unused(node_index);
return thread->types.dead_control;
}
fn TypeIndex compute_type_bottom(Thread* thread, NodeIndex node_index)
{
unused(node_index);
return thread->types.bottom;
}
fn NodeIndex idealize_stop(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
auto original_input_count = node->input_count;
for (u16 i = 0; i < node->input_count; i += 1)
{
auto input_node_index = node_input_get(thread, node, i);
auto* input_node = thread_node_get(thread, input_node_index);
if (index_equal(input_node->type, thread->types.dead_control))
{
trap();
}
}
if (node->input_count != original_input_count)
{
return node_index;
}
else
{
return invalidi(Node);
}
}
fn TypeIndex compute_type_start(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
return node->start.arguments;
}
fn u8 type_is_constant(Type* type)
{
switch (type->id)
{
case TYPE_INTEGER:
return type->integer.is_constant;
default:
return 0;
}
}
fn u8 type_is_simple(Type* type)
{
return type->id <= TYPE_DEAD_CONTROL;
}
fn TypeIndex type_meet(Thread* thread, TypeIndex a, TypeIndex b)
{
TypeIndex result = invalidi(Type);
if (index_equal(a, b))
{
result = a;
}
else
{
Type* a_type = thread_type_get(thread, a);
Type* b_type = thread_type_get(thread, b);
TypeIndex left = invalidi(Type);
TypeIndex right = invalidi(Type);
assert(a_type != b_type);
if (a_type->id == b_type->id)
{
left = a;
right = b;
}
else if (type_is_simple(a_type))
{
left = a;
right = b;
}
else if (type_is_simple(b_type))
{
trap();
}
else
{
result = thread->types.bottom;
}
assert(!!validi(left) == !!validi(right));
assert((validi(left) & validi(right)) | (validi(result)));
if (validi(left))
{
assert(!validi(result));
auto* left_type = thread_type_get(thread, left);
auto* right_type = thread_type_get(thread, right);
switch (left_type->id)
{
case TYPE_INTEGER:
{
// auto integer_bot = thread->types.integer.bottom;
// auto integer_top = thread->types.integer.top;
// if (index_equal(left, integer_bot))
// {
// result = left;
// }
// else if (index_equal(right, integer_bot))
// {
// result = right;
// }
// else if (index_equal(right, integer_top))
// {
// result = left;
// }
// else if (index_equal(left, integer_top))
// {
// result = right;
// }
// else
// {
// result = integer_bot;
// }
if (left_type->integer.bit_count == right_type->integer.bit_count)
{
todo();
}
else
{
if ((!left_type->integer.is_constant & !!left_type->integer.bit_count) & (right_type->integer.is_constant & !right_type->integer.bit_count))
{
result = left;
}
else if ((left_type->integer.is_constant & !left_type->integer.bit_count) & (!right_type->integer.is_constant & !!right_type->integer.bit_count))
{
trap();
}
}
} break;
case TYPE_BOTTOM:
{
assert(type_is_simple(left_type));
if ((left_type->id == TYPE_BOTTOM) | (right_type->id == TYPE_TOP))
{
result = left;
}
else if ((left_type->id == TYPE_TOP) | (right_type->id == TYPE_BOTTOM))
{
result = right;
}
else if (!type_is_simple(right_type))
{
result = thread->types.bottom;
}
else if (left_type->id == TYPE_LIVE_CONTROL)
{
result = thread->types.live_control;
}
else
{
result = thread->types.dead_control;
}
} break;
default:
trap();
}
}
}
assert(validi(result));
return result;
}
fn u8 type_is_a(Thread* thread, TypeIndex a, TypeIndex b)
{
auto m = type_meet(thread, a, b);
return index_equal(m, b);
}
fn TypeIndex compute_type_integer_binary(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
auto inputs = node_get_inputs(thread, node);
auto* left = thread_node_get(thread, inputs.pointer[1]);
auto* right = thread_node_get(thread, inputs.pointer[2]);
assert(!node_is_dead(left));
assert(!node_is_dead(right));
auto* left_type = thread_type_get(thread, left->type);
auto* right_type = thread_type_get(thread, right->type);
if (((left_type->id == TYPE_INTEGER) & (right_type->id == TYPE_INTEGER)) & (type_is_constant(left_type) & type_is_constant(right_type)))
{
auto left_value = left_type->integer.constant;
auto right_value = right_type->integer.constant;
assert(left_type->integer.bit_count == 0);
assert(right_type->integer.bit_count == 0);
assert(!left_type->integer.is_signed);
assert(!right_type->integer.is_signed);
u64 result;
TypeInteger type_integer = left_type->integer;
switch (node->id)
{
case NODE_INTEGER_ADD:
result = left_value + right_value;
break;
case NODE_INTEGER_SUBSTRACT:
result = left_value - right_value;
break;
case NODE_INTEGER_MULTIPLY:
result = left_value * right_value;
break;
case NODE_INTEGER_SIGNED_DIVIDE:
result = left_value * right_value;
break;
case NODE_INTEGER_AND:
result = left_value & right_value;
break;
case NODE_INTEGER_OR:
result = left_value | right_value;
break;
case NODE_INTEGER_XOR:
result = left_value ^ right_value;
break;
case NODE_INTEGER_SIGNED_SHIFT_LEFT:
result = left_value << right_value;
break;
case NODE_INTEGER_SIGNED_SHIFT_RIGHT:
result = left_value >> right_value;
break;
default:
trap();
}
type_integer.constant = result;
auto new_type = thread_get_integer_type(thread, type_integer);
return new_type;
}
else
{
auto result = type_meet(thread, left->type, right->type);
return result;
}
}
global const TypeVirtualTable type_functions[TYPE_COUNT] = {
[TYPE_BOTTOM] = { .get_hash = &type_get_hash_default },
[TYPE_TOP] = { .get_hash = &type_get_hash_default },
[TYPE_LIVE_CONTROL] = { .get_hash = &type_get_hash_default },
[TYPE_DEAD_CONTROL] = { .get_hash = &type_get_hash_default },
[TYPE_INTEGER] = { .get_hash = &type_get_hash_default },
[TYPE_TUPLE] = { .get_hash = &type_get_hash_tuple },
};
global const NodeVirtualTable node_functions[NODE_COUNT] = {
[NODE_START] = {
.compute_type = &compute_type_start,
.idealize = &idealize_null,
.get_hash = &node_get_hash_default,
},
[NODE_STOP] = {
.compute_type = &compute_type_bottom,
.idealize = &idealize_stop,
.get_hash = &node_get_hash_default,
},
[NODE_CONTROL_PROJECTION] = {
.compute_type = &compute_type_projection,
.idealize = &idealize_control_projection,
.get_hash = &node_get_hash_control_projection,
},
[NODE_DEAD_CONTROL] = {
.compute_type = &compute_type_dead_control,
.idealize = &idealize_null,
.get_hash = &node_get_hash_default,
},
[NODE_RETURN] = {
.compute_type = &compute_type_return,
.idealize = &idealize_return,
.get_hash = &node_get_hash_default,
},
[NODE_PROJECTION] = {
.compute_type = &compute_type_projection,
.idealize = &idealize_null,
.get_hash = &node_get_hash_projection,
},
[NODE_SCOPE] = {
.compute_type = &compute_type_bottom,
.idealize = &idealize_null,
.get_hash = &node_get_hash_scope,
},
// Integer operations
[NODE_INTEGER_ADD] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_SUBSTRACT] = {
.compute_type = &compute_type_integer_binary,
.idealize = &node_idealize_substract,
.get_hash = &node_get_hash_default,
},
[NODE_INTEGER_SIGNED_DIVIDE] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_MULTIPLY] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_AND] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_OR] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_XOR] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_SIGNED_SHIFT_LEFT] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_SIGNED_SHIFT_RIGHT] = {
.compute_type = &compute_type_integer_binary,
},
[NODE_INTEGER_COMPARE_EQUAL] = {
.compute_type = &compute_type_integer_binary,
.idealize = &node_idealize_compare,
.get_hash = &node_get_hash_default,
},
[NODE_INTEGER_COMPARE_NOT_EQUAL] = {
.compute_type = &compute_type_integer_binary,
.idealize = &node_idealize_compare,
.get_hash = &node_get_hash_default,
},
// Constant
[NODE_CONSTANT] = {
.compute_type = &compute_type_constant,
.idealize = &idealize_null,
.get_hash = &node_get_hash_constant,
},
};
may_be_unused fn String type_id_to_string(Type* type)
{
switch (type->id)
{
case_to_name(TYPE_, BOTTOM);
case_to_name(TYPE_, TOP);
case_to_name(TYPE_, LIVE_CONTROL);
case_to_name(TYPE_, DEAD_CONTROL);
case_to_name(TYPE_, INTEGER);
case_to_name(TYPE_, TUPLE);
case_to_name(TYPE_, COUNT);
}
}
fn Hash hash_type(Thread* thread, Type* type)
{
Hash hash = type->hash;
if (!hash)
{
hash = type_functions[type->id].get_hash(thread, type);
// print("Hashing type id {s}: {u64:x}\n", type_id_to_string(type), hash);
}
assert(hash != 0);
type->hash = hash;
return hash;
}
fn NodeIndex intern_pool_put_node_assume_not_existent(Thread* thread, Hash hash, NodeIndex node)
{
intern_pool_ensure_capacity(&thread->interned.nodes, thread, 1, INTERN_POOL_KIND_NODE);
return intern_pool_put_node_assume_not_existent_assume_capacity(thread, hash, node);
}
struct NodeGetOrPut
{
NodeIndex index;
u8 existing;
};
typedef struct NodeGetOrPut NodeGetOrPut;
fn Hash hash_node(Thread* thread, Node* node, NodeIndex node_index)
{
auto hash = node->hash;
if (!hash)
{
hash = fnv_offset;
hash = node_functions[node->id].get_hash(thread, node, node_index, hash);
// print("[HASH #{u32}] Received hash from callback: {u64:x}\n", node_index.index, hash);
hash = hash_byte(hash, node->id);
auto inputs = node_get_inputs(thread, node);
for (u32 i = 0; i < inputs.length; i += 1)
{
auto input_index = inputs.pointer[i];
if (validi(input_index))
{
for (u8* it = (u8*)&input_index; it < (u8*)(&input_index + 1); it += 1)
{
hash = hash_byte(hash, *it);
}
}
}
// print("[HASH] Node #{u32}, {s}: {u64:x}\n", node_index.index, node_id_to_string(node), hash);
node->hash = hash;
}
assert(hash);
return hash;
}
fn NodeGetOrPut intern_pool_get_or_put_node(Thread* thread, NodeIndex node_index)
{
assert(thread->interned.nodes.length <= thread->interned.nodes.capacity);
auto existing_capacity = thread->interned.nodes.capacity;
auto* node = &thread->buffer.nodes.pointer[geti(node_index)];
auto hash = hash_node(thread, node, node_index);
auto original_index = hash & (existing_capacity - 1);
auto slot = intern_pool_find_node_slot(thread, original_index, node_index);
if (slot != -1)
{
u32 index = slot;
auto* existing_ptr = &thread->interned.nodes.pointer[index];
NodeIndex existing_value = *(NodeIndex*)existing_ptr;
u8 existing = validi(existing_value);
NodeIndex new_value = existing_value;
if (!existing)
{
assert(thread->interned.nodes.length < thread->interned.nodes.capacity);
new_value = intern_pool_put_node_at_assume_not_existent_assume_capacity(thread, node_index, index);
assert(!index_equal(new_value, existing_value));
assert(index_equal(new_value, node_index));
}
return (NodeGetOrPut) {
.index = new_value,
.existing = existing,
};
}
else
{
if (thread->interned.nodes.length < existing_capacity)
{
trap();
}
else if (thread->interned.nodes.length == existing_capacity)
{
auto result = intern_pool_put_node_assume_not_existent(thread, hash, node_index);
return (NodeGetOrPut) {
.index = result,
.existing = 0,
};
}
else
{
trap();
}
}
}
fn NodeIndex intern_pool_remove_node(Thread* thread, NodeIndex node_index)
{
auto existing_capacity = thread->interned.nodes.capacity;
auto* node = thread_node_get(thread, node_index);
auto hash = hash_node(thread, node, node_index);
auto original_index = hash & (existing_capacity - 1);
auto slot = intern_pool_find_node_slot(thread, original_index, node_index);
if (slot != -1)
{
auto i = (u32)slot;
auto* slot_pointer = &thread->interned.nodes.pointer[i];
auto old_node_index = *(NodeIndex*)slot_pointer;
assert(validi(old_node_index));
thread->interned.nodes.length -= 1;
*slot_pointer = 0;
auto j = i;
while (1)
{
j = (j + 1) & (existing_capacity - 1);
auto existing = thread->interned.nodes.pointer[j];
if (existing == 0)
{
break;
}
auto existing_node_index = *(NodeIndex*)&existing;
auto* existing_node = thread_node_get(thread, existing_node_index);
auto existing_node_hash = hash_node(thread, existing_node, existing_node_index);
auto k = existing_node_hash & (existing_capacity - 1);
if (i <= j)
{
if ((i < k) & (k <= j))
{
continue;
}
}
else
{
if ((k <= j) | (i < k))
{
continue;
}
}
thread->interned.nodes.pointer[i] = thread->interned.nodes.pointer[j];
thread->interned.nodes.pointer[j] = 0;
i = j;
}
return old_node_index;
}
else
{
trap();
}
}
struct Parser
{
u64 i;
u32 line;
u32 column;
};
typedef struct Parser Parser;
[[gnu::hot]] fn void skip_space(Parser* parser, String src)
{
u64 original_i = parser->i;
if (original_i != src.length)
{
if (is_space(src.pointer[original_i], get_next_ch_safe(src, original_i)))
{
while (parser->i < src.length)
{
u64 index = parser->i;
u8 ch = src.pointer[index];
u64 new_line = ch == '\n';
parser->line += new_line;
if (new_line)
{
parser->column = index + 1;
}
if (!is_space(ch, get_next_ch_safe(src, parser->i)))
{
break;
}
u32 is_comment = src.pointer[index] == '/';
parser->i += is_comment + is_comment;
if (is_comment)
{
while (parser->i < src.length)
{
if (src.pointer[parser->i] == '\n')
{
break;
}
parser->i += 1;
}
continue;
}
parser->i += 1;
}
}
}
}
[[gnu::hot]] fn void expect_character(Parser* parser, String src, u8 expected_ch)
{
u64 index = parser->i;
if (expect(index < src.length, 1))
{
u8 ch = src.pointer[index];
u64 matches = ch == expected_ch;
expect(matches, 1);
parser->i += matches;
if (!matches)
{
print_string(strlit("expected character '"));
print_string(ch_to_str(expected_ch));
print_string(strlit("', but found '"));
print_string(ch_to_str(ch));
print_string(strlit("'\n"));
fail();
}
}
else
{
print_string(strlit("expected character '"));
print_string(ch_to_str(expected_ch));
print_string(strlit("', but found end of file\n"));
fail();
}
}
[[gnu::hot]] fn String parse_identifier(Parser* parser, String src)
{
u64 identifier_start_index = parser->i;
u64 is_string_literal = src.pointer[identifier_start_index] == '"';
parser->i += is_string_literal;
u8 identifier_start_ch = src.pointer[parser->i];
u64 is_valid_identifier_start = is_identifier_start(identifier_start_ch);
parser->i += is_valid_identifier_start;
if (expect(is_valid_identifier_start, 1))
{
while (parser->i < src.length)
{
u8 ch = src.pointer[parser->i];
u64 is_identifier = is_identifier_ch(ch);
expect(is_identifier, 1);
parser->i += is_identifier;
if (!is_identifier)
{
if (expect(is_string_literal, 0))
{
expect_character(parser, src, '"');
}
String result = s_get_slice(u8, src, identifier_start_index, parser->i - is_string_literal);
return result;
}
}
fail();
}
else
{
fail();
}
}
typedef struct Parser Parser;
#define array_start '['
#define array_end ']'
#define argument_start '('
#define argument_end ')'
#define block_start '{'
#define block_end '}'
#define pointer_sign '*'
fn void thread_add_job(Thread* thread, NodeIndex node_index)
{
unused(thread);
unused(node_index);
trap();
}
fn void thread_add_jobs(Thread* thread, Slice(NodeIndex) nodes)
{
for (u32 i = 0; i < nodes.length; i += 1)
{
NodeIndex node_index = nodes.pointer[i];
thread_add_job(thread, node_index);
}
}
union NodePair
{
struct
{
NodeIndex old;
NodeIndex new;
};
NodeIndex nodes[2];
};
typedef union NodePair NodePair;
fn NodeIndex node_keep(Thread* thread, NodeIndex node_index)
{
return node_add_output(thread, node_index, invalidi(Node));
}
fn NodeIndex node_unkeep(Thread* thread, NodeIndex node_index)
{
node_remove_output(thread, node_index, invalidi(Node));
return node_index;
}
fn NodeIndex dead_code_elimination(Thread* thread, NodePair nodes)
{
NodeIndex old = nodes.old;
NodeIndex new = nodes.new;
if (!index_equal(old, new))
{
// print("[DCE] old: #{u32} != new: #{u32}. Proceeding to eliminate\n", old.index, new.index);
auto* old_node = thread_node_get(thread, old);
if (node_is_unused(old_node) & !node_is_dead(old_node))
{
node_keep(thread, new);
node_kill(thread, old);
node_unkeep(thread, new);
}
}
return new;
}
fn u8 type_is_high_or_const(Thread* thread, TypeIndex type_index)
{
u8 result = index_equal(type_index, thread->types.top) | index_equal(type_index, thread->types.dead_control);
if (!result)
{
Type* type = thread_type_get(thread, type_index);
switch (type->id)
{
case TYPE_INTEGER:
result = type->integer.is_constant | ((type->integer.constant == 0) & (type->integer.bit_count == 0));
break;
default:
break;
}
}
return result;
}
fn TypeIndex type_join(Thread* thread, TypeIndex a, TypeIndex b)
{
TypeIndex result;
if (index_equal(a, b))
{
result = a;
}
else
{
unused(thread);
trap();
}
return result;
}
fn void node_set_type(Thread* thread, Node* node, TypeIndex new_type)
{
auto old_type = node->type;
assert(!validi(old_type) || type_is_a(thread, new_type, old_type));
if (!index_equal(old_type, new_type))
{
node->type = new_type;
auto outputs = node_get_outputs(thread, node);
thread_add_jobs(thread, outputs);
move_dependencies_to_worklist(thread, node);
}
}
global auto enable_peephole = 1;
fn NodeIndex peephole_optimize(Thread* thread, Function* function, NodeIndex node_index)
{
assert(enable_peephole);
auto result = node_index;
auto* node = thread_node_get(thread, node_index);
// print("Peepholing node #{u32} ({s})\n", node_index.index, node_id_to_string(node));
auto old_type = node->type;
auto new_type = node_functions[node->id].compute_type(thread, node_index);
if (enable_peephole)
{
thread->iteration.total += 1;
node_set_type(thread, node, new_type);
if (node->id != NODE_CONSTANT && node->id != NODE_DEAD_CONTROL && type_is_high_or_const(thread, node->type))
{
if (index_equal(node->type, thread->types.dead_control))
{
trap();
}
else
{
auto constant_node = constant_int_create_with_type(thread, function, node->type);
return constant_node;
}
}
auto idealize = 1;
if (!node->hash)
{
auto gop = intern_pool_get_or_put_node(thread, node_index);
idealize = !gop.existing;
if (gop.existing)
{
auto interned_node_index = gop.index;
auto* interned_node = thread_node_get(thread, interned_node_index);
auto new_type = type_join(thread, interned_node->type, node->type);
node_set_type(thread, interned_node, new_type);
node->hash = 0;
// print("[peephole_optimize] Eliminating #{u32} because an existing node was found: #{u32}\n", node_index.index, interned_node_index.index);
auto dce_node = dead_code_elimination(thread, (NodePair) {
.old = node_index,
.new = interned_node_index,
});
result = dce_node;
}
}
if (idealize)
{
auto idealized_node = node_functions[node->id].idealize(thread, node_index);
if (validi(idealized_node))
{
result = idealized_node;
}
else
{
u64 are_types_equal = index_equal(new_type, old_type);
thread->iteration.nop += are_types_equal;
result = are_types_equal ? invalidi(Node) : node_index;
}
}
}
else
{
node->type = new_type;
}
return result;
}
fn NodeIndex peephole(Thread* thread, Function* function, NodeIndex node_index)
{
NodeIndex result;
if (enable_peephole)
{
NodeIndex new_node = peephole_optimize(thread, function, node_index);
if (validi(new_node))
{
NodeIndex peephole_new_node = peephole(thread, function, new_node);
// print("[peephole] Eliminating #{u32} because a better node was found: #{u32}\n", node_index.index, new_node.index);
auto dce_node = dead_code_elimination(thread, (NodePair)
{
.old = node_index,
.new = peephole_new_node,
});
result = dce_node;
}
else
{
result = node_index;
}
}
else
{
auto* node = thread_node_get(thread, node_index);
auto new_type = node_functions[node->id].compute_type(thread, node_index);
node->type = new_type;
result = node_index;
}
return result;
}
fn TypeIndex analyze_type(Thread* thread, Parser* parser, String src)
{
u64 start_index = parser->i;
u8 start_ch = src.pointer[start_index];
u32 is_array_start = start_ch == array_start;
u32 u_start = start_ch == 'u';
u32 s_start = start_ch == 's';
u32 float_start = start_ch == 'f';
u32 void_start = start_ch == 'v';
u32 pointer_start = start_ch == pointer_sign;
u32 integer_start = u_start | s_start;
u32 number_start = integer_start | float_start;
if (void_start)
{
trap();
}
else if (is_array_start)
{
trap();
}
else if (pointer_start)
{
trap();
}
else if (number_start)
{
u64 expected_digit_start = start_index + 1;
u64 i = expected_digit_start;
u32 decimal_digit_count = 0;
u64 top = i + 5;
while (i < top)
{
u8 ch = src.pointer[i];
u32 is_digit = is_decimal_digit(ch);
decimal_digit_count += is_digit;
if (!is_digit)
{
u32 is_alpha = is_alphabetic(ch);
if (is_alpha)
{
decimal_digit_count = 0;
}
break;
}
i += 1;
}
if (decimal_digit_count)
{
parser->i += 1;
if (integer_start)
{
u64 signedness = s_start;
u64 bit_size;
u64 current_i = parser->i;
assert(src.pointer[current_i] >= '0' & src.pointer[current_i] <= '9');
switch (decimal_digit_count) {
case 0:
fail();
case 1:
bit_size = src.pointer[current_i] - '0';
break;
case 2:
bit_size = (src.pointer[current_i] - '0') * 10 + (src.pointer[current_i + 1] - '0');
break;
default:
fail();
}
parser->i += decimal_digit_count;
assert(!is_decimal_digit(src.pointer[parser->i]));
if (bit_size)
{
auto type_index = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.bit_count = bit_size,
.is_constant = 0,
.is_signed = signedness,
});
return type_index;
}
else
{
fail();
}
}
else if (float_start)
{
trap();
}
else
{
trap();
}
}
else
{
fail();
}
}
trap();
}
fn NodeIndex analyze_primary_expression(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
u8 starting_ch = src.pointer[parser->i];
u64 is_digit = is_decimal_digit(starting_ch);
u64 is_identifier = is_identifier_start(starting_ch);
if (is_identifier)
{
String identifier = parse_identifier(parser, src);
auto node_index = scope_lookup(thread, builder, identifier);
if (validi(node_index))
{
return node_index;
}
else
{
fail();
}
}
else if (is_digit)
{
typedef enum IntegerPrefix {
INTEGER_PREFIX_HEXADECIMAL,
INTEGER_PREFIX_DECIMAL,
INTEGER_PREFIX_OCTAL,
INTEGER_PREFIX_BINARY,
} IntegerPrefix;
IntegerPrefix prefix = INTEGER_PREFIX_DECIMAL;
u64 value = 0;
if (starting_ch == '0')
{
auto follow_up_character = src.pointer[parser->i + 1];
auto is_hex_start = follow_up_character == 'x';
auto is_octal_start = follow_up_character == 'o';
auto is_bin_start = follow_up_character == 'b';
auto is_prefixed_start = is_hex_start | is_octal_start | is_bin_start;
auto follow_up_alpha = is_alphabetic(follow_up_character);
auto follow_up_digit = is_decimal_digit(follow_up_character);
auto is_valid_after_zero = is_space(follow_up_character, get_next_ch_safe(src, follow_up_character)) | (!follow_up_digit & !follow_up_alpha);
if (is_prefixed_start) {
switch (follow_up_character) {
case 'x': prefix = INTEGER_PREFIX_HEXADECIMAL; break;
case 'o': prefix = INTEGER_PREFIX_OCTAL; break;
case 'd': prefix = INTEGER_PREFIX_DECIMAL; break;
case 'b': prefix = INTEGER_PREFIX_BINARY; break;
default: fail();
};
parser->i += 2;
} else if (!is_valid_after_zero) {
fail();
}
}
auto start = parser->i;
switch (prefix) {
case INTEGER_PREFIX_HEXADECIMAL:
{
// while (is_hex_digit(src[parser->i])) {
// parser->i += 1;
// }
trap();
// auto slice = src.slice(start, parser->i);
// value = parse_hex(slice);
} break;
case INTEGER_PREFIX_DECIMAL:
{
while (is_decimal_digit(src.pointer[parser->i]))
{
parser->i += 1;
}
value = parse_decimal(s_get_slice(u8, src, start, parser->i));
} break;
case INTEGER_PREFIX_OCTAL:
trap();
case INTEGER_PREFIX_BINARY:
trap();
}
auto node_index = constant_int_create(thread, builder->function, value);
return node_index;
}
else
{
trap();
}
}
fn NodeIndex analyze_unary(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
typedef enum PrefixOperator
{
PREFIX_OPERATOR_NONE = 0,
PREFIX_OPERATOR_NEGATION,
PREFIX_OPERATOR_LOGICAL_NOT,
PREFIX_OPERATOR_BITWISE_NOT,
PREFIX_OPERATOR_ADDRESS_OF,
} PrefixOperator;
PrefixOperator prefix_operator;
NodeIndex node_index;
switch (src.pointer[parser->i])
{
case '-':
todo();
case '!':
todo();
case '~':
todo();
case '&':
todo();
default:
{
node_index = analyze_primary_expression(thread, parser, builder, src);
prefix_operator = PREFIX_OPERATOR_NONE;
} break;
}
// typedef enum SuffixOperator
// {
// SUFFIX_OPERATOR_NONE = 0,
// SUFFIX_OPERATOR_CALL,
// SUFFIX_OPERATOR_ARRAY,
// SUFFIX_OPERATOR_FIELD,
// SUFFIX_OPERATOR_POINTER_DEREFERENCE,
// } SuffixOperator;
//
// SuffixOperator suffix_operator;
skip_space(parser, src);
switch (src.pointer[parser->i])
{
case argument_start:
todo();
case array_start:
todo();
case '.':
todo();
default:
break;
}
if (prefix_operator != PREFIX_OPERATOR_NONE)
{
todo();
}
return node_index;
}
fn NodeIndex analyze_multiplication(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
auto left = analyze_unary(thread, parser, builder, src);
while (1)
{
skip_space(parser, src);
NodeId node_id;
auto skip_count = 1;
switch (src.pointer[parser->i])
{
case '*':
node_id = NODE_INTEGER_MULTIPLY;
break;
case '/':
node_id = NODE_INTEGER_SIGNED_DIVIDE;
break;
case '%':
todo();
default:
node_id = NODE_COUNT;
break;
}
if (node_id == NODE_COUNT)
{
break;
}
parser->i += skip_count;
skip_space(parser, src);
auto new_node_index = thread_node_add(thread, (NodeCreate) {
.id = node_id,
.inputs = array_to_slice(((NodeIndex[]) {
invalidi(Node),
left,
invalidi(Node),
})),
});
// print("Before right: LEFT is #{u32}\n", left.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
auto right = analyze_multiplication(thread, parser, builder, src);
// print("Addition: left: #{u32}, right: #{u32}\n", left.index, right.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
node_set_input(thread, new_node_index, 2, right);
// print("Addition new node #{u32}\n", new_node_index.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
left = peephole(thread, builder->function, new_node_index);
}
// print("Analyze addition returned node #{u32}\n", left.index);
return left;
}
fn NodeIndex analyze_addition(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
auto left = analyze_multiplication(thread, parser, builder, src);
while (1)
{
skip_space(parser, src);
NodeId node_id;
switch (src.pointer[parser->i])
{
case '+':
node_id = NODE_INTEGER_ADD;
break;
case '-':
node_id = NODE_INTEGER_SUBSTRACT;
break;
default:
node_id = NODE_COUNT;
break;
}
if (node_id == NODE_COUNT)
{
break;
}
parser->i += 1;
skip_space(parser, src);
auto new_node_index = thread_node_add(thread, (NodeCreate) {
.id = node_id,
.inputs = array_to_slice(((NodeIndex[]) {
invalidi(Node),
left,
invalidi(Node),
})),
});
// print("Before right: LEFT is #{u32}\n", left.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
auto right = analyze_multiplication(thread, parser, builder, src);
// print("Addition: left: #{u32}, right: #{u32}\n", left.index, right.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
node_set_input(thread, new_node_index, 2, right);
// print("Addition new node #{u32}\n", new_node_index.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
left = peephole(thread, builder->function, new_node_index);
}
// print("Analyze addition returned node #{u32}\n", left.index);
return left;
}
fn NodeIndex analyze_shift(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
auto left = analyze_addition(thread, parser, builder, src);
while (1)
{
skip_space(parser, src);
NodeId node_id;
if ((src.pointer[parser->i] == '<') & (src.pointer[parser->i + 1] == '<'))
{
node_id = NODE_INTEGER_SIGNED_SHIFT_LEFT;
}
else if ((src.pointer[parser->i] == '>') & (src.pointer[parser->i + 1] == '>'))
{
node_id = NODE_INTEGER_SIGNED_SHIFT_RIGHT;
}
else
{
break;
}
parser->i += 2;
skip_space(parser, src);
auto new_node_index = thread_node_add(thread, (NodeCreate) {
.id = node_id,
.inputs = array_to_slice(((NodeIndex[]) {
invalidi(Node),
left,
invalidi(Node),
})),
});
// print("Before right: LEFT is #{u32}\n", left.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
auto right = analyze_addition(thread, parser, builder, src);
// print("Addition: left: #{u32}, right: #{u32}\n", left.index, right.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
node_set_input(thread, new_node_index, 2, right);
// print("Addition new node #{u32}\n", new_node_index.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
left = peephole(thread, builder->function, new_node_index);
}
return left;
}
fn NodeIndex analyze_bitwise_binary(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
auto left = analyze_shift(thread, parser, builder, src);
while (1)
{
skip_space(parser, src);
NodeId node_id;
auto skip_count = 1;
switch (src.pointer[parser->i])
{
case '&':
node_id = NODE_INTEGER_AND;
break;
case '|':
node_id = NODE_INTEGER_OR;
break;
case '^':
node_id = NODE_INTEGER_XOR;
break;
default:
node_id = NODE_COUNT;
break;
}
if (node_id == NODE_COUNT)
{
break;
}
parser->i += skip_count;
skip_space(parser, src);
auto new_node_index = thread_node_add(thread, (NodeCreate) {
.id = node_id,
.inputs = array_to_slice(((NodeIndex[]) {
invalidi(Node),
left,
invalidi(Node),
})),
});
// print("Before right: LEFT is #{u32}\n", left.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
auto right = analyze_shift(thread, parser, builder, src);
// print("Addition: left: #{u32}, right: #{u32}\n", left.index, right.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
node_set_input(thread, new_node_index, 2, right);
// print("Addition new node #{u32}\n", new_node_index.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
left = peephole(thread, builder->function, new_node_index);
}
return left;
}
fn NodeIndex analyze_comparison(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
auto left = analyze_bitwise_binary(thread, parser, builder, src);
while (1)
{
skip_space(parser, src);
NodeId node_id;
auto skip_count = 1;
switch (src.pointer[parser->i])
{
case '=':
todo();
case '!':
if (src.pointer[parser->i + 1] == '=')
{
skip_count = 2;
node_id = NODE_INTEGER_COMPARE_NOT_EQUAL;
}
else
{
fail();
}
break;
case '<':
todo();
case '>':
todo();
default:
node_id = NODE_COUNT;
break;
}
if (node_id == NODE_COUNT)
{
break;
}
parser->i += skip_count;
skip_space(parser, src);
auto new_node_index = thread_node_add(thread, (NodeCreate) {
.id = node_id,
.inputs = array_to_slice(((NodeIndex[]) {
invalidi(Node),
left,
invalidi(Node),
})),
});
// print("Before right: LEFT is #{u32}\n", left.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
auto right = analyze_bitwise_binary(thread, parser, builder, src);
// print("Addition: left: #{u32}, right: #{u32}\n", left.index, right.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
node_set_input(thread, new_node_index, 2, right);
// print("Addition new node #{u32}\n", new_node_index.index);
// print("Left code:\n```\n{s}\n```\n", s_get_slice(u8, src, parser->i, src.length));
left = peephole(thread, builder->function, new_node_index);
}
return left;
}
fn NodeIndex analyze_expression(Thread* thread, Parser* parser, FunctionBuilder* builder, String src, TypeIndex result_type)
{
NodeIndex result = analyze_comparison(thread, parser, builder, src);
// TODO: typecheck
unused(result_type);
return result;
}
fn void analyze_block(Thread* thread, Parser* parser, FunctionBuilder* builder, String src)
{
expect_character(parser, src, block_start);
scope_push(thread, builder);
Function* function = builder->function;
while (1)
{
skip_space(parser, src);
if (s_get(src, parser->i) == block_end)
{
break;
}
u8 statement_start_ch = src.pointer[parser->i];
if (is_identifier_start(statement_start_ch))
{
String statement_start_identifier = parse_identifier(parser, src);
if (s_equal(statement_start_identifier, (strlit("return"))))
{
skip_space(parser, src);
NodeIndex return_value = analyze_expression(thread, parser, builder, src, function->return_type);
skip_space(parser, src);
expect_character(parser, src, ';');
auto return_node_index = thread_node_add(thread, (NodeCreate) {
.id = NODE_RETURN,
.inputs = array_to_slice(((NodeIndex[]) {
builder_get_control_node_index(thread, builder),
return_value,
})),
});
if (validi(builder->scope))
{
// TODO:
// Look for memory slices
// todo();
}
return_node_index = peephole(thread, function, return_node_index);
builder_add_return(thread, builder, return_node_index);
builder_set_control(thread, builder, builder->dead_control);
continue;
}
String left_name = statement_start_identifier;
skip_space(parser, src);
typedef enum AssignmentOperator
{
ASSIGNMENT_OPERATOR_NONE,
} AssignmentOperator;
AssignmentOperator assignment_operator;
switch (src.pointer[parser->i])
{
case '=':
assignment_operator = ASSIGNMENT_OPERATOR_NONE;
parser->i += 1;
break;
default:
trap();
}
skip_space(parser, src);
NodeIndex initial_right = analyze_expression(thread, parser, builder, src, invalidi(Type));
expect_character(parser, src, ';');
auto left = scope_lookup(thread, builder, left_name);
if (!validi(left))
{
fail();
}
NodeIndex right;
switch (assignment_operator)
{
case ASSIGNMENT_OPERATOR_NONE:
right = initial_right;
break;
}
scope_update(thread, builder, left_name, right);
}
else
{
switch (statement_start_ch)
{
case '>':
{
parser->i += 1;
skip_space(parser, src);
String local_name = parse_identifier(parser, src);
skip_space(parser, src);
TypeIndex type = invalidi(Type);
u8 has_type_declaration = src.pointer[parser->i] == ':';
if (has_type_declaration)
{
parser->i += 1;
skip_space(parser, src);
type = analyze_type(thread, parser, src);
skip_space(parser, src);
}
expect_character(parser, src, '=');
skip_space(parser, src);
auto initial_value_node_index = analyze_expression(thread, parser, builder, src, type);
skip_space(parser, src);
expect_character(parser, src, ';');
auto* initial_value_node = thread_node_get(thread, initial_value_node_index);
// TODO: typecheck
auto result = scope_define(thread, builder, local_name, initial_value_node->type, initial_value_node_index);
if (!validi(result))
{
fail();
}
} break;
case block_start:
analyze_block(thread, parser, builder, src);
break;
default:
todo();
break;
}
}
}
expect_character(parser, src, block_end);
scope_pop(thread, builder);
}
fn void analyze_file(Thread* thread, File* file)
{
Parser p = {};
Parser* parser = &p;
String src = file->source;
while (1)
{
skip_space(parser, src);
if (parser->i == src.length)
{
break;
}
// Parse top level declaration
u64 start_ch_index = parser->i;
u8 start_ch = s_get(src, start_ch_index);
u64 is_identifier = is_identifier_start(start_ch);
if (is_identifier)
{
u8 next_ch = get_next_ch_safe(src, start_ch_index);
u64 is_fn = (start_ch == 'f') & (next_ch == 'n');
if (is_fn)
{
parser->i += 2;
FunctionBuilder function_builder = {};
FunctionBuilder* builder = &function_builder;
builder->file = file;
skip_space(parser, src);
Function* function = vb_add(&thread->buffer.functions, 1);
memset(function, 0, sizeof(Function));
builder->function = function;
function->name = parse_identifier(parser, src);
if (s_equal(function->name, strlit("main")))
{
thread->main_function = thread->buffer.functions.length - 1;
}
skip_space(parser, src);
// Parse arguments
expect_character(parser, src, argument_start);
// Create the start node early since it is needed as a dependency for control and arguments
function->start = thread_node_add(thread, (NodeCreate) {
.id = NODE_START,
.inputs = {},
});
TypeIndex tuple = invalidi(Type);
TypeIndex start_argument_type_buffer[256];
String argument_names[255];
start_argument_type_buffer[0] = thread->types.live_control;
u32 argument_i = 1;
while (1)
{
skip_space(parser, src);
if (src.pointer[parser->i] == argument_end)
{
break;
}
if (argument_i == 256)
{
// Maximum arguments reached
fail();
}
auto argument_name = parse_identifier(parser, src);
argument_names[argument_i - 1] = argument_name;
skip_space(parser, src);
expect_character(parser, src, ':');
skip_space(parser, src);
auto type_index = analyze_type(thread, parser, src);
start_argument_type_buffer[argument_i] = type_index;
argument_i += 1;
skip_space(parser, src);
switch (src.pointer[parser->i])
{
case argument_end:
break;
default:
trap();
}
}
expect_character(parser, src, argument_end);
skip_space(parser, src);
auto start_argument_types = s_get_slice(TypeIndex, (Slice(TypeIndex)) array_to_slice(start_argument_type_buffer), 0, argument_i);
tuple = type_make_tuple_allocate(thread, start_argument_types);
auto argument_count = argument_i - 1;
auto* start_node = thread_node_get(thread, function->start);
assert(validi(tuple));
start_node->type = tuple;
start_node->start.arguments = tuple;
start_node->start.function = function;
// Create stop node
{
function->stop = thread_node_add(thread, (NodeCreate) {
.id = NODE_STOP,
.inputs = {},
});
}
auto dead_control = thread_node_add(thread, (NodeCreate) {
.id = NODE_DEAD_CONTROL,
.inputs = { .pointer = &function->start, .length = 1 },
});
dead_control = peephole(thread, function, dead_control);
builder->dead_control = node_keep(thread, dead_control);
// Create the function scope node
{
auto scope_node_index = thread_node_add(thread, (NodeCreate)
{
.id = NODE_SCOPE,
.inputs = {},
});
auto* scope_node = thread_node_get(thread, scope_node_index);
scope_node->type = thread->types.bottom;
builder->scope = scope_node_index;
scope_push(thread, builder);
auto control_node_index = thread_node_add(thread, (NodeCreate){
.id = NODE_CONTROL_PROJECTION,
.inputs = {
.pointer = &function->start,
.length = 1,
},
});
auto* control_node = thread_node_get(thread, control_node_index);
auto control_name = strlit("$control");
control_node->control_projection.projection = (NodeProjection) {
.label = control_name,
.index = 0,
};
control_node_index = peephole(thread, function, control_node_index);
scope_define(thread, builder, control_name, thread->types.live_control, control_node_index);
}
for (u32 i = 0; i < argument_count; i += 1)
{
TypeIndex argument_type = start_argument_types.pointer[i + 1];
String argument_name = argument_names[i];
auto argument_node_index = thread_node_add(thread, (NodeCreate){
.id = NODE_PROJECTION,
.inputs = {
.pointer = &function->start,
.length = 1,
},
});
auto* argument_node = thread_node_get(thread, argument_node_index);
argument_node->projection = (NodeProjection) {
.index = i + 1,
.label = argument_name,
};
argument_node_index = peephole(thread, function, argument_node_index);
scope_define(thread, builder, argument_name, argument_type, argument_node_index);
}
function->return_type = analyze_type(thread, parser, src);
skip_space(parser, src);
analyze_block(thread, parser, builder, src);
scope_pop(thread, builder);
function->stop = peephole(thread, function, function->stop);
}
else
{
trap();
}
}
else
{
trap();
}
}
}
typedef NodeIndex NodeCallback(Thread* thread, Function* function, NodeIndex node_index);
fn NodeIndex node_walk_internal(Thread* thread, Function* function, NodeIndex node_index, NodeCallback* callback)
{
if (bitset_get(&thread->worklist.visited, geti(node_index)))
{
return invalidi(Node);
}
else
{
bitset_set_value(&thread->worklist.visited, geti(node_index), 1);
auto callback_result = callback(thread, function, node_index);
if (validi(callback_result))
{
return callback_result;
}
auto* node = thread_node_get(thread, node_index);
auto inputs = node_get_inputs(thread, node);
auto outputs = node_get_outputs(thread, node);
for (u64 i = 0; i < inputs.length; i += 1)
{
auto n = inputs.pointer[i];
if (validi(n))
{
auto n_result = node_walk_internal(thread, function, n, callback);
if (validi(n_result))
{
return n_result;
}
}
}
for (u64 i = 0; i < outputs.length; i += 1)
{
auto n = outputs.pointer[i];
if (validi(n))
{
auto n_result = node_walk_internal(thread, function, n, callback);
if (validi(n_result))
{
return n_result;
}
}
}
return invalidi(Node);
}
}
fn NodeIndex node_walk(Thread* thread, Function* function, NodeIndex node_index, NodeCallback* callback)
{
assert(thread->worklist.visited.length == 0);
NodeIndex result = node_walk_internal(thread, function, node_index, callback);
bitset_clear(&thread->worklist.visited);
return result;
}
fn NodeIndex progress_on_list_callback(Thread* thread, Function* function, NodeIndex node_index)
{
if (bitset_get(&thread->worklist.bitset, geti(node_index)))
{
return invalidi(Node);
}
else
{
NodeIndex new_node = peephole_optimize(thread, function, node_index);
return new_node;
}
}
fn u8 progress_on_list(Thread* thread, Function* function, NodeIndex stop_node_index)
{
thread->worklist.mid_assert = 1;
NodeIndex changed = node_walk(thread, function, stop_node_index, &progress_on_list_callback);
thread->worklist.mid_assert = 0;
return !validi(changed);
}
fn void iterate_peepholes(Thread* thread, Function* function, NodeIndex stop_node_index)
{
assert(progress_on_list(thread, function, stop_node_index));
if (thread->worklist.nodes.length > 0)
{
while (1)
{
auto node_index = thread_worklist_pop(thread);
if (!validi(node_index))
{
break;
}
auto* node = thread_node_get(thread, node_index);
if (!node_is_dead(node))
{
auto new_node_index = peephole_optimize(thread, function, node_index);
if (validi(new_node_index))
{
trap();
}
}
}
}
thread_worklist_clear(thread);
}
fn u8 node_is_cfg(Node* node)
{
switch (node->id)
{
case NODE_START:
case NODE_DEAD_CONTROL:
case NODE_CONTROL_PROJECTION:
case NODE_RETURN:
case NODE_STOP:
return 1;
case NODE_SCOPE:
case NODE_CONSTANT:
case NODE_PROJECTION:
return 0;
default:
trap();
}
}
fn void rpo_cfg(Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
if (node_is_cfg(node) && !bitset_get(&thread->worklist.visited, geti(node_index)))
{
bitset_set_value(&thread->worklist.visited, geti(node_index), 1);
auto outputs = node_get_outputs(thread, node);
for (u64 i = 0; i < outputs.length; i += 1)
{
auto output = outputs.pointer[i];
if (validi(output))
{
rpo_cfg(thread, output);
}
}
*vb_add(&thread->worklist.nodes, 1) = node_index;
}
}
fn s32 node_loop_depth(Thread* thread, Node* node)
{
assert(node_is_cfg(node));
s32 loop_depth;
switch (node->id)
{
case NODE_START:
{
loop_depth = node->start.cfg.loop_depth;
if (!loop_depth)
{
loop_depth = node->start.cfg.loop_depth = 1;
}
} break;
case NODE_STOP:
{
loop_depth = node->stop.cfg.loop_depth;
if (!loop_depth)
{
loop_depth = node->stop.cfg.loop_depth = 1;
}
} break;
case NODE_RETURN:
{
loop_depth = node->return_node.cfg.loop_depth;
if (!loop_depth)
{
auto input_index = node_input_get(thread, node, 0);
auto input = thread_node_get(thread, input_index);
node->return_node.cfg.loop_depth = loop_depth = node_loop_depth(thread, input);
}
} break;
case NODE_CONTROL_PROJECTION:
{
loop_depth = node->control_projection.cfg.loop_depth;
if (!loop_depth)
{
auto input_index = node_input_get(thread, node, 0);
auto input = thread_node_get(thread, input_index);
node->control_projection.cfg.loop_depth = loop_depth = node_loop_depth(thread, input);
}
} break;
case NODE_DEAD_CONTROL:
{
loop_depth = node->dead_control.cfg.loop_depth;
if (!loop_depth)
{
auto input_index = node_input_get(thread, node, 0);
auto input = thread_node_get(thread, input_index);
node->dead_control.cfg.loop_depth = loop_depth = node_loop_depth(thread, input);
}
} break;
default:
trap();
}
return loop_depth;
}
fn u8 node_is_region(Node* node)
{
return (node->id == NODE_REGION) | (node->id == NODE_REGION_LOOP);
}
fn u8 node_is_pinned(Node* node)
{
switch (node->id)
{
case NODE_PROJECTION:
case NODE_START:
return 1;
case NODE_CONSTANT:
case NODE_INTEGER_SUBSTRACT:
case NODE_INTEGER_COMPARE_EQUAL:
case NODE_INTEGER_COMPARE_NOT_EQUAL:
return 0;
default:
trap();
}
}
fn s32 node_cfg_get_immediate_dominator_tree_depth(Node* node)
{
assert(node_is_cfg(node));
switch (node->id)
{
case NODE_START:
return 0;
case NODE_DEAD_CONTROL:
todo();
case NODE_CONTROL_PROJECTION:
todo();
case NODE_RETURN:
todo();
case NODE_STOP:
todo();
default:
trap();
}
}
fn void schedule_early(Thread* thread, NodeIndex node_index, NodeIndex start_node)
{
if (validi(node_index) && !bitset_get(&thread->worklist.visited, geti(node_index)))
{
bitset_set_value(&thread->worklist.visited, geti(node_index), 1);
auto* node = thread_node_get(thread, node_index);
auto inputs = node_get_inputs(thread, node);
for (u64 i = 0; i < inputs.length; i += 1)
{
auto input = inputs.pointer[i];
if (validi(input))
{
auto* input_node = thread_node_get(thread, input);
if (!node_is_pinned(input_node))
{
schedule_early(thread, node_index, start_node);
}
}
}
if (!node_is_pinned(node))
{
auto early = start_node;
for (u64 i = 1; i < inputs.length; i += 1)
{
auto input_index = inputs.pointer[i];
auto input_node = thread_node_get(thread, input_index);
auto control_input_index = node_input_get(thread, input_node, 0);
auto* control_input_node = thread_node_get(thread, control_input_index);
auto* early_node = thread_node_get(thread, early);
auto input_depth = node_cfg_get_immediate_dominator_tree_depth(control_input_node);
auto early_depth = node_cfg_get_immediate_dominator_tree_depth(early_node);
if (input_depth > early_depth)
{
early = control_input_index;
trap();
}
}
node_set_input(thread, node_index, 0, early);
}
}
}
fn u8 node_cfg_block_head(Node* node)
{
assert(node_is_cfg(node));
switch (node->id)
{
case NODE_START:
return 1;
default:
trap();
}
}
fn u8 is_forwards_edge(Thread* thread, NodeIndex output_index, NodeIndex input_index)
{
u8 result = validi(output_index) & validi(input_index);
if (result)
{
auto* output = thread_node_get(thread, output_index);
result = output->input_count > 2;
if (result)
{
auto input_index2 = node_input_get(thread, output, 2);
result = index_equal(input_index2, input_index);
if (result)
{
trap();
}
}
}
return result;
}
fn void schedule_late(Thread* thread, NodeIndex node_index, Slice(NodeIndex) nodes, Slice(NodeIndex) late)
{
if (!validi(late.pointer[geti(node_index)]))
{
auto* node = thread_node_get(thread, node_index);
if (node_is_cfg(node))
{
late.pointer[geti(node_index)] = node_cfg_block_head(node) ? node_index : node_input_get(thread, node, 0);
}
if (node->id == NODE_PHI)
{
trap();
}
auto outputs = node_get_outputs(thread, node);
for (u32 i = 0; i < outputs.length; i += 1)
{
NodeIndex output = outputs.pointer[i];
if (is_forwards_edge(thread, output, node_index))
{
trap();
}
}
for (u32 i = 0; i < outputs.length; i += 1)
{
NodeIndex output = outputs.pointer[i];
if (is_forwards_edge(thread, output, node_index))
{
trap();
}
}
if (!node_is_pinned(node))
{
unused(nodes);
trap();
}
}
}
fn void gcm_build_cfg(Thread* thread, NodeIndex start_node_index, NodeIndex stop_node_index)
{
unused(stop_node_index);
// Fix loops
{
// TODO:
}
// Schedule early
rpo_cfg(thread, start_node_index);
u32 i = thread->worklist.nodes.length;
while (i > 0)
{
i -= 1;
auto node_index = thread->worklist.nodes.pointer[i];
auto* node = thread_node_get(thread, node_index);
node_loop_depth(thread, node);
auto inputs = node_get_inputs(thread, node);
for (u64 i = 0; i < inputs.length; i += 1)
{
auto input = inputs.pointer[i];
schedule_early(thread, input, start_node_index);
}
if (node_is_region(node))
{
trap();
}
}
// Schedule late
auto max_node_count = thread->buffer.nodes.length;
auto* alloc = arena_allocate(thread->arena, NodeIndex, max_node_count * 2);
auto late = (Slice(NodeIndex)) {
.pointer = alloc,
.length = max_node_count,
};
auto nodes = (Slice(NodeIndex)) {
.pointer = alloc + max_node_count,
.length = max_node_count,
};
schedule_late(thread, start_node_index, nodes, late);
for (u32 i = 0; i < late.length; i += 1)
{
auto node_index = nodes.pointer[i];
if (validi(node_index))
{
trap();
auto late_node_index = late.pointer[i];
node_set_input(thread, node_index, 0, late_node_index);
}
}
}
may_be_unused fn void print_function(Thread* thread, Function* function)
{
print("fn {s}\n====\n", function->name);
VirtualBuffer(NodeIndex) nodes = {};
*vb_add(&nodes, 1) = function->stop;
while (1)
{
auto node_index = nodes.pointer[nodes.length - 1];
auto* node = thread_node_get(thread, node_index);
if (node->input_count)
{
for (u32 i = 1; i < node->input_count; i += 1)
{
*vb_add(&nodes, 1) = node_input_get(thread, node, 1);
}
*vb_add(&nodes, 1) = node_input_get(thread, node, 0);
}
else
{
break;
}
}
u32 i = nodes.length;
while (i > 0)
{
i -= 1;
auto node_index = nodes.pointer[i];
auto* node = thread_node_get(thread, node_index);
auto* type = thread_type_get(thread, node->type);
print("%{u32} - {s} - {s} ", geti(node_index), type_id_to_string(type), node_id_to_string(node));
auto inputs = node_get_inputs(thread, node);
auto outputs = node_get_outputs(thread, node);
print("(INPUTS: { ");
for (u32 i = 0; i < inputs.length; i += 1)
{
auto input_index = inputs.pointer[i];
print("%{u32} ", geti(input_index));
}
print("} OUTPUTS: { ");
for (u32 i = 0; i < outputs.length; i += 1)
{
auto output_index = outputs.pointer[i];
print("%{u32} ", geti(output_index));
}
print_string(strlit("})\n"));
}
print("====\n", function->name);
}
struct CBackend
{
VirtualBuffer(u8) buffer;
Function* function;
};
typedef struct CBackend CBackend;
fn void c_lower_append_string(CBackend* backend, String string)
{
vb_append_bytes(&backend->buffer, string);
}
fn void c_lower_append_ch(CBackend* backend, u8 ch)
{
*vb_add(&backend->buffer, 1) = ch;
}
fn void c_lower_append_ch_repeated(CBackend* backend, u8 ch, u32 times)
{
u8* pointer = vb_add(&backend->buffer, times);
memset(pointer, ch, times);
}
fn void c_lower_append_space(CBackend* backend)
{
c_lower_append_ch(backend, ' ');
}
fn void c_lower_append_space_margin(CBackend* backend, u32 times)
{
c_lower_append_ch_repeated(backend, ' ', times * 4);
}
fn void c_lower_type(CBackend* backend, Thread* thread, TypeIndex type_index)
{
Type* type = thread_type_get(thread, type_index);
switch (type->id)
{
case TYPE_INTEGER:
{
u8 ch[] = { 'u', 's' };
auto integer = &type->integer;
u8 signedness_ch = ch[type->integer.is_signed];
c_lower_append_ch(backend, signedness_ch);
u8 upper_digit = integer->bit_count / 10;
u8 lower_digit = integer->bit_count % 10;
if (upper_digit)
{
c_lower_append_ch(backend, upper_digit + '0');
}
c_lower_append_ch(backend, lower_digit + '0');
} break;
default:
trap();
}
}
fn void c_lower_node(CBackend* backend, Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
auto* type = thread_type_get(thread, node->type);
auto inputs = node_get_inputs(thread, node);
switch (node->id)
{
case NODE_CONSTANT:
{
switch (type->id)
{
case TYPE_INTEGER:
{
assert(type->integer.bit_count == 0);
assert(type->integer.is_constant);
assert(!type->integer.is_signed);
vb_generic_ensure_capacity(&backend->buffer, 1, 64);
auto current_length = backend->buffer.length;
auto buffer_slice = (String){ .pointer = backend->buffer.pointer + current_length, .length = backend->buffer.capacity - current_length, };
auto written_characters = format_hexadecimal(buffer_slice, type->integer.constant);
backend->buffer.length = current_length + written_characters;
} break;
trap();
default:
trap();
}
} break;
case NODE_INTEGER_SUBSTRACT:
{
auto left = inputs.pointer[1];
auto right = inputs.pointer[2];
c_lower_node(backend, thread, left);
c_lower_append_string(backend, strlit(" - "));
c_lower_node(backend, thread, right);
} break;
case NODE_INTEGER_COMPARE_EQUAL:
{
auto left = inputs.pointer[1];
auto right = inputs.pointer[2];
c_lower_node(backend, thread, left);
c_lower_append_string(backend, strlit(" == "));
c_lower_node(backend, thread, right);
} break;
case NODE_INTEGER_COMPARE_NOT_EQUAL:
{
auto left = inputs.pointer[1];
auto right = inputs.pointer[2];
c_lower_node(backend, thread, left);
c_lower_append_string(backend, strlit(" != "));
c_lower_node(backend, thread, right);
} break;
case NODE_PROJECTION:
{
auto projected_node_index = inputs.pointer[0];
auto projection_index = node->projection.index;
if (index_equal(projected_node_index, backend->function->start))
{
if (projection_index == 0)
{
fail();
}
// if (projection_index > interpreter->arguments.length + 1)
// {
// fail();
// }
switch (projection_index)
{
case 1:
c_lower_append_string(backend, strlit("argc"));
break;
// return interpreter->arguments.length;
case 2:
trap();
default:
trap();
}
}
else
{
trap();
}
} break;
default:
trap();
}
}
fn String c_lower(Thread* thread)
{
CBackend backend_stack = {};
CBackend* backend = &backend_stack;
auto program_epilogue = strlit("#include <stdint.h>\n"
"typedef uint8_t u8;\n"
"typedef uint16_t u16;\n"
"typedef uint32_t u32;\n"
"typedef uint64_t u64;\n"
"typedef int8_t s8;\n"
"typedef int16_t s16;\n"
"typedef int32_t s32;\n"
"typedef int64_t s64;\n"
);
c_lower_append_string(backend, program_epilogue);
for (u32 function_i = 0; function_i < thread->buffer.functions.length; function_i += 1)
{
auto* function = &thread->buffer.functions.pointer[function_i];
backend->function = function;
c_lower_type(backend, thread, function->return_type);
c_lower_append_space(backend);
c_lower_append_string(backend, function->name);
c_lower_append_ch(backend, argument_start);
if (s_equal(function->name, strlit("main")))
{
c_lower_append_string(backend, strlit("int argc, char* argv[]"));
}
c_lower_append_ch(backend, argument_end);
c_lower_append_ch(backend, '\n');
c_lower_append_ch(backend, block_start);
c_lower_append_ch(backend, '\n');
auto start_node_index = function->start;
auto* start_node = thread_node_get(thread, start_node_index);
assert(start_node->output_count > 0);
auto stop_node_index = function->stop;
auto proj_node_index = node_output_get(thread, start_node, 1);
auto it_node_index = proj_node_index;
auto current_statement_margin = 1;
while (!index_equal(it_node_index, stop_node_index))
{
auto* it_node = thread_node_get(thread, it_node_index);
auto outputs = node_get_outputs(thread, it_node);
auto inputs = node_get_inputs(thread, it_node);
switch (it_node->id)
{
case NODE_CONTROL_PROJECTION:
break;
case NODE_RETURN:
{
c_lower_append_space_margin(backend, current_statement_margin);
c_lower_append_string(backend, strlit("return "));
assert(inputs.length > 1);
assert(inputs.length == 2);
auto input = inputs.pointer[1];
c_lower_node(backend, thread, input);
c_lower_append_ch(backend, ';');
c_lower_append_ch(backend, '\n');
} break;
case NODE_STOP:
break;
default:
trap();
}
assert(outputs.length == 1);
it_node_index = outputs.pointer[0];
}
c_lower_append_ch(backend, block_end);
}
return (String) { .pointer = backend->buffer.pointer, .length = backend->buffer.length };
}
fn void thread_init(Thread* thread)
{
memset(thread, 0, sizeof(Thread));
thread->arena = arena_init_default(KB(64));
thread->main_function = -1;
Type top, bot, live_control, dead_control;
memset(&top, 0, sizeof(Type));
top.id = TYPE_TOP;
memset(&bot, 0, sizeof(Type));
bot.id = TYPE_BOTTOM;
memset(&live_control, 0, sizeof(Type));
live_control.id = TYPE_LIVE_CONTROL;
memset(&dead_control, 0, sizeof(Type));
dead_control.id = TYPE_DEAD_CONTROL;
thread->types.top = intern_pool_get_or_put_new_type(thread, &top).index;
thread->types.bottom = intern_pool_get_or_put_new_type(thread, &bot).index;
thread->types.live_control = intern_pool_get_or_put_new_type(thread, &live_control).index;
thread->types.dead_control = intern_pool_get_or_put_new_type(thread, &dead_control).index;
thread->types.integer.top = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 0,
.bit_count = 0,
});
thread->types.integer.bottom = thread_get_integer_type(thread, (TypeInteger) {
.constant = 1,
.is_constant = 0,
.is_signed = 0,
.bit_count = 0,
});
thread->types.integer.zero = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 1,
.is_signed = 0,
.bit_count = 0,
});
thread->types.integer.u8 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 0,
.bit_count = 8,
});
thread->types.integer.u16 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 0,
.bit_count = 16,
});
thread->types.integer.u32 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 0,
.bit_count = 32,
});
thread->types.integer.u64 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 0,
.bit_count = 64,
});
thread->types.integer.s8 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 1,
.bit_count = 8,
});
thread->types.integer.s16 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 1,
.bit_count = 16,
});
thread->types.integer.s32 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 1,
.bit_count = 32,
});
thread->types.integer.s64 = thread_get_integer_type(thread, (TypeInteger) {
.constant = 0,
.is_constant = 0,
.is_signed = 1,
.bit_count = 64,
});
}
fn void thread_clear(Thread* thread)
{
arena_reset(thread->arena);
}
#define DO_UNIT_TESTS 1
#if DO_UNIT_TESTS
fn void unit_tests()
{
for (u64 power = 1, log2_i = 0; log2_i < 64; power <<= 1, log2_i += 1)
{
assert(log2_alignment(power) == log2_i);
}
}
#endif
Slice(String) arguments;
typedef enum CompilerBackend : u8
{
COMPILER_BACKEND_C = 'c',
COMPILER_BACKEND_INTERPRETER = 'i',
COMPILER_BACKEND_MACHINE = 'm',
} CompilerBackend;
struct Interpreter
{
Function* function;
Slice(String) arguments;
};
typedef struct Interpreter Interpreter;
fn Interpreter* interpreter_create(Thread* thread)
{
auto* interpreter = arena_allocate(thread->arena, Interpreter, 1);
*interpreter = (Interpreter){};
return interpreter;
}
fn s32 emit_node(Interpreter* interpreter, Thread* thread, NodeIndex node_index)
{
auto* node = thread_node_get(thread, node_index);
auto inputs = node_get_inputs(thread, node);
s32 result = -1;
switch (node->id)
{
case NODE_STOP:
case NODE_CONTROL_PROJECTION:
break;
case NODE_RETURN:
{
auto return_value = emit_node(interpreter, thread, inputs.pointer[1]);
result = return_value;
} break;
case NODE_CONSTANT:
{
auto constant_type_index = node->constant.type;
auto* constant_type = thread_type_get(thread, constant_type_index);
switch (constant_type->id)
{
case TYPE_INTEGER:
{
assert(constant_type->integer.is_constant);
result = constant_type->integer.constant;
} break;
default:
trap();
}
} break;
case NODE_INTEGER_SUBSTRACT:
{
auto left = emit_node(interpreter, thread, inputs.pointer[1]);
auto right = emit_node(interpreter, thread, inputs.pointer[2]);
result = left - right;
} break;
case NODE_PROJECTION:
{
auto projected_node_index = inputs.pointer[0];
auto projection_index = node->projection.index;
if (index_equal(projected_node_index, interpreter->function->start))
{
if (projection_index == 0)
{
fail();
}
if (projection_index > interpreter->arguments.length + 1)
{
fail();
}
switch (projection_index)
{
case 1:
return interpreter->arguments.length;
case 2:
trap();
default:
trap();
}
trap();
}
else
{
trap();
}
} break;
case NODE_INTEGER_COMPARE_EQUAL:
{
auto left = emit_node(interpreter, thread, inputs.pointer[1]);
auto right = emit_node(interpreter, thread, inputs.pointer[2]);
result = left == right;
} break;
case NODE_INTEGER_COMPARE_NOT_EQUAL:
{
auto left = emit_node(interpreter, thread, inputs.pointer[1]);
auto right = emit_node(interpreter, thread, inputs.pointer[2]);
result = left != right;
} break;
default:
trap();
}
return result;
}
fn s32 interpreter_run(Interpreter* interpreter, Thread* thread)
{
Function* function = interpreter->function;
auto start_node_index = function->start;
auto* start_node = thread_node_get(thread, start_node_index);
assert(start_node->output_count > 0);
auto stop_node_index = function->stop;
auto proj_node_index = node_output_get(thread, start_node, 1);
auto it_node_index = proj_node_index;
s32 result = -1;
while (!index_equal(it_node_index, stop_node_index))
{
auto* it_node = thread_node_get(thread, it_node_index);
auto outputs = node_get_outputs(thread, it_node);
auto this_result = emit_node(interpreter, thread, it_node_index);
if (this_result != -1)
{
result = this_result;
}
assert(outputs.length == 1);
it_node_index = outputs.pointer[0];
}
return result;
}
struct ELFOptions
{
char* object_path;
char* exe_path;
Slice(u8) code;
};
typedef struct ELFOptions ELFOptions;
struct ELFBuilder
{
VirtualBuffer(u8) file;
VirtualBuffer(u8) string_table;
VirtualBuffer(ELFSymbol) symbol_table;
VirtualBuffer(ELFSectionHeader) section_table;
};
typedef struct ELFBuilder ELFBuilder;
fn u32 elf_builder_add_string(ELFBuilder* builder, String string)
{
u32 name_offset = 0;
if (string.length)
{
name_offset = builder->string_table.length;
vb_append_bytes(&builder->string_table, string);
*vb_add(&builder->string_table, 1) = 0;
}
return name_offset;
}
fn void elf_builder_add_symbol(ELFBuilder* builder, ELFSymbol symbol, String string)
{
symbol.name_offset = elf_builder_add_string(builder, string);
*vb_add(&builder->symbol_table, 1) = symbol;
}
fn void vb_align(VirtualBuffer(u8)* buffer, u64 alignment)
{
auto current_length = buffer->length;
auto target_len = align_forward(current_length, alignment);
auto count = target_len - current_length;
auto* pointer = vb_add(buffer, count);
memset(pointer, 0, count);
}
fn ELFSectionHeader* elf_builder_add_section(ELFBuilder* builder, ELFSectionHeader section, String section_name, Slice(u8) content)
{
section.name_offset = elf_builder_add_string(builder, section_name);
section.offset = builder->file.length;
section.size = content.length;
if (content.length)
{
vb_align(&builder->file, section.alignment);
section.offset = builder->file.length;
vb_append_bytes(&builder->file, content);
}
auto* section_header = vb_add(&builder->section_table, 1);
*section_header = section;
return section_header;
}
fn void write_elf(Thread* thread, char** envp, const ELFOptions* const options)
{
// {
// auto main_c_content = strlit("int main()\n{\n return 0;\n}");
// int fd = syscall_open("main.c", O_WRONLY | O_CREAT | O_TRUNC, 0644);
// assert(fd != -1);
// auto result = syscall_write(fd, main_c_content.pointer, main_c_content.length);
// assert(result >= 0);
// assert((u64)result == main_c_content.length);
// syscall_close(fd);
// }
// {
// char* command[] = {
// clang_path,
// "-c",
// "main.c",
// "-o",
// "main.o",
// "-Oz",
// "-fno-exceptions",
// "-fno-asynchronous-unwind-tables",
// "-fno-addrsig",
// "-fno-stack-protector",
// "-fno-ident",
// 0,
// };
// run_command((CStringSlice) array_to_slice(command), envp);
// }
//
// {
// char* command[] = {
// "/usr/bin/objcopy",
// "--remove-section",
// ".note.GNU-stack",
// "main.o",
// "main2.o",
// 0,
// };
// run_command((CStringSlice) array_to_slice(command), envp);
// }
//
// {
//
// main_o = file_read(thread->arena, strlit("main2.o"));
// auto r1 = syscall_unlink("main.o");
// assert(!r1);
// auto r2 = syscall_unlink("main2.o");
// assert(!r2);
// auto r3 = syscall_unlink("main.c");
// assert(!r3);
// }
ELFBuilder builder_stack = {};
ELFBuilder* builder = &builder_stack;
auto* elf_header = (ELFHeader*)(vb_add(&builder->file, sizeof(ELFHeader)));
// vb_append_bytes(&file, struct_to_bytes(elf_header));
// .symtab
// Null symbol
*vb_add(&builder->string_table, 1) = 0;
elf_builder_add_symbol(builder, (ELFSymbol){}, (String){});
elf_builder_add_section(builder, (ELFSectionHeader) {}, (String){}, (Slice(u8)){});
assert(builder->string_table.length == 1);
elf_builder_add_symbol(builder, (ELFSymbol){
.type = ELF_SYMBOL_TYPE_FILE,
.binding = LOCAL,
.section_index = (u16)ABSOLUTE,
.value = 0,
.size = 0,
}, strlit("main.c"));
assert(builder->string_table.length == 8);
elf_builder_add_symbol(builder, (ELFSymbol) {
.type = ELF_SYMBOL_TYPE_FUNCTION,
.binding = GLOBAL,
.section_index = 1,
.value = 0,
.size = 3,
}, strlit("main"));
elf_builder_add_section(builder, (ELFSectionHeader) {
.type = ELF_SECTION_PROGRAM,
.flags = {
.alloc = 1,
.executable = 1,
},
.address = 0,
.size = options->code.length,
.link = 0,
.info = 0,
.alignment = 4,
.entry_size = 0,
}, strlit(".text"), options->code);
elf_builder_add_section(builder, (ELFSectionHeader) {
.type = ELF_SECTION_SYMBOL_TABLE,
.link = builder->section_table.length + 1,
// TODO: One greater than the symbol table index of the last local symbol (binding STB_LOCAL).
.info = builder->symbol_table.length - 1,
.alignment = alignof(ELFSymbol),
.entry_size = sizeof(ELFSymbol),
}, strlit(".symtab"), vb_to_bytes(builder->symbol_table));
auto strtab_name_offset = elf_builder_add_string(builder, strlit(".strtab"));
auto strtab_bytes = vb_to_bytes(builder->string_table);
auto strtab_offset = builder->file.length;
vb_append_bytes(&builder->file, strtab_bytes);
auto* strtab_section_header = vb_add(&builder->section_table, 1);
*strtab_section_header = (ELFSectionHeader) {
.name_offset = strtab_name_offset,
.type = ELF_SECTION_STRING_TABLE,
.offset = strtab_offset,
.size = strtab_bytes.length,
.alignment = 1,
};
vb_align(&builder->file, alignof(ELFSectionHeader));
auto section_header_offset = builder->file.length;
vb_append_bytes(&builder->file, vb_to_bytes(builder->section_table));
*elf_header = (ELFHeader)
{
.identifier = { 0x7f, 'E', 'L', 'F' },
.bit_count = bits64,
.endianness = little,
.format_version = 1,
.abi = system_v_abi,
.abi_version = 0,
.padding = {},
.type = relocatable,
.machine = x86_64,
.version = 1,
.entry_point = 0,
.program_header_offset = 0,
.section_header_offset = section_header_offset,
.flags = 0,
.elf_header_size = sizeof(ELFHeader),
.program_header_size = 0,
.program_header_count = 0,
.section_header_size = sizeof(ELFSectionHeader),
.section_header_count = builder->section_table.length,
.section_header_string_table_index = builder->section_table.length - 1,
};
auto object_path_z = options->object_path;
{
int fd = syscall_open(object_path_z, O_WRONLY | O_CREAT | O_TRUNC, 0644);
assert(fd != -1);
syscall_write(fd, builder->file.pointer, builder->file.length);
syscall_close(fd);
}
char* command[] = {
clang_path,
object_path_z,
"-o",
options->exe_path,
0,
};
run_command((CStringSlice) array_to_slice(command), envp);
}
#if LINK_LIBC
int main(int argc, const char* argv[], char* envp[])
{
#else
void entry_point(int argc, const char* argv[])
{
char** envp = (char**)&argv[argc + 1];
#endif
#if DO_UNIT_TESTS
unit_tests();
#endif
if (argc < 3)
{
fail();
}
Arena* global_arena = arena_init_default(KB(64));
{
arguments.pointer = arena_allocate(global_arena, String, argc);
arguments.length = argc;
for (int i = 0; i < argc; i += 1)
{
u64 len = strlen(argv[i]);
arguments.pointer[i] = (String) {
.pointer = (u8*)argv[i],
.length = len,
};
}
}
String source_file_path = arguments.pointer[1];
CompilerBackend compiler_backend = arguments.pointer[2].pointer[0];
Thread* thread = arena_allocate(global_arena, Thread, 1);
thread_init(thread);
syscall_mkdir("nest", 0755);
File file = {
.path = source_file_path,
.source = file_read(thread->arena, source_file_path),
};
analyze_file(thread, &file);
print("File path: {s}\n", source_file_path);
auto test_dir = string_no_extension(file.path);
print("Test dir path: {s}\n", test_dir);
auto test_name = string_base(test_dir);
print("Test name: {s}\n", test_name);
for (u32 function_i = 0; function_i < thread->buffer.functions.length; function_i += 1)
{
Function* function = &thread->buffer.functions.pointer[function_i];
NodeIndex start_node_index = function->start;
NodeIndex stop_node_index = function->stop;
iterate_peepholes(thread, function, stop_node_index);
// print_string(strlit("Before optimizations\n"));
// print_function(thread, function);
gcm_build_cfg(thread, start_node_index, stop_node_index);
// print_string(strlit("After optimizations\n"));
// print_function(thread, function);
}
if (thread->main_function == -1)
{
fail();
}
auto object_path = arena_join_string(thread->arena, (Slice(String)) array_to_slice(((String[]) {
strlit("nest/"),
test_name,
compiler_backend == COMPILER_BACKEND_C ? strlit(".c") : strlit(".o"),
})));
auto exe_path_view = s_get_slice(u8, object_path, 0, object_path.length - 2);
auto exe_path = (char*)arena_allocate_bytes(thread->arena, exe_path_view.length + 1, 1);
memcpy(exe_path, exe_path_view.pointer, exe_path_view.length);
exe_path[exe_path_view.length] = 0;
switch (compiler_backend)
{
case COMPILER_BACKEND_C:
{
auto lowered_source = c_lower(thread);
// print("Transpiled to C:\n```\n{s}\n```\n", lowered_source);
file_write(object_path, lowered_source);
char* command[] = {
clang_path, "-g",
"-o", exe_path,
string_to_c(object_path),
0,
};
run_command((CStringSlice) array_to_slice(command), envp);
} break;
case COMPILER_BACKEND_INTERPRETER:
{
auto* main_function = &thread->buffer.functions.pointer[thread->main_function];
auto* interpreter = interpreter_create(thread);
interpreter->function = main_function;
interpreter->arguments = (Slice(String)) array_to_slice(((String[]) {
test_name,
}));
auto exit_code = interpreter_run(interpreter, thread);
print("Interpreter exited with exit code: {u32}\n", exit_code);
syscall_exit(exit_code);
} break;
case COMPILER_BACKEND_MACHINE:
{
// TODO:
// Code:
// main:
// xor eax, eax
// ret
u8 code[] = { 0x31, 0xc0, 0xc3 };
auto code_slice = (Slice(u8)) { .pointer = code, .length = sizeof(code) };
write_elf(thread, envp, &(ELFOptions) {
.object_path = string_to_c(object_path),
.exe_path = exe_path,
.code = code_slice,
});
} break;
}
thread_clear(thread);
#if LINK_LIBC == 0
syscall_exit(0);
#endif
}
#if LINK_LIBC == 0
[[gnu::naked]] [[noreturn]] void _start()
{
__asm__ __volatile__(
"\nxor %ebp, %ebp"
"\npopq %rdi"
"\nmov %rsp, %rsi"
"\nand $~0xf, %rsp"
"\npushq %rsp"
"\npushq $0"
"\ncallq entry_point"
"\nud2\n"
);
}
#endif