Merge pull request #156 from birth-software/delete-libc-files

Delete unneeded libc files
This commit is contained in:
David 2024-04-20 08:44:07 -06:00 committed by GitHub
commit 9dae856734
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7903 changed files with 1 additions and 2737025 deletions

View File

@ -653,7 +653,7 @@ pub fn compileCSourceFile(context: *const Context, arguments: []const []const u8
const libc_include_dirs: []const []const u8 = switch (@import("builtin").os.tag) {
.macos => &.{
"/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include/c++/v1",
try context.pathFromCompiler("lib/include"),
"/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/lib/clang/15.0.0/include",
"/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include",
},
.linux => switch (@import("builtin").abi) {

View File

@ -1,121 +0,0 @@
/*===---- cuda_builtin_vars.h - CUDA built-in variables ---------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CUDA_BUILTIN_VARS_H
#define __CUDA_BUILTIN_VARS_H
// Forward declares from vector_types.h.
struct uint3;
struct dim3;
// The file implements built-in CUDA variables using __declspec(property).
// https://msdn.microsoft.com/en-us/library/yhfk0thd.aspx
// All read accesses of built-in variable fields get converted into calls to a
// getter function which in turn calls the appropriate builtin to fetch the
// value.
//
// Example:
// int x = threadIdx.x;
// IR output:
// %0 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x() #3
// PTX output:
// mov.u32 %r2, %tid.x;
#define __CUDA_DEVICE_BUILTIN(FIELD, INTRINSIC) \
__declspec(property(get = __fetch_builtin_##FIELD)) unsigned int FIELD; \
static inline __attribute__((always_inline)) \
__attribute__((device)) unsigned int __fetch_builtin_##FIELD(void) { \
return INTRINSIC; \
}
#if __cplusplus >= 201103L
#define __DELETE =delete
#else
#define __DELETE
#endif
// Make sure nobody can create instances of the special variable types. nvcc
// also disallows taking address of special variables, so we disable address-of
// operator as well.
#define __CUDA_DISALLOW_BUILTINVAR_ACCESS(TypeName) \
__attribute__((device)) TypeName() __DELETE; \
__attribute__((device)) TypeName(const TypeName &) __DELETE; \
__attribute__((device)) void operator=(const TypeName &) const __DELETE; \
__attribute__((device)) TypeName *operator&() const __DELETE
struct __cuda_builtin_threadIdx_t {
__CUDA_DEVICE_BUILTIN(x,__nvvm_read_ptx_sreg_tid_x());
__CUDA_DEVICE_BUILTIN(y,__nvvm_read_ptx_sreg_tid_y());
__CUDA_DEVICE_BUILTIN(z,__nvvm_read_ptx_sreg_tid_z());
// threadIdx should be convertible to uint3 (in fact in nvcc, it *is* a
// uint3). This function is defined after we pull in vector_types.h.
__attribute__((device)) operator dim3() const;
__attribute__((device)) operator uint3() const;
private:
__CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_threadIdx_t);
};
struct __cuda_builtin_blockIdx_t {
__CUDA_DEVICE_BUILTIN(x,__nvvm_read_ptx_sreg_ctaid_x());
__CUDA_DEVICE_BUILTIN(y,__nvvm_read_ptx_sreg_ctaid_y());
__CUDA_DEVICE_BUILTIN(z,__nvvm_read_ptx_sreg_ctaid_z());
// blockIdx should be convertible to uint3 (in fact in nvcc, it *is* a
// uint3). This function is defined after we pull in vector_types.h.
__attribute__((device)) operator dim3() const;
__attribute__((device)) operator uint3() const;
private:
__CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_blockIdx_t);
};
struct __cuda_builtin_blockDim_t {
__CUDA_DEVICE_BUILTIN(x,__nvvm_read_ptx_sreg_ntid_x());
__CUDA_DEVICE_BUILTIN(y,__nvvm_read_ptx_sreg_ntid_y());
__CUDA_DEVICE_BUILTIN(z,__nvvm_read_ptx_sreg_ntid_z());
// blockDim should be convertible to dim3 (in fact in nvcc, it *is* a
// dim3). This function is defined after we pull in vector_types.h.
__attribute__((device)) operator dim3() const;
__attribute__((device)) operator uint3() const;
private:
__CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_blockDim_t);
};
struct __cuda_builtin_gridDim_t {
__CUDA_DEVICE_BUILTIN(x,__nvvm_read_ptx_sreg_nctaid_x());
__CUDA_DEVICE_BUILTIN(y,__nvvm_read_ptx_sreg_nctaid_y());
__CUDA_DEVICE_BUILTIN(z,__nvvm_read_ptx_sreg_nctaid_z());
// gridDim should be convertible to dim3 (in fact in nvcc, it *is* a
// dim3). This function is defined after we pull in vector_types.h.
__attribute__((device)) operator dim3() const;
__attribute__((device)) operator uint3() const;
private:
__CUDA_DISALLOW_BUILTINVAR_ACCESS(__cuda_builtin_gridDim_t);
};
#define __CUDA_BUILTIN_VAR \
extern const __attribute__((device)) __attribute__((weak))
__CUDA_BUILTIN_VAR __cuda_builtin_threadIdx_t threadIdx;
__CUDA_BUILTIN_VAR __cuda_builtin_blockIdx_t blockIdx;
__CUDA_BUILTIN_VAR __cuda_builtin_blockDim_t blockDim;
__CUDA_BUILTIN_VAR __cuda_builtin_gridDim_t gridDim;
// warpSize should translate to read of %WARP_SZ but there's currently no
// builtin to do so. According to PTX v4.2 docs 'to date, all target
// architectures have a WARP_SZ value of 32'.
__attribute__((device)) const int warpSize = 32;
#undef __CUDA_DEVICE_BUILTIN
#undef __CUDA_BUILTIN_VAR
#undef __CUDA_DISALLOW_BUILTINVAR_ACCESS
#undef __DELETE
#endif /* __CUDA_BUILTIN_VARS_H */

View File

@ -1,512 +0,0 @@
/*===---- __clang_cuda_cmath.h - Device-side CUDA cmath support ------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_CMATH_H__
#define __CLANG_CUDA_CMATH_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
#ifndef __OPENMP_NVPTX__
#include <limits>
#endif
// CUDA lets us use various std math functions on the device side. This file
// works in concert with __clang_cuda_math_forward_declares.h to make this work.
//
// Specifically, the forward-declares header declares __device__ overloads for
// these functions in the global namespace, then pulls them into namespace std
// with 'using' statements. Then this file implements those functions, after
// their implementations have been pulled in.
//
// It's important that we declare the functions in the global namespace and pull
// them into namespace std with using statements, as opposed to simply declaring
// these functions in namespace std, because our device functions need to
// overload the standard library functions, which may be declared in the global
// namespace or in std, depending on the degree of conformance of the stdlib
// implementation. Declaring in the global namespace and pulling into namespace
// std covers all of the known knowns.
#ifdef __OPENMP_NVPTX__
#define __DEVICE__ static constexpr __attribute__((always_inline, nothrow))
#else
#define __DEVICE__ static __device__ __inline__ __attribute__((always_inline))
#endif
__DEVICE__ long long abs(long long __n) { return ::llabs(__n); }
__DEVICE__ long abs(long __n) { return ::labs(__n); }
__DEVICE__ float abs(float __x) { return ::fabsf(__x); }
__DEVICE__ double abs(double __x) { return ::fabs(__x); }
__DEVICE__ float acos(float __x) { return ::acosf(__x); }
__DEVICE__ float asin(float __x) { return ::asinf(__x); }
__DEVICE__ float atan(float __x) { return ::atanf(__x); }
__DEVICE__ float atan2(float __x, float __y) { return ::atan2f(__x, __y); }
__DEVICE__ float ceil(float __x) { return ::ceilf(__x); }
__DEVICE__ float cos(float __x) { return ::cosf(__x); }
__DEVICE__ float cosh(float __x) { return ::coshf(__x); }
__DEVICE__ float exp(float __x) { return ::expf(__x); }
__DEVICE__ float fabs(float __x) { return ::fabsf(__x); }
__DEVICE__ float floor(float __x) { return ::floorf(__x); }
__DEVICE__ float fmod(float __x, float __y) { return ::fmodf(__x, __y); }
__DEVICE__ int fpclassify(float __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
__DEVICE__ int fpclassify(double __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
__DEVICE__ float frexp(float __arg, int *__exp) {
return ::frexpf(__arg, __exp);
}
// For inscrutable reasons, the CUDA headers define these functions for us on
// Windows.
#if !defined(_MSC_VER) || defined(__OPENMP_NVPTX__)
// For OpenMP we work around some old system headers that have non-conforming
// `isinf(float)` and `isnan(float)` implementations that return an `int`. We do
// this by providing two versions of these functions, differing only in the
// return type. To avoid conflicting definitions we disable implicit base
// function generation. That means we will end up with two specializations, one
// per type, but only one has a base function defined by the system header.
#if defined(__OPENMP_NVPTX__)
#pragma omp begin declare variant match( \
implementation = {extension(disable_implicit_base)})
// FIXME: We lack an extension to customize the mangling of the variants, e.g.,
// add a suffix. This means we would clash with the names of the variants
// (note that we do not create implicit base functions here). To avoid
// this clash we add a new trait to some of them that is always true
// (this is LLVM after all ;)). It will only influence the mangled name
// of the variants inside the inner region and avoid the clash.
#pragma omp begin declare variant match(implementation = {vendor(llvm)})
__DEVICE__ int isinf(float __x) { return ::__isinff(__x); }
__DEVICE__ int isinf(double __x) { return ::__isinf(__x); }
__DEVICE__ int isfinite(float __x) { return ::__finitef(__x); }
__DEVICE__ int isfinite(double __x) { return ::__isfinited(__x); }
__DEVICE__ int isnan(float __x) { return ::__isnanf(__x); }
__DEVICE__ int isnan(double __x) { return ::__isnan(__x); }
#pragma omp end declare variant
#endif
__DEVICE__ bool isinf(float __x) { return ::__isinff(__x); }
__DEVICE__ bool isinf(double __x) { return ::__isinf(__x); }
__DEVICE__ bool isfinite(float __x) { return ::__finitef(__x); }
// For inscrutable reasons, __finite(), the double-precision version of
// __finitef, does not exist when compiling for MacOS. __isfinited is available
// everywhere and is just as good.
__DEVICE__ bool isfinite(double __x) { return ::__isfinited(__x); }
__DEVICE__ bool isnan(float __x) { return ::__isnanf(__x); }
__DEVICE__ bool isnan(double __x) { return ::__isnan(__x); }
#if defined(__OPENMP_NVPTX__)
#pragma omp end declare variant
#endif
#endif
__DEVICE__ bool isgreater(float __x, float __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ bool isgreater(double __x, double __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ bool isgreaterequal(float __x, float __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ bool isgreaterequal(double __x, double __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ bool isless(float __x, float __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ bool isless(double __x, double __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ bool islessequal(float __x, float __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ bool islessequal(double __x, double __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ bool islessgreater(float __x, float __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ bool islessgreater(double __x, double __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ bool isnormal(float __x) { return __builtin_isnormal(__x); }
__DEVICE__ bool isnormal(double __x) { return __builtin_isnormal(__x); }
__DEVICE__ bool isunordered(float __x, float __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ bool isunordered(double __x, double __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ float ldexp(float __arg, int __exp) {
return ::ldexpf(__arg, __exp);
}
__DEVICE__ float log(float __x) { return ::logf(__x); }
__DEVICE__ float log10(float __x) { return ::log10f(__x); }
__DEVICE__ float modf(float __x, float *__iptr) { return ::modff(__x, __iptr); }
__DEVICE__ float pow(float __base, float __exp) {
return ::powf(__base, __exp);
}
__DEVICE__ float pow(float __base, int __iexp) {
return ::powif(__base, __iexp);
}
__DEVICE__ double pow(double __base, int __iexp) {
return ::powi(__base, __iexp);
}
__DEVICE__ bool signbit(float __x) { return ::__signbitf(__x); }
__DEVICE__ bool signbit(double __x) { return ::__signbitd(__x); }
__DEVICE__ float sin(float __x) { return ::sinf(__x); }
__DEVICE__ float sinh(float __x) { return ::sinhf(__x); }
__DEVICE__ float sqrt(float __x) { return ::sqrtf(__x); }
__DEVICE__ float tan(float __x) { return ::tanf(__x); }
__DEVICE__ float tanh(float __x) { return ::tanhf(__x); }
// There was a redefinition error for this this overload in CUDA mode.
// We restrict it to OpenMP mode for now, that is where it is actually needed
// anyway.
#ifdef __OPENMP_NVPTX__
__DEVICE__ float remquo(float __n, float __d, int *__q) {
return ::remquof(__n, __d, __q);
}
#endif
// Notably missing above is nexttoward. We omit it because
// libdevice doesn't provide an implementation, and we don't want to be in the
// business of implementing tricky libm functions in this header.
#ifndef __OPENMP_NVPTX__
// Now we've defined everything we promised we'd define in
// __clang_cuda_math_forward_declares.h. We need to do two additional things to
// fix up our math functions.
//
// 1) Define __device__ overloads for e.g. sin(int). The CUDA headers define
// only sin(float) and sin(double), which means that e.g. sin(0) is
// ambiguous.
//
// 2) Pull the __device__ overloads of "foobarf" math functions into namespace
// std. These are defined in the CUDA headers in the global namespace,
// independent of everything else we've done here.
// We can't use std::enable_if, because we want to be pre-C++11 compatible. But
// we go ahead and unconditionally define functions that are only available when
// compiling for C++11 to match the behavior of the CUDA headers.
template<bool __B, class __T = void>
struct __clang_cuda_enable_if {};
template <class __T> struct __clang_cuda_enable_if<true, __T> {
typedef __T type;
};
// Defines an overload of __fn that accepts one integral argument, calls
// __fn((double)x), and returns __retty.
#define __CUDA_CLANG_FN_INTEGER_OVERLOAD_1(__retty, __fn) \
template <typename __T> \
__DEVICE__ \
typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer, \
__retty>::type \
__fn(__T __x) { \
return ::__fn((double)__x); \
}
// Defines an overload of __fn that accepts one two arithmetic arguments, calls
// __fn((double)x, (double)y), and returns a double.
//
// Note this is different from OVERLOAD_1, which generates an overload that
// accepts only *integral* arguments.
#define __CUDA_CLANG_FN_INTEGER_OVERLOAD_2(__retty, __fn) \
template <typename __T1, typename __T2> \
__DEVICE__ typename __clang_cuda_enable_if< \
std::numeric_limits<__T1>::is_specialized && \
std::numeric_limits<__T2>::is_specialized, \
__retty>::type \
__fn(__T1 __x, __T2 __y) { \
return __fn((double)__x, (double)__y); \
}
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, acos)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, acosh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, asin)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, asinh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, atan)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, atan2);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, atanh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, cbrt)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, ceil)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, copysign);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, cos)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, cosh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, erf)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, erfc)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, exp)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, exp2)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, expm1)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, fabs)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fdim);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, floor)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fmax);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fmin);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fmod);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(int, fpclassify)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, hypot);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(int, ilogb)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isfinite)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isgreater);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isgreaterequal);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isinf);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isless);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, islessequal);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, islessgreater);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isnan);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isnormal)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isunordered);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, lgamma)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log10)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log1p)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log2)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, logb)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long long, llrint)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long long, llround)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long, lrint)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long, lround)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, nearbyint);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, nextafter);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, pow);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, remainder);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, rint);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, round);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, signbit)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, sin)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, sinh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, sqrt)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, tan)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, tanh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, tgamma)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, trunc);
#undef __CUDA_CLANG_FN_INTEGER_OVERLOAD_1
#undef __CUDA_CLANG_FN_INTEGER_OVERLOAD_2
// Overloads for functions that don't match the patterns expected by
// __CUDA_CLANG_FN_INTEGER_OVERLOAD_{1,2}.
template <typename __T1, typename __T2, typename __T3>
__DEVICE__ typename __clang_cuda_enable_if<
std::numeric_limits<__T1>::is_specialized &&
std::numeric_limits<__T2>::is_specialized &&
std::numeric_limits<__T3>::is_specialized,
double>::type
fma(__T1 __x, __T2 __y, __T3 __z) {
return std::fma((double)__x, (double)__y, (double)__z);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
frexp(__T __x, int *__exp) {
return std::frexp((double)__x, __exp);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
ldexp(__T __x, int __exp) {
return std::ldexp((double)__x, __exp);
}
template <typename __T1, typename __T2>
__DEVICE__ typename __clang_cuda_enable_if<
std::numeric_limits<__T1>::is_specialized &&
std::numeric_limits<__T2>::is_specialized,
double>::type
remquo(__T1 __x, __T2 __y, int *__quo) {
return std::remquo((double)__x, (double)__y, __quo);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
scalbln(__T __x, long __exp) {
return std::scalbln((double)__x, __exp);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
scalbn(__T __x, int __exp) {
return std::scalbn((double)__x, __exp);
}
// We need to define these overloads in exactly the namespace our standard
// library uses (including the right inline namespace), otherwise they won't be
// picked up by other functions in the standard library (e.g. functions in
// <complex>). Thus the ugliness below.
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
_LIBCPP_BEGIN_NAMESPACE_STD
#else
namespace std {
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#endif
#endif
// Pull the new overloads we defined above into namespace std.
using ::acos;
using ::acosh;
using ::asin;
using ::asinh;
using ::atan;
using ::atan2;
using ::atanh;
using ::cbrt;
using ::ceil;
using ::copysign;
using ::cos;
using ::cosh;
using ::erf;
using ::erfc;
using ::exp;
using ::exp2;
using ::expm1;
using ::fabs;
using ::fdim;
using ::floor;
using ::fma;
using ::fmax;
using ::fmin;
using ::fmod;
using ::fpclassify;
using ::frexp;
using ::hypot;
using ::ilogb;
using ::isfinite;
using ::isgreater;
using ::isgreaterequal;
using ::isless;
using ::islessequal;
using ::islessgreater;
using ::isnormal;
using ::isunordered;
using ::ldexp;
using ::lgamma;
using ::llrint;
using ::llround;
using ::log;
using ::log10;
using ::log1p;
using ::log2;
using ::logb;
using ::lrint;
using ::lround;
using ::nearbyint;
using ::nextafter;
using ::pow;
using ::remainder;
using ::remquo;
using ::rint;
using ::round;
using ::scalbln;
using ::scalbn;
using ::signbit;
using ::sin;
using ::sinh;
using ::sqrt;
using ::tan;
using ::tanh;
using ::tgamma;
using ::trunc;
// Well this is fun: We need to pull these symbols in for libc++, but we can't
// pull them in with libstdc++, because its ::isinf and ::isnan are different
// than its std::isinf and std::isnan.
#ifndef __GLIBCXX__
using ::isinf;
using ::isnan;
#endif
// Finally, pull the "foobarf" functions that CUDA defines in its headers into
// namespace std.
using ::acosf;
using ::acoshf;
using ::asinf;
using ::asinhf;
using ::atan2f;
using ::atanf;
using ::atanhf;
using ::cbrtf;
using ::ceilf;
using ::copysignf;
using ::cosf;
using ::coshf;
using ::erfcf;
using ::erff;
using ::exp2f;
using ::expf;
using ::expm1f;
using ::fabsf;
using ::fdimf;
using ::floorf;
using ::fmaf;
using ::fmaxf;
using ::fminf;
using ::fmodf;
using ::frexpf;
using ::hypotf;
using ::ilogbf;
using ::ldexpf;
using ::lgammaf;
using ::llrintf;
using ::llroundf;
using ::log10f;
using ::log1pf;
using ::log2f;
using ::logbf;
using ::logf;
using ::lrintf;
using ::lroundf;
using ::modff;
using ::nearbyintf;
using ::nextafterf;
using ::powf;
using ::remainderf;
using ::remquof;
using ::rintf;
using ::roundf;
using ::scalblnf;
using ::scalbnf;
using ::sinf;
using ::sinhf;
using ::sqrtf;
using ::tanf;
using ::tanhf;
using ::tgammaf;
using ::truncf;
#ifdef _LIBCPP_END_NAMESPACE_STD
_LIBCPP_END_NAMESPACE_STD
#else
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_END_NAMESPACE_VERSION
#endif
} // namespace std
#endif
#endif // __OPENMP_NVPTX__
#undef __DEVICE__
#endif

View File

@ -1,285 +0,0 @@
/*===-- __clang_cuda_complex_builtins - CUDA impls of runtime complex fns ---===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_COMPLEX_BUILTINS
#define __CLANG_CUDA_COMPLEX_BUILTINS
// This header defines __muldc3, __mulsc3, __divdc3, and __divsc3. These are
// libgcc functions that clang assumes are available when compiling c99 complex
// operations. (These implementations come from libc++, and have been modified
// to work with CUDA and OpenMP target offloading [in C and C++ mode].)
#pragma push_macro("__DEVICE__")
#if defined(__OPENMP_NVPTX__) || defined(__OPENMP_AMDGCN__)
#pragma omp declare target
#define __DEVICE__ __attribute__((noinline, nothrow, cold, weak))
#else
#define __DEVICE__ __device__ inline
#endif
// To make the algorithms available for C and C++ in CUDA and OpenMP we select
// different but equivalent function versions. TODO: For OpenMP we currently
// select the native builtins as the overload support for templates is lacking.
#if !defined(__OPENMP_NVPTX__) && !defined(__OPENMP_AMDGCN__)
#define _ISNANd std::isnan
#define _ISNANf std::isnan
#define _ISINFd std::isinf
#define _ISINFf std::isinf
#define _ISFINITEd std::isfinite
#define _ISFINITEf std::isfinite
#define _COPYSIGNd std::copysign
#define _COPYSIGNf std::copysign
#define _SCALBNd std::scalbn
#define _SCALBNf std::scalbn
#define _ABSd std::abs
#define _ABSf std::abs
#define _LOGBd std::logb
#define _LOGBf std::logb
// Rather than pulling in std::max from algorithm everytime, use available ::max.
#define _fmaxd max
#define _fmaxf max
#else
#ifdef __AMDGCN__
#define _ISNANd __ocml_isnan_f64
#define _ISNANf __ocml_isnan_f32
#define _ISINFd __ocml_isinf_f64
#define _ISINFf __ocml_isinf_f32
#define _ISFINITEd __ocml_isfinite_f64
#define _ISFINITEf __ocml_isfinite_f32
#define _COPYSIGNd __ocml_copysign_f64
#define _COPYSIGNf __ocml_copysign_f32
#define _SCALBNd __ocml_scalbn_f64
#define _SCALBNf __ocml_scalbn_f32
#define _ABSd __ocml_fabs_f64
#define _ABSf __ocml_fabs_f32
#define _LOGBd __ocml_logb_f64
#define _LOGBf __ocml_logb_f32
#define _fmaxd __ocml_fmax_f64
#define _fmaxf __ocml_fmax_f32
#else
#define _ISNANd __nv_isnand
#define _ISNANf __nv_isnanf
#define _ISINFd __nv_isinfd
#define _ISINFf __nv_isinff
#define _ISFINITEd __nv_isfinited
#define _ISFINITEf __nv_finitef
#define _COPYSIGNd __nv_copysign
#define _COPYSIGNf __nv_copysignf
#define _SCALBNd __nv_scalbn
#define _SCALBNf __nv_scalbnf
#define _ABSd __nv_fabs
#define _ABSf __nv_fabsf
#define _LOGBd __nv_logb
#define _LOGBf __nv_logbf
#define _fmaxd __nv_fmax
#define _fmaxf __nv_fmaxf
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
__DEVICE__ double _Complex __muldc3(double __a, double __b, double __c,
double __d) {
double __ac = __a * __c;
double __bd = __b * __d;
double __ad = __a * __d;
double __bc = __b * __c;
double _Complex z;
__real__(z) = __ac - __bd;
__imag__(z) = __ad + __bc;
if (_ISNANd(__real__(z)) && _ISNANd(__imag__(z))) {
int __recalc = 0;
if (_ISINFd(__a) || _ISINFd(__b)) {
__a = _COPYSIGNd(_ISINFd(__a) ? 1 : 0, __a);
__b = _COPYSIGNd(_ISINFd(__b) ? 1 : 0, __b);
if (_ISNANd(__c))
__c = _COPYSIGNd(0, __c);
if (_ISNANd(__d))
__d = _COPYSIGNd(0, __d);
__recalc = 1;
}
if (_ISINFd(__c) || _ISINFd(__d)) {
__c = _COPYSIGNd(_ISINFd(__c) ? 1 : 0, __c);
__d = _COPYSIGNd(_ISINFd(__d) ? 1 : 0, __d);
if (_ISNANd(__a))
__a = _COPYSIGNd(0, __a);
if (_ISNANd(__b))
__b = _COPYSIGNd(0, __b);
__recalc = 1;
}
if (!__recalc &&
(_ISINFd(__ac) || _ISINFd(__bd) || _ISINFd(__ad) || _ISINFd(__bc))) {
if (_ISNANd(__a))
__a = _COPYSIGNd(0, __a);
if (_ISNANd(__b))
__b = _COPYSIGNd(0, __b);
if (_ISNANd(__c))
__c = _COPYSIGNd(0, __c);
if (_ISNANd(__d))
__d = _COPYSIGNd(0, __d);
__recalc = 1;
}
if (__recalc) {
// Can't use std::numeric_limits<double>::infinity() -- that doesn't have
// a device overload (and isn't constexpr before C++11, naturally).
__real__(z) = __builtin_huge_val() * (__a * __c - __b * __d);
__imag__(z) = __builtin_huge_val() * (__a * __d + __b * __c);
}
}
return z;
}
__DEVICE__ float _Complex __mulsc3(float __a, float __b, float __c, float __d) {
float __ac = __a * __c;
float __bd = __b * __d;
float __ad = __a * __d;
float __bc = __b * __c;
float _Complex z;
__real__(z) = __ac - __bd;
__imag__(z) = __ad + __bc;
if (_ISNANf(__real__(z)) && _ISNANf(__imag__(z))) {
int __recalc = 0;
if (_ISINFf(__a) || _ISINFf(__b)) {
__a = _COPYSIGNf(_ISINFf(__a) ? 1 : 0, __a);
__b = _COPYSIGNf(_ISINFf(__b) ? 1 : 0, __b);
if (_ISNANf(__c))
__c = _COPYSIGNf(0, __c);
if (_ISNANf(__d))
__d = _COPYSIGNf(0, __d);
__recalc = 1;
}
if (_ISINFf(__c) || _ISINFf(__d)) {
__c = _COPYSIGNf(_ISINFf(__c) ? 1 : 0, __c);
__d = _COPYSIGNf(_ISINFf(__d) ? 1 : 0, __d);
if (_ISNANf(__a))
__a = _COPYSIGNf(0, __a);
if (_ISNANf(__b))
__b = _COPYSIGNf(0, __b);
__recalc = 1;
}
if (!__recalc &&
(_ISINFf(__ac) || _ISINFf(__bd) || _ISINFf(__ad) || _ISINFf(__bc))) {
if (_ISNANf(__a))
__a = _COPYSIGNf(0, __a);
if (_ISNANf(__b))
__b = _COPYSIGNf(0, __b);
if (_ISNANf(__c))
__c = _COPYSIGNf(0, __c);
if (_ISNANf(__d))
__d = _COPYSIGNf(0, __d);
__recalc = 1;
}
if (__recalc) {
__real__(z) = __builtin_huge_valf() * (__a * __c - __b * __d);
__imag__(z) = __builtin_huge_valf() * (__a * __d + __b * __c);
}
}
return z;
}
__DEVICE__ double _Complex __divdc3(double __a, double __b, double __c,
double __d) {
int __ilogbw = 0;
// Can't use std::max, because that's defined in <algorithm>, and we don't
// want to pull that in for every compile. The CUDA headers define
// ::max(float, float) and ::max(double, double), which is sufficient for us.
double __logbw = _LOGBd(_fmaxd(_ABSd(__c), _ABSd(__d)));
if (_ISFINITEd(__logbw)) {
__ilogbw = (int)__logbw;
__c = _SCALBNd(__c, -__ilogbw);
__d = _SCALBNd(__d, -__ilogbw);
}
double __denom = __c * __c + __d * __d;
double _Complex z;
__real__(z) = _SCALBNd((__a * __c + __b * __d) / __denom, -__ilogbw);
__imag__(z) = _SCALBNd((__b * __c - __a * __d) / __denom, -__ilogbw);
if (_ISNANd(__real__(z)) && _ISNANd(__imag__(z))) {
if ((__denom == 0.0) && (!_ISNANd(__a) || !_ISNANd(__b))) {
__real__(z) = _COPYSIGNd(__builtin_huge_val(), __c) * __a;
__imag__(z) = _COPYSIGNd(__builtin_huge_val(), __c) * __b;
} else if ((_ISINFd(__a) || _ISINFd(__b)) && _ISFINITEd(__c) &&
_ISFINITEd(__d)) {
__a = _COPYSIGNd(_ISINFd(__a) ? 1.0 : 0.0, __a);
__b = _COPYSIGNd(_ISINFd(__b) ? 1.0 : 0.0, __b);
__real__(z) = __builtin_huge_val() * (__a * __c + __b * __d);
__imag__(z) = __builtin_huge_val() * (__b * __c - __a * __d);
} else if (_ISINFd(__logbw) && __logbw > 0.0 && _ISFINITEd(__a) &&
_ISFINITEd(__b)) {
__c = _COPYSIGNd(_ISINFd(__c) ? 1.0 : 0.0, __c);
__d = _COPYSIGNd(_ISINFd(__d) ? 1.0 : 0.0, __d);
__real__(z) = 0.0 * (__a * __c + __b * __d);
__imag__(z) = 0.0 * (__b * __c - __a * __d);
}
}
return z;
}
__DEVICE__ float _Complex __divsc3(float __a, float __b, float __c, float __d) {
int __ilogbw = 0;
float __logbw = _LOGBf(_fmaxf(_ABSf(__c), _ABSf(__d)));
if (_ISFINITEf(__logbw)) {
__ilogbw = (int)__logbw;
__c = _SCALBNf(__c, -__ilogbw);
__d = _SCALBNf(__d, -__ilogbw);
}
float __denom = __c * __c + __d * __d;
float _Complex z;
__real__(z) = _SCALBNf((__a * __c + __b * __d) / __denom, -__ilogbw);
__imag__(z) = _SCALBNf((__b * __c - __a * __d) / __denom, -__ilogbw);
if (_ISNANf(__real__(z)) && _ISNANf(__imag__(z))) {
if ((__denom == 0) && (!_ISNANf(__a) || !_ISNANf(__b))) {
__real__(z) = _COPYSIGNf(__builtin_huge_valf(), __c) * __a;
__imag__(z) = _COPYSIGNf(__builtin_huge_valf(), __c) * __b;
} else if ((_ISINFf(__a) || _ISINFf(__b)) && _ISFINITEf(__c) &&
_ISFINITEf(__d)) {
__a = _COPYSIGNf(_ISINFf(__a) ? 1 : 0, __a);
__b = _COPYSIGNf(_ISINFf(__b) ? 1 : 0, __b);
__real__(z) = __builtin_huge_valf() * (__a * __c + __b * __d);
__imag__(z) = __builtin_huge_valf() * (__b * __c - __a * __d);
} else if (_ISINFf(__logbw) && __logbw > 0 && _ISFINITEf(__a) &&
_ISFINITEf(__b)) {
__c = _COPYSIGNf(_ISINFf(__c) ? 1 : 0, __c);
__d = _COPYSIGNf(_ISINFf(__d) ? 1 : 0, __d);
__real__(z) = 0 * (__a * __c + __b * __d);
__imag__(z) = 0 * (__b * __c - __a * __d);
}
}
return z;
}
#if defined(__cplusplus)
} // extern "C"
#endif
#undef _ISNANd
#undef _ISNANf
#undef _ISINFd
#undef _ISINFf
#undef _COPYSIGNd
#undef _COPYSIGNf
#undef _ISFINITEd
#undef _ISFINITEf
#undef _SCALBNd
#undef _SCALBNf
#undef _ABSd
#undef _ABSf
#undef _LOGBd
#undef _LOGBf
#undef _fmaxd
#undef _fmaxf
#if defined(__OPENMP_NVPTX__) || defined(__OPENMP_AMDGCN__)
#pragma omp end declare target
#endif
#pragma pop_macro("__DEVICE__")
#endif // __CLANG_CUDA_COMPLEX_BUILTINS

File diff suppressed because it is too large Load Diff

View File

@ -1,709 +0,0 @@
/*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_INTRINSICS_H__
#define __CLANG_CUDA_INTRINSICS_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
// sm_30 intrinsics: __shfl_{up,down,xor}.
#define __SM_30_INTRINSICS_H__
#define __SM_30_INTRINSICS_HPP__
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
#pragma push_macro("__MAKE_SHUFFLES")
#define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \
__Type) \
inline __device__ int __FnName(int __val, __Type __offset, \
int __width = warpSize) { \
return __IntIntrinsic(__val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ float __FnName(float __val, __Type __offset, \
int __width = warpSize) { \
return __FloatIntrinsic(__val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned int>( \
::__FnName(static_cast<int>(__val), __offset, __width)); \
} \
inline __device__ long long __FnName(long long __val, __Type __offset, \
int __width = warpSize) { \
struct __Bits { \
int __a, __b; \
}; \
_Static_assert(sizeof(__val) == sizeof(__Bits)); \
_Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
__Bits __tmp; \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \
__tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \
long long __ret; \
memcpy(&__ret, &__tmp, sizeof(__tmp)); \
return __ret; \
} \
inline __device__ long __FnName(long __val, __Type __offset, \
int __width = warpSize) { \
_Static_assert(sizeof(long) == sizeof(long long) || \
sizeof(long) == sizeof(int)); \
if (sizeof(long) == sizeof(long long)) { \
return static_cast<long>( \
::__FnName(static_cast<long long>(__val), __offset, __width)); \
} else if (sizeof(long) == sizeof(int)) { \
return static_cast<long>( \
::__FnName(static_cast<int>(__val), __offset, __width)); \
} \
} \
inline __device__ unsigned long __FnName( \
unsigned long __val, __Type __offset, int __width = warpSize) { \
return static_cast<unsigned long>( \
::__FnName(static_cast<long>(__val), __offset, __width)); \
} \
inline __device__ unsigned long long __FnName( \
unsigned long long __val, __Type __offset, int __width = warpSize) { \
return static_cast<unsigned long long>( \
::__FnName(static_cast<long long>(__val), __offset, __width)); \
} \
inline __device__ double __FnName(double __val, __Type __offset, \
int __width = warpSize) { \
long long __tmp; \
_Static_assert(sizeof(__tmp) == sizeof(__val)); \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp = ::__FnName(__tmp, __offset, __width); \
double __ret; \
memcpy(&__ret, &__tmp, sizeof(__ret)); \
return __ret; \
}
__MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int);
// We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
// maxLane.
__MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0,
unsigned int);
__MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f,
unsigned int);
__MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f,
int);
#pragma pop_macro("__MAKE_SHUFFLES")
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
#if CUDA_VERSION >= 9000
#if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300)
// __shfl_sync_* variants available in CUDA-9
#pragma push_macro("__MAKE_SYNC_SHUFFLES")
#define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \
__Mask, __Type) \
inline __device__ int __FnName(unsigned int __mask, int __val, \
__Type __offset, int __width = warpSize) { \
return __IntIntrinsic(__mask, __val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ float __FnName(unsigned int __mask, float __val, \
__Type __offset, int __width = warpSize) { \
return __FloatIntrinsic(__mask, __val, __offset, \
((warpSize - __width) << 8) | (__Mask)); \
} \
inline __device__ unsigned int __FnName(unsigned int __mask, \
unsigned int __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned int>( \
::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
} \
inline __device__ long long __FnName(unsigned int __mask, long long __val, \
__Type __offset, \
int __width = warpSize) { \
struct __Bits { \
int __a, __b; \
}; \
_Static_assert(sizeof(__val) == sizeof(__Bits)); \
_Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
__Bits __tmp; \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \
__tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \
long long __ret; \
memcpy(&__ret, &__tmp, sizeof(__tmp)); \
return __ret; \
} \
inline __device__ unsigned long long __FnName( \
unsigned int __mask, unsigned long long __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned long long>( \
::__FnName(__mask, static_cast<long long>(__val), __offset, __width)); \
} \
inline __device__ long __FnName(unsigned int __mask, long __val, \
__Type __offset, int __width = warpSize) { \
_Static_assert(sizeof(long) == sizeof(long long) || \
sizeof(long) == sizeof(int)); \
if (sizeof(long) == sizeof(long long)) { \
return static_cast<long>(::__FnName( \
__mask, static_cast<long long>(__val), __offset, __width)); \
} else if (sizeof(long) == sizeof(int)) { \
return static_cast<long>( \
::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
} \
} \
inline __device__ unsigned long __FnName( \
unsigned int __mask, unsigned long __val, __Type __offset, \
int __width = warpSize) { \
return static_cast<unsigned long>( \
::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \
} \
inline __device__ double __FnName(unsigned int __mask, double __val, \
__Type __offset, int __width = warpSize) { \
long long __tmp; \
_Static_assert(sizeof(__tmp) == sizeof(__val)); \
memcpy(&__tmp, &__val, sizeof(__val)); \
__tmp = ::__FnName(__mask, __tmp, __offset, __width); \
double __ret; \
memcpy(&__ret, &__tmp, sizeof(__ret)); \
return __ret; \
}
__MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32,
__nvvm_shfl_sync_idx_f32, 0x1f, int);
// We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
// maxLane.
__MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32,
__nvvm_shfl_sync_up_f32, 0, unsigned int);
__MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32,
__nvvm_shfl_sync_down_f32, 0x1f, unsigned int);
__MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32,
__nvvm_shfl_sync_bfly_f32, 0x1f, int);
#pragma pop_macro("__MAKE_SYNC_SHUFFLES")
inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) {
return __nvvm_bar_warp_sync(mask);
}
inline __device__ void __barrier_sync(unsigned int id) {
__nvvm_barrier_sync(id);
}
inline __device__ void __barrier_sync_count(unsigned int id,
unsigned int count) {
__nvvm_barrier_sync_cnt(id, count);
}
inline __device__ int __all_sync(unsigned int mask, int pred) {
return __nvvm_vote_all_sync(mask, pred);
}
inline __device__ int __any_sync(unsigned int mask, int pred) {
return __nvvm_vote_any_sync(mask, pred);
}
inline __device__ int __uni_sync(unsigned int mask, int pred) {
return __nvvm_vote_uni_sync(mask, pred);
}
inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) {
return __nvvm_vote_ballot_sync(mask, pred);
}
inline __device__ unsigned int __activemask() {
#if CUDA_VERSION < 9020
return __nvvm_vote_ballot(1);
#else
unsigned int mask;
asm volatile("activemask.b32 %0;" : "=r"(mask));
return mask;
#endif
}
inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) {
return __nvvm_fns(mask, base, offset);
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
// Define __match* builtins CUDA-9 headers expect to see.
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
inline __device__ unsigned int __match32_any_sync(unsigned int mask,
unsigned int value) {
return __nvvm_match_any_sync_i32(mask, value);
}
inline __device__ unsigned int
__match64_any_sync(unsigned int mask, unsigned long long value) {
return __nvvm_match_any_sync_i64(mask, value);
}
inline __device__ unsigned int
__match32_all_sync(unsigned int mask, unsigned int value, int *pred) {
return __nvvm_match_all_sync_i32p(mask, value, pred);
}
inline __device__ unsigned int
__match64_all_sync(unsigned int mask, unsigned long long value, int *pred) {
return __nvvm_match_all_sync_i64p(mask, value, pred);
}
#include "crt/sm_70_rt.hpp"
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
#endif // __CUDA_VERSION >= 9000
// sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}.
// Prevent the vanilla sm_32 intrinsics header from being included.
#define __SM_32_INTRINSICS_H__
#define __SM_32_INTRINSICS_HPP__
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); }
inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); }
inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); }
inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); }
inline __device__ long long __ldg(const long long *ptr) {
return __nvvm_ldg_ll(ptr);
}
inline __device__ unsigned char __ldg(const unsigned char *ptr) {
return __nvvm_ldg_uc(ptr);
}
inline __device__ signed char __ldg(const signed char *ptr) {
return __nvvm_ldg_uc((const unsigned char *)ptr);
}
inline __device__ unsigned short __ldg(const unsigned short *ptr) {
return __nvvm_ldg_us(ptr);
}
inline __device__ unsigned int __ldg(const unsigned int *ptr) {
return __nvvm_ldg_ui(ptr);
}
inline __device__ unsigned long __ldg(const unsigned long *ptr) {
return __nvvm_ldg_ul(ptr);
}
inline __device__ unsigned long long __ldg(const unsigned long long *ptr) {
return __nvvm_ldg_ull(ptr);
}
inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); }
inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); }
inline __device__ char2 __ldg(const char2 *ptr) {
typedef char c2 __attribute__((ext_vector_type(2)));
// We can assume that ptr is aligned at least to char2's alignment, but the
// load will assume that ptr is aligned to char2's alignment. This is only
// safe if alignof(c2) <= alignof(char2).
c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr));
char2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ char4 __ldg(const char4 *ptr) {
typedef char c4 __attribute__((ext_vector_type(4)));
c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr));
char4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ short2 __ldg(const short2 *ptr) {
typedef short s2 __attribute__((ext_vector_type(2)));
s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr));
short2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ short4 __ldg(const short4 *ptr) {
typedef short s4 __attribute__((ext_vector_type(4)));
s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr));
short4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ int2 __ldg(const int2 *ptr) {
typedef int i2 __attribute__((ext_vector_type(2)));
i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr));
int2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ int4 __ldg(const int4 *ptr) {
typedef int i4 __attribute__((ext_vector_type(4)));
i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr));
int4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ longlong2 __ldg(const longlong2 *ptr) {
typedef long long ll2 __attribute__((ext_vector_type(2)));
ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr));
longlong2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ uchar2 __ldg(const uchar2 *ptr) {
typedef unsigned char uc2 __attribute__((ext_vector_type(2)));
uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr));
uchar2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ uchar4 __ldg(const uchar4 *ptr) {
typedef unsigned char uc4 __attribute__((ext_vector_type(4)));
uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr));
uchar4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ ushort2 __ldg(const ushort2 *ptr) {
typedef unsigned short us2 __attribute__((ext_vector_type(2)));
us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr));
ushort2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ ushort4 __ldg(const ushort4 *ptr) {
typedef unsigned short us4 __attribute__((ext_vector_type(4)));
us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr));
ushort4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ uint2 __ldg(const uint2 *ptr) {
typedef unsigned int ui2 __attribute__((ext_vector_type(2)));
ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr));
uint2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ uint4 __ldg(const uint4 *ptr) {
typedef unsigned int ui4 __attribute__((ext_vector_type(4)));
ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr));
uint4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) {
typedef unsigned long long ull2 __attribute__((ext_vector_type(2)));
ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr));
ulonglong2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ float2 __ldg(const float2 *ptr) {
typedef float f2 __attribute__((ext_vector_type(2)));
f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr));
float2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
inline __device__ float4 __ldg(const float4 *ptr) {
typedef float f4 __attribute__((ext_vector_type(4)));
f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr));
float4 ret;
ret.x = rv[0];
ret.y = rv[1];
ret.z = rv[2];
ret.w = rv[3];
return ret;
}
inline __device__ double2 __ldg(const double2 *ptr) {
typedef double d2 __attribute__((ext_vector_type(2)));
d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr));
double2 ret;
ret.x = rv[0];
ret.y = rv[1];
return ret;
}
// TODO: Implement these as intrinsics, so the backend can work its magic on
// these. Alternatively, we could implement these as plain C and try to get
// llvm to recognize the relevant patterns.
inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned result;
asm("shf.l.wrap.b32 %0, %1, %2, %3;"
: "=r"(result)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return result;
}
inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned result;
asm("shf.l.clamp.b32 %0, %1, %2, %3;"
: "=r"(result)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return result;
}
inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned result;
asm("shf.r.wrap.b32 %0, %1, %2, %3;"
: "=r"(result)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return result;
}
inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32,
unsigned shiftWidth) {
unsigned ret;
asm("shf.r.clamp.b32 %0, %1, %2, %3;"
: "=r"(ret)
: "r"(low32), "r"(high32), "r"(shiftWidth));
return ret;
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
#if CUDA_VERSION >= 11000
extern "C" {
__device__ inline size_t __nv_cvta_generic_to_global_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(1))) *)__ptr;
}
__device__ inline size_t __nv_cvta_generic_to_shared_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(3))) *)__ptr;
}
__device__ inline size_t __nv_cvta_generic_to_constant_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(4))) *)__ptr;
}
__device__ inline size_t __nv_cvta_generic_to_local_impl(const void *__ptr) {
return (size_t)(void __attribute__((address_space(5))) *)__ptr;
}
__device__ inline void *__nv_cvta_global_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(1))) *)__ptr;
}
__device__ inline void *__nv_cvta_shared_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(3))) *)__ptr;
}
__device__ inline void *__nv_cvta_constant_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(4))) *)__ptr;
}
__device__ inline void *__nv_cvta_local_to_generic_impl(size_t __ptr) {
return (void *)(void __attribute__((address_space(5))) *)__ptr;
}
__device__ inline cuuint32_t __nvvm_get_smem_pointer(void *__ptr) {
return __nv_cvta_generic_to_shared_impl(__ptr);
}
} // extern "C"
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
__device__ inline unsigned __reduce_add_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_add(__mask, __value);
}
__device__ inline unsigned __reduce_min_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_umin(__mask, __value);
}
__device__ inline unsigned __reduce_max_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_umax(__mask, __value);
}
__device__ inline int __reduce_min_sync(unsigned __mask, int __value) {
return __nvvm_redux_sync_min(__mask, __value);
}
__device__ inline int __reduce_max_sync(unsigned __mask, int __value) {
return __nvvm_redux_sync_max(__mask, __value);
}
__device__ inline unsigned __reduce_or_sync(unsigned __mask, unsigned __value) {
return __nvvm_redux_sync_or(__mask, __value);
}
__device__ inline unsigned __reduce_and_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_and(__mask, __value);
}
__device__ inline unsigned __reduce_xor_sync(unsigned __mask,
unsigned __value) {
return __nvvm_redux_sync_xor(__mask, __value);
}
__device__ inline void __nv_memcpy_async_shared_global_4(void *__dst,
const void *__src,
unsigned __src_size) {
__nvvm_cp_async_ca_shared_global_4(
(void __attribute__((address_space(3))) *)__dst,
(const void __attribute__((address_space(1))) *)__src, __src_size);
}
__device__ inline void __nv_memcpy_async_shared_global_8(void *__dst,
const void *__src,
unsigned __src_size) {
__nvvm_cp_async_ca_shared_global_8(
(void __attribute__((address_space(3))) *)__dst,
(const void __attribute__((address_space(1))) *)__src, __src_size);
}
__device__ inline void __nv_memcpy_async_shared_global_16(void *__dst,
const void *__src,
unsigned __src_size) {
__nvvm_cp_async_ca_shared_global_16(
(void __attribute__((address_space(3))) *)__dst,
(const void __attribute__((address_space(1))) *)__src, __src_size);
}
__device__ inline void *
__nv_associate_access_property(const void *__ptr, unsigned long long __prop) {
// TODO: it appears to provide compiler with some sort of a hint. We do not
// know what exactly it is supposed to do. However, CUDA headers suggest that
// just passing through __ptr should not affect correctness. They do so on
// pre-sm80 GPUs where this builtin is not available.
return (void*)__ptr;
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
__device__ inline unsigned __isCtaShared(const void *ptr) {
return __isShared(ptr);
}
__device__ inline unsigned __isClusterShared(const void *__ptr) {
return __nvvm_isspacep_shared_cluster(__ptr);
}
__device__ inline void *__cluster_map_shared_rank(const void *__ptr,
unsigned __rank) {
return __nvvm_mapa((void *)__ptr, __rank);
}
__device__ inline unsigned __cluster_query_shared_rank(const void *__ptr) {
return __nvvm_getctarank((void *)__ptr);
}
__device__ inline uint2
__cluster_map_shared_multicast(const void *__ptr,
unsigned int __cluster_cta_mask) {
return make_uint2((unsigned)__cvta_generic_to_shared(__ptr),
__cluster_cta_mask);
}
__device__ inline unsigned __clusterDimIsSpecified() {
return __nvvm_is_explicit_cluster();
}
__device__ inline dim3 __clusterDim() {
return dim3(__nvvm_read_ptx_sreg_cluster_nctaid_x(),
__nvvm_read_ptx_sreg_cluster_nctaid_y(),
__nvvm_read_ptx_sreg_cluster_nctaid_z());
}
__device__ inline dim3 __clusterRelativeBlockIdx() {
return dim3(__nvvm_read_ptx_sreg_cluster_ctaid_x(),
__nvvm_read_ptx_sreg_cluster_ctaid_y(),
__nvvm_read_ptx_sreg_cluster_ctaid_z());
}
__device__ inline dim3 __clusterGridDimInClusters() {
return dim3(__nvvm_read_ptx_sreg_nclusterid_x(),
__nvvm_read_ptx_sreg_nclusterid_y(),
__nvvm_read_ptx_sreg_nclusterid_z());
}
__device__ inline dim3 __clusterIdx() {
return dim3(__nvvm_read_ptx_sreg_clusterid_x(),
__nvvm_read_ptx_sreg_clusterid_y(),
__nvvm_read_ptx_sreg_clusterid_z());
}
__device__ inline unsigned __clusterRelativeBlockRank() {
return __nvvm_read_ptx_sreg_cluster_ctarank();
}
__device__ inline unsigned __clusterSizeInBlocks() {
return __nvvm_read_ptx_sreg_cluster_nctarank();
}
__device__ inline void __cluster_barrier_arrive() {
__nvvm_barrier_cluster_arrive();
}
__device__ inline void __cluster_barrier_arrive_relaxed() {
__nvvm_barrier_cluster_arrive_relaxed();
}
__device__ inline void __cluster_barrier_wait() {
__nvvm_barrier_cluster_wait();
}
__device__ inline void __threadfence_cluster() { __nvvm_fence_sc_cluster(); }
__device__ inline float2 atomicAdd(float2 *__ptr, float2 __val) {
float2 __ret;
__asm__("atom.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
: "=f"(__ret.x), "=f"(__ret.y)
: "l"(__ptr), "f"(__val.x), "f"(__val.y));
return __ret;
}
__device__ inline float2 atomicAdd_block(float2 *__ptr, float2 __val) {
float2 __ret;
__asm__("atom.cta.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
: "=f"(__ret.x), "=f"(__ret.y)
: "l"(__ptr), "f"(__val.x), "f"(__val.y));
return __ret;
}
__device__ inline float2 atomicAdd_system(float2 *__ptr, float2 __val) {
float2 __ret;
__asm__("atom.sys.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
: "=f"(__ret.x), "=f"(__ret.y)
: "l"(__ptr), "f"(__val.x), "f"(__val.y));
return __ret;
}
__device__ inline float4 atomicAdd(float4 *__ptr, float4 __val) {
float4 __ret;
__asm__("atom.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
: "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
: "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
return __ret;
}
__device__ inline float4 atomicAdd_block(float4 *__ptr, float4 __val) {
float4 __ret;
__asm__(
"atom.cta.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
: "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
: "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
return __ret;
}
__device__ inline float4 atomicAdd_system(float4 *__ptr, float4 __val) {
float4 __ret;
__asm__(
"atom.sys.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
: "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
: "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)
:);
return __ret;
}
#endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
#endif // CUDA_VERSION >= 11000
#endif // defined(__CLANG_CUDA_INTRINSICS_H__)

View File

@ -1,468 +0,0 @@
/*===-- __clang_cuda_libdevice_declares.h - decls for libdevice functions --===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_LIBDEVICE_DECLARES_H__
#define __CLANG_CUDA_LIBDEVICE_DECLARES_H__
#if defined(__cplusplus)
extern "C" {
#endif
#if defined(__OPENMP_NVPTX__)
#define __DEVICE__
#pragma omp begin assumes ext_spmd_amenable no_openmp
#elif defined(__CUDA__)
#define __DEVICE__ __device__
#endif
__DEVICE__ int __nv_abs(int __a);
__DEVICE__ double __nv_acos(double __a);
__DEVICE__ float __nv_acosf(float __a);
__DEVICE__ double __nv_acosh(double __a);
__DEVICE__ float __nv_acoshf(float __a);
__DEVICE__ double __nv_asin(double __a);
__DEVICE__ float __nv_asinf(float __a);
__DEVICE__ double __nv_asinh(double __a);
__DEVICE__ float __nv_asinhf(float __a);
__DEVICE__ double __nv_atan2(double __a, double __b);
__DEVICE__ float __nv_atan2f(float __a, float __b);
__DEVICE__ double __nv_atan(double __a);
__DEVICE__ float __nv_atanf(float __a);
__DEVICE__ double __nv_atanh(double __a);
__DEVICE__ float __nv_atanhf(float __a);
__DEVICE__ int __nv_brev(int __a);
__DEVICE__ long long __nv_brevll(long long __a);
__DEVICE__ int __nv_byte_perm(int __a, int __b, int __c);
__DEVICE__ double __nv_cbrt(double __a);
__DEVICE__ float __nv_cbrtf(float __a);
__DEVICE__ double __nv_ceil(double __a);
__DEVICE__ float __nv_ceilf(float __a);
__DEVICE__ int __nv_clz(int __a);
__DEVICE__ int __nv_clzll(long long __a);
__DEVICE__ double __nv_copysign(double __a, double __b);
__DEVICE__ float __nv_copysignf(float __a, float __b);
__DEVICE__ double __nv_cos(double __a);
__DEVICE__ float __nv_cosf(float __a);
__DEVICE__ double __nv_cosh(double __a);
__DEVICE__ float __nv_coshf(float __a);
__DEVICE__ double __nv_cospi(double __a);
__DEVICE__ float __nv_cospif(float __a);
__DEVICE__ double __nv_cyl_bessel_i0(double __a);
__DEVICE__ float __nv_cyl_bessel_i0f(float __a);
__DEVICE__ double __nv_cyl_bessel_i1(double __a);
__DEVICE__ float __nv_cyl_bessel_i1f(float __a);
__DEVICE__ double __nv_dadd_rd(double __a, double __b);
__DEVICE__ double __nv_dadd_rn(double __a, double __b);
__DEVICE__ double __nv_dadd_ru(double __a, double __b);
__DEVICE__ double __nv_dadd_rz(double __a, double __b);
__DEVICE__ double __nv_ddiv_rd(double __a, double __b);
__DEVICE__ double __nv_ddiv_rn(double __a, double __b);
__DEVICE__ double __nv_ddiv_ru(double __a, double __b);
__DEVICE__ double __nv_ddiv_rz(double __a, double __b);
__DEVICE__ double __nv_dmul_rd(double __a, double __b);
__DEVICE__ double __nv_dmul_rn(double __a, double __b);
__DEVICE__ double __nv_dmul_ru(double __a, double __b);
__DEVICE__ double __nv_dmul_rz(double __a, double __b);
__DEVICE__ float __nv_double2float_rd(double __a);
__DEVICE__ float __nv_double2float_rn(double __a);
__DEVICE__ float __nv_double2float_ru(double __a);
__DEVICE__ float __nv_double2float_rz(double __a);
__DEVICE__ int __nv_double2hiint(double __a);
__DEVICE__ int __nv_double2int_rd(double __a);
__DEVICE__ int __nv_double2int_rn(double __a);
__DEVICE__ int __nv_double2int_ru(double __a);
__DEVICE__ int __nv_double2int_rz(double __a);
__DEVICE__ long long __nv_double2ll_rd(double __a);
__DEVICE__ long long __nv_double2ll_rn(double __a);
__DEVICE__ long long __nv_double2ll_ru(double __a);
__DEVICE__ long long __nv_double2ll_rz(double __a);
__DEVICE__ int __nv_double2loint(double __a);
__DEVICE__ unsigned int __nv_double2uint_rd(double __a);
__DEVICE__ unsigned int __nv_double2uint_rn(double __a);
__DEVICE__ unsigned int __nv_double2uint_ru(double __a);
__DEVICE__ unsigned int __nv_double2uint_rz(double __a);
__DEVICE__ unsigned long long __nv_double2ull_rd(double __a);
__DEVICE__ unsigned long long __nv_double2ull_rn(double __a);
__DEVICE__ unsigned long long __nv_double2ull_ru(double __a);
__DEVICE__ unsigned long long __nv_double2ull_rz(double __a);
__DEVICE__ unsigned long long __nv_double_as_longlong(double __a);
__DEVICE__ double __nv_drcp_rd(double __a);
__DEVICE__ double __nv_drcp_rn(double __a);
__DEVICE__ double __nv_drcp_ru(double __a);
__DEVICE__ double __nv_drcp_rz(double __a);
__DEVICE__ double __nv_dsqrt_rd(double __a);
__DEVICE__ double __nv_dsqrt_rn(double __a);
__DEVICE__ double __nv_dsqrt_ru(double __a);
__DEVICE__ double __nv_dsqrt_rz(double __a);
__DEVICE__ double __nv_dsub_rd(double __a, double __b);
__DEVICE__ double __nv_dsub_rn(double __a, double __b);
__DEVICE__ double __nv_dsub_ru(double __a, double __b);
__DEVICE__ double __nv_dsub_rz(double __a, double __b);
__DEVICE__ double __nv_erfc(double __a);
__DEVICE__ float __nv_erfcf(float __a);
__DEVICE__ double __nv_erfcinv(double __a);
__DEVICE__ float __nv_erfcinvf(float __a);
__DEVICE__ double __nv_erfcx(double __a);
__DEVICE__ float __nv_erfcxf(float __a);
__DEVICE__ double __nv_erf(double __a);
__DEVICE__ float __nv_erff(float __a);
__DEVICE__ double __nv_erfinv(double __a);
__DEVICE__ float __nv_erfinvf(float __a);
__DEVICE__ double __nv_exp10(double __a);
__DEVICE__ float __nv_exp10f(float __a);
__DEVICE__ double __nv_exp2(double __a);
__DEVICE__ float __nv_exp2f(float __a);
__DEVICE__ double __nv_exp(double __a);
__DEVICE__ float __nv_expf(float __a);
__DEVICE__ double __nv_expm1(double __a);
__DEVICE__ float __nv_expm1f(float __a);
__DEVICE__ double __nv_fabs(double __a);
__DEVICE__ float __nv_fabsf(float __a);
__DEVICE__ float __nv_fadd_rd(float __a, float __b);
__DEVICE__ float __nv_fadd_rn(float __a, float __b);
__DEVICE__ float __nv_fadd_ru(float __a, float __b);
__DEVICE__ float __nv_fadd_rz(float __a, float __b);
__DEVICE__ float __nv_fast_cosf(float __a);
__DEVICE__ float __nv_fast_exp10f(float __a);
__DEVICE__ float __nv_fast_expf(float __a);
__DEVICE__ float __nv_fast_fdividef(float __a, float __b);
__DEVICE__ float __nv_fast_log10f(float __a);
__DEVICE__ float __nv_fast_log2f(float __a);
__DEVICE__ float __nv_fast_logf(float __a);
__DEVICE__ float __nv_fast_powf(float __a, float __b);
__DEVICE__ void __nv_fast_sincosf(float __a, float *__s, float *__c);
__DEVICE__ float __nv_fast_sinf(float __a);
__DEVICE__ float __nv_fast_tanf(float __a);
__DEVICE__ double __nv_fdim(double __a, double __b);
__DEVICE__ float __nv_fdimf(float __a, float __b);
__DEVICE__ float __nv_fdiv_rd(float __a, float __b);
__DEVICE__ float __nv_fdiv_rn(float __a, float __b);
__DEVICE__ float __nv_fdiv_ru(float __a, float __b);
__DEVICE__ float __nv_fdiv_rz(float __a, float __b);
__DEVICE__ int __nv_ffs(int __a);
__DEVICE__ int __nv_ffsll(long long __a);
__DEVICE__ int __nv_finitef(float __a);
__DEVICE__ unsigned short __nv_float2half_rn(float __a);
__DEVICE__ int __nv_float2int_rd(float __a);
__DEVICE__ int __nv_float2int_rn(float __a);
__DEVICE__ int __nv_float2int_ru(float __a);
__DEVICE__ int __nv_float2int_rz(float __a);
__DEVICE__ long long __nv_float2ll_rd(float __a);
__DEVICE__ long long __nv_float2ll_rn(float __a);
__DEVICE__ long long __nv_float2ll_ru(float __a);
__DEVICE__ long long __nv_float2ll_rz(float __a);
__DEVICE__ unsigned int __nv_float2uint_rd(float __a);
__DEVICE__ unsigned int __nv_float2uint_rn(float __a);
__DEVICE__ unsigned int __nv_float2uint_ru(float __a);
__DEVICE__ unsigned int __nv_float2uint_rz(float __a);
__DEVICE__ unsigned long long __nv_float2ull_rd(float __a);
__DEVICE__ unsigned long long __nv_float2ull_rn(float __a);
__DEVICE__ unsigned long long __nv_float2ull_ru(float __a);
__DEVICE__ unsigned long long __nv_float2ull_rz(float __a);
__DEVICE__ int __nv_float_as_int(float __a);
__DEVICE__ unsigned int __nv_float_as_uint(float __a);
__DEVICE__ double __nv_floor(double __a);
__DEVICE__ float __nv_floorf(float __a);
__DEVICE__ double __nv_fma(double __a, double __b, double __c);
__DEVICE__ float __nv_fmaf(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_ieee_rd(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_ieee_rn(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_ieee_ru(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_ieee_rz(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_rd(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_rn(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_ru(float __a, float __b, float __c);
__DEVICE__ float __nv_fmaf_rz(float __a, float __b, float __c);
__DEVICE__ double __nv_fma_rd(double __a, double __b, double __c);
__DEVICE__ double __nv_fma_rn(double __a, double __b, double __c);
__DEVICE__ double __nv_fma_ru(double __a, double __b, double __c);
__DEVICE__ double __nv_fma_rz(double __a, double __b, double __c);
__DEVICE__ double __nv_fmax(double __a, double __b);
__DEVICE__ float __nv_fmaxf(float __a, float __b);
__DEVICE__ double __nv_fmin(double __a, double __b);
__DEVICE__ float __nv_fminf(float __a, float __b);
__DEVICE__ double __nv_fmod(double __a, double __b);
__DEVICE__ float __nv_fmodf(float __a, float __b);
__DEVICE__ float __nv_fmul_rd(float __a, float __b);
__DEVICE__ float __nv_fmul_rn(float __a, float __b);
__DEVICE__ float __nv_fmul_ru(float __a, float __b);
__DEVICE__ float __nv_fmul_rz(float __a, float __b);
__DEVICE__ float __nv_frcp_rd(float __a);
__DEVICE__ float __nv_frcp_rn(float __a);
__DEVICE__ float __nv_frcp_ru(float __a);
__DEVICE__ float __nv_frcp_rz(float __a);
__DEVICE__ double __nv_frexp(double __a, int *__b);
__DEVICE__ float __nv_frexpf(float __a, int *__b);
__DEVICE__ float __nv_frsqrt_rn(float __a);
__DEVICE__ float __nv_fsqrt_rd(float __a);
__DEVICE__ float __nv_fsqrt_rn(float __a);
__DEVICE__ float __nv_fsqrt_ru(float __a);
__DEVICE__ float __nv_fsqrt_rz(float __a);
__DEVICE__ float __nv_fsub_rd(float __a, float __b);
__DEVICE__ float __nv_fsub_rn(float __a, float __b);
__DEVICE__ float __nv_fsub_ru(float __a, float __b);
__DEVICE__ float __nv_fsub_rz(float __a, float __b);
__DEVICE__ int __nv_hadd(int __a, int __b);
__DEVICE__ float __nv_half2float(unsigned short __h);
__DEVICE__ double __nv_hiloint2double(int __a, int __b);
__DEVICE__ double __nv_hypot(double __a, double __b);
__DEVICE__ float __nv_hypotf(float __a, float __b);
__DEVICE__ int __nv_ilogb(double __a);
__DEVICE__ int __nv_ilogbf(float __a);
__DEVICE__ double __nv_int2double_rn(int __a);
__DEVICE__ float __nv_int2float_rd(int __a);
__DEVICE__ float __nv_int2float_rn(int __a);
__DEVICE__ float __nv_int2float_ru(int __a);
__DEVICE__ float __nv_int2float_rz(int __a);
__DEVICE__ float __nv_int_as_float(int __a);
__DEVICE__ int __nv_isfinited(double __a);
__DEVICE__ int __nv_isinfd(double __a);
__DEVICE__ int __nv_isinff(float __a);
__DEVICE__ int __nv_isnand(double __a);
__DEVICE__ int __nv_isnanf(float __a);
__DEVICE__ double __nv_j0(double __a);
__DEVICE__ float __nv_j0f(float __a);
__DEVICE__ double __nv_j1(double __a);
__DEVICE__ float __nv_j1f(float __a);
__DEVICE__ float __nv_jnf(int __a, float __b);
__DEVICE__ double __nv_jn(int __a, double __b);
__DEVICE__ double __nv_ldexp(double __a, int __b);
__DEVICE__ float __nv_ldexpf(float __a, int __b);
__DEVICE__ double __nv_lgamma(double __a);
__DEVICE__ float __nv_lgammaf(float __a);
__DEVICE__ double __nv_ll2double_rd(long long __a);
__DEVICE__ double __nv_ll2double_rn(long long __a);
__DEVICE__ double __nv_ll2double_ru(long long __a);
__DEVICE__ double __nv_ll2double_rz(long long __a);
__DEVICE__ float __nv_ll2float_rd(long long __a);
__DEVICE__ float __nv_ll2float_rn(long long __a);
__DEVICE__ float __nv_ll2float_ru(long long __a);
__DEVICE__ float __nv_ll2float_rz(long long __a);
__DEVICE__ long long __nv_llabs(long long __a);
__DEVICE__ long long __nv_llmax(long long __a, long long __b);
__DEVICE__ long long __nv_llmin(long long __a, long long __b);
__DEVICE__ long long __nv_llrint(double __a);
__DEVICE__ long long __nv_llrintf(float __a);
__DEVICE__ long long __nv_llround(double __a);
__DEVICE__ long long __nv_llroundf(float __a);
__DEVICE__ double __nv_log10(double __a);
__DEVICE__ float __nv_log10f(float __a);
__DEVICE__ double __nv_log1p(double __a);
__DEVICE__ float __nv_log1pf(float __a);
__DEVICE__ double __nv_log2(double __a);
__DEVICE__ float __nv_log2f(float __a);
__DEVICE__ double __nv_logb(double __a);
__DEVICE__ float __nv_logbf(float __a);
__DEVICE__ double __nv_log(double __a);
__DEVICE__ float __nv_logf(float __a);
__DEVICE__ double __nv_longlong_as_double(long long __a);
__DEVICE__ int __nv_max(int __a, int __b);
__DEVICE__ int __nv_min(int __a, int __b);
__DEVICE__ double __nv_modf(double __a, double *__b);
__DEVICE__ float __nv_modff(float __a, float *__b);
__DEVICE__ int __nv_mul24(int __a, int __b);
__DEVICE__ long long __nv_mul64hi(long long __a, long long __b);
__DEVICE__ int __nv_mulhi(int __a, int __b);
__DEVICE__ double __nv_nan(const signed char *__a);
__DEVICE__ float __nv_nanf(const signed char *__a);
__DEVICE__ double __nv_nearbyint(double __a);
__DEVICE__ float __nv_nearbyintf(float __a);
__DEVICE__ double __nv_nextafter(double __a, double __b);
__DEVICE__ float __nv_nextafterf(float __a, float __b);
__DEVICE__ double __nv_norm3d(double __a, double __b, double __c);
__DEVICE__ float __nv_norm3df(float __a, float __b, float __c);
__DEVICE__ double __nv_norm4d(double __a, double __b, double __c, double __d);
__DEVICE__ float __nv_norm4df(float __a, float __b, float __c, float __d);
__DEVICE__ double __nv_normcdf(double __a);
__DEVICE__ float __nv_normcdff(float __a);
__DEVICE__ double __nv_normcdfinv(double __a);
__DEVICE__ float __nv_normcdfinvf(float __a);
__DEVICE__ float __nv_normf(int __a, const float *__b);
__DEVICE__ double __nv_norm(int __a, const double *__b);
__DEVICE__ int __nv_popc(int __a);
__DEVICE__ int __nv_popcll(long long __a);
__DEVICE__ double __nv_pow(double __a, double __b);
__DEVICE__ float __nv_powf(float __a, float __b);
__DEVICE__ double __nv_powi(double __a, int __b);
__DEVICE__ float __nv_powif(float __a, int __b);
__DEVICE__ double __nv_rcbrt(double __a);
__DEVICE__ float __nv_rcbrtf(float __a);
__DEVICE__ double __nv_rcp64h(double __a);
__DEVICE__ double __nv_remainder(double __a, double __b);
__DEVICE__ float __nv_remainderf(float __a, float __b);
__DEVICE__ double __nv_remquo(double __a, double __b, int *__c);
__DEVICE__ float __nv_remquof(float __a, float __b, int *__c);
__DEVICE__ int __nv_rhadd(int __a, int __b);
__DEVICE__ double __nv_rhypot(double __a, double __b);
__DEVICE__ float __nv_rhypotf(float __a, float __b);
__DEVICE__ double __nv_rint(double __a);
__DEVICE__ float __nv_rintf(float __a);
__DEVICE__ double __nv_rnorm3d(double __a, double __b, double __c);
__DEVICE__ float __nv_rnorm3df(float __a, float __b, float __c);
__DEVICE__ double __nv_rnorm4d(double __a, double __b, double __c, double __d);
__DEVICE__ float __nv_rnorm4df(float __a, float __b, float __c, float __d);
__DEVICE__ float __nv_rnormf(int __a, const float *__b);
__DEVICE__ double __nv_rnorm(int __a, const double *__b);
__DEVICE__ double __nv_round(double __a);
__DEVICE__ float __nv_roundf(float __a);
__DEVICE__ double __nv_rsqrt(double __a);
__DEVICE__ float __nv_rsqrtf(float __a);
__DEVICE__ int __nv_sad(int __a, int __b, int __c);
__DEVICE__ float __nv_saturatef(float __a);
__DEVICE__ double __nv_scalbn(double __a, int __b);
__DEVICE__ float __nv_scalbnf(float __a, int __b);
__DEVICE__ int __nv_signbitd(double __a);
__DEVICE__ int __nv_signbitf(float __a);
__DEVICE__ void __nv_sincos(double __a, double *__b, double *__c);
__DEVICE__ void __nv_sincosf(float __a, float *__b, float *__c);
__DEVICE__ void __nv_sincospi(double __a, double *__b, double *__c);
__DEVICE__ void __nv_sincospif(float __a, float *__b, float *__c);
__DEVICE__ double __nv_sin(double __a);
__DEVICE__ float __nv_sinf(float __a);
__DEVICE__ double __nv_sinh(double __a);
__DEVICE__ float __nv_sinhf(float __a);
__DEVICE__ double __nv_sinpi(double __a);
__DEVICE__ float __nv_sinpif(float __a);
__DEVICE__ double __nv_sqrt(double __a);
__DEVICE__ float __nv_sqrtf(float __a);
__DEVICE__ double __nv_tan(double __a);
__DEVICE__ float __nv_tanf(float __a);
__DEVICE__ double __nv_tanh(double __a);
__DEVICE__ float __nv_tanhf(float __a);
__DEVICE__ double __nv_tgamma(double __a);
__DEVICE__ float __nv_tgammaf(float __a);
__DEVICE__ double __nv_trunc(double __a);
__DEVICE__ float __nv_truncf(float __a);
__DEVICE__ int __nv_uhadd(unsigned int __a, unsigned int __b);
__DEVICE__ double __nv_uint2double_rn(unsigned int __i);
__DEVICE__ float __nv_uint2float_rd(unsigned int __a);
__DEVICE__ float __nv_uint2float_rn(unsigned int __a);
__DEVICE__ float __nv_uint2float_ru(unsigned int __a);
__DEVICE__ float __nv_uint2float_rz(unsigned int __a);
__DEVICE__ float __nv_uint_as_float(unsigned int __a);
__DEVICE__ double __nv_ull2double_rd(unsigned long long __a);
__DEVICE__ double __nv_ull2double_rn(unsigned long long __a);
__DEVICE__ double __nv_ull2double_ru(unsigned long long __a);
__DEVICE__ double __nv_ull2double_rz(unsigned long long __a);
__DEVICE__ float __nv_ull2float_rd(unsigned long long __a);
__DEVICE__ float __nv_ull2float_rn(unsigned long long __a);
__DEVICE__ float __nv_ull2float_ru(unsigned long long __a);
__DEVICE__ float __nv_ull2float_rz(unsigned long long __a);
__DEVICE__ unsigned long long __nv_ullmax(unsigned long long __a,
unsigned long long __b);
__DEVICE__ unsigned long long __nv_ullmin(unsigned long long __a,
unsigned long long __b);
__DEVICE__ unsigned int __nv_umax(unsigned int __a, unsigned int __b);
__DEVICE__ unsigned int __nv_umin(unsigned int __a, unsigned int __b);
__DEVICE__ unsigned int __nv_umul24(unsigned int __a, unsigned int __b);
__DEVICE__ unsigned long long __nv_umul64hi(unsigned long long __a,
unsigned long long __b);
__DEVICE__ unsigned int __nv_umulhi(unsigned int __a, unsigned int __b);
__DEVICE__ unsigned int __nv_urhadd(unsigned int __a, unsigned int __b);
__DEVICE__ unsigned int __nv_usad(unsigned int __a, unsigned int __b,
unsigned int __c);
#if CUDA_VERSION >= 9000 && CUDA_VERSION < 9020
__DEVICE__ int __nv_vabs2(int __a);
__DEVICE__ int __nv_vabs4(int __a);
__DEVICE__ int __nv_vabsdiffs2(int __a, int __b);
__DEVICE__ int __nv_vabsdiffs4(int __a, int __b);
__DEVICE__ int __nv_vabsdiffu2(int __a, int __b);
__DEVICE__ int __nv_vabsdiffu4(int __a, int __b);
__DEVICE__ int __nv_vabsss2(int __a);
__DEVICE__ int __nv_vabsss4(int __a);
__DEVICE__ int __nv_vadd2(int __a, int __b);
__DEVICE__ int __nv_vadd4(int __a, int __b);
__DEVICE__ int __nv_vaddss2(int __a, int __b);
__DEVICE__ int __nv_vaddss4(int __a, int __b);
__DEVICE__ int __nv_vaddus2(int __a, int __b);
__DEVICE__ int __nv_vaddus4(int __a, int __b);
__DEVICE__ int __nv_vavgs2(int __a, int __b);
__DEVICE__ int __nv_vavgs4(int __a, int __b);
__DEVICE__ int __nv_vavgu2(int __a, int __b);
__DEVICE__ int __nv_vavgu4(int __a, int __b);
__DEVICE__ int __nv_vcmpeq2(int __a, int __b);
__DEVICE__ int __nv_vcmpeq4(int __a, int __b);
__DEVICE__ int __nv_vcmpges2(int __a, int __b);
__DEVICE__ int __nv_vcmpges4(int __a, int __b);
__DEVICE__ int __nv_vcmpgeu2(int __a, int __b);
__DEVICE__ int __nv_vcmpgeu4(int __a, int __b);
__DEVICE__ int __nv_vcmpgts2(int __a, int __b);
__DEVICE__ int __nv_vcmpgts4(int __a, int __b);
__DEVICE__ int __nv_vcmpgtu2(int __a, int __b);
__DEVICE__ int __nv_vcmpgtu4(int __a, int __b);
__DEVICE__ int __nv_vcmples2(int __a, int __b);
__DEVICE__ int __nv_vcmples4(int __a, int __b);
__DEVICE__ int __nv_vcmpleu2(int __a, int __b);
__DEVICE__ int __nv_vcmpleu4(int __a, int __b);
__DEVICE__ int __nv_vcmplts2(int __a, int __b);
__DEVICE__ int __nv_vcmplts4(int __a, int __b);
__DEVICE__ int __nv_vcmpltu2(int __a, int __b);
__DEVICE__ int __nv_vcmpltu4(int __a, int __b);
__DEVICE__ int __nv_vcmpne2(int __a, int __b);
__DEVICE__ int __nv_vcmpne4(int __a, int __b);
__DEVICE__ int __nv_vhaddu2(int __a, int __b);
__DEVICE__ int __nv_vhaddu4(int __a, int __b);
__DEVICE__ int __nv_vmaxs2(int __a, int __b);
__DEVICE__ int __nv_vmaxs4(int __a, int __b);
__DEVICE__ int __nv_vmaxu2(int __a, int __b);
__DEVICE__ int __nv_vmaxu4(int __a, int __b);
__DEVICE__ int __nv_vmins2(int __a, int __b);
__DEVICE__ int __nv_vmins4(int __a, int __b);
__DEVICE__ int __nv_vminu2(int __a, int __b);
__DEVICE__ int __nv_vminu4(int __a, int __b);
__DEVICE__ int __nv_vneg2(int __a);
__DEVICE__ int __nv_vneg4(int __a);
__DEVICE__ int __nv_vnegss2(int __a);
__DEVICE__ int __nv_vnegss4(int __a);
__DEVICE__ int __nv_vsads2(int __a, int __b);
__DEVICE__ int __nv_vsads4(int __a, int __b);
__DEVICE__ int __nv_vsadu2(int __a, int __b);
__DEVICE__ int __nv_vsadu4(int __a, int __b);
__DEVICE__ int __nv_vseteq2(int __a, int __b);
__DEVICE__ int __nv_vseteq4(int __a, int __b);
__DEVICE__ int __nv_vsetges2(int __a, int __b);
__DEVICE__ int __nv_vsetges4(int __a, int __b);
__DEVICE__ int __nv_vsetgeu2(int __a, int __b);
__DEVICE__ int __nv_vsetgeu4(int __a, int __b);
__DEVICE__ int __nv_vsetgts2(int __a, int __b);
__DEVICE__ int __nv_vsetgts4(int __a, int __b);
__DEVICE__ int __nv_vsetgtu2(int __a, int __b);
__DEVICE__ int __nv_vsetgtu4(int __a, int __b);
__DEVICE__ int __nv_vsetles2(int __a, int __b);
__DEVICE__ int __nv_vsetles4(int __a, int __b);
__DEVICE__ int __nv_vsetleu2(int __a, int __b);
__DEVICE__ int __nv_vsetleu4(int __a, int __b);
__DEVICE__ int __nv_vsetlts2(int __a, int __b);
__DEVICE__ int __nv_vsetlts4(int __a, int __b);
__DEVICE__ int __nv_vsetltu2(int __a, int __b);
__DEVICE__ int __nv_vsetltu4(int __a, int __b);
__DEVICE__ int __nv_vsetne2(int __a, int __b);
__DEVICE__ int __nv_vsetne4(int __a, int __b);
__DEVICE__ int __nv_vsub2(int __a, int __b);
__DEVICE__ int __nv_vsub4(int __a, int __b);
__DEVICE__ int __nv_vsubss2(int __a, int __b);
__DEVICE__ int __nv_vsubss4(int __a, int __b);
__DEVICE__ int __nv_vsubus2(int __a, int __b);
__DEVICE__ int __nv_vsubus4(int __a, int __b);
#endif // CUDA_VERSION
__DEVICE__ double __nv_y0(double __a);
__DEVICE__ float __nv_y0f(float __a);
__DEVICE__ double __nv_y1(double __a);
__DEVICE__ float __nv_y1f(float __a);
__DEVICE__ float __nv_ynf(int __a, float __b);
__DEVICE__ double __nv_yn(int __a, double __b);
#if defined(__OPENMP_NVPTX__)
#pragma omp end assumes ext_spmd_amenable no_openmp
#endif
#if defined(__cplusplus)
} // extern "C"
#endif
#endif // __CLANG_CUDA_LIBDEVICE_DECLARES_H__

View File

@ -1,348 +0,0 @@
/*===---- __clang_cuda_math.h - Device-side CUDA math support --------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_MATH_H__
#define __CLANG_CUDA_MATH_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
#ifndef __OPENMP_NVPTX__
#if CUDA_VERSION < 9000
#error This file is intended to be used with CUDA-9+ only.
#endif
#endif
// __DEVICE__ is a helper macro with common set of attributes for the wrappers
// we implement in this file. We need static in order to avoid emitting unused
// functions and __forceinline__ helps inlining these wrappers at -O1.
#pragma push_macro("__DEVICE__")
#ifdef __OPENMP_NVPTX__
#if defined(__cplusplus)
#define __DEVICE__ static constexpr __attribute__((always_inline, nothrow))
#else
#define __DEVICE__ static __attribute__((always_inline, nothrow))
#endif
#else
#define __DEVICE__ static __device__ __forceinline__
#endif
// Specialized version of __DEVICE__ for functions with void return type. Needed
// because the OpenMP overlay requires constexpr functions here but prior to
// c++14 void return functions could not be constexpr.
#pragma push_macro("__DEVICE_VOID__")
#ifdef __OPENMP_NVPTX__ && defined(__cplusplus) && __cplusplus < 201402L
#define __DEVICE_VOID__ static __attribute__((always_inline, nothrow))
#else
#define __DEVICE_VOID__ __DEVICE__
#endif
// libdevice provides fast low precision and slow full-recision implementations
// for some functions. Which one gets selected depends on
// __CLANG_CUDA_APPROX_TRANSCENDENTALS__ which gets defined by clang if
// -ffast-math or -fcuda-approx-transcendentals are in effect.
#pragma push_macro("__FAST_OR_SLOW")
#if defined(__CLANG_CUDA_APPROX_TRANSCENDENTALS__)
#define __FAST_OR_SLOW(fast, slow) fast
#else
#define __FAST_OR_SLOW(fast, slow) slow
#endif
__DEVICE__ int abs(int __a) { return __nv_abs(__a); }
__DEVICE__ double fabs(double __a) { return __nv_fabs(__a); }
__DEVICE__ double acos(double __a) { return __nv_acos(__a); }
__DEVICE__ float acosf(float __a) { return __nv_acosf(__a); }
__DEVICE__ double acosh(double __a) { return __nv_acosh(__a); }
__DEVICE__ float acoshf(float __a) { return __nv_acoshf(__a); }
__DEVICE__ double asin(double __a) { return __nv_asin(__a); }
__DEVICE__ float asinf(float __a) { return __nv_asinf(__a); }
__DEVICE__ double asinh(double __a) { return __nv_asinh(__a); }
__DEVICE__ float asinhf(float __a) { return __nv_asinhf(__a); }
__DEVICE__ double atan(double __a) { return __nv_atan(__a); }
__DEVICE__ double atan2(double __a, double __b) { return __nv_atan2(__a, __b); }
__DEVICE__ float atan2f(float __a, float __b) { return __nv_atan2f(__a, __b); }
__DEVICE__ float atanf(float __a) { return __nv_atanf(__a); }
__DEVICE__ double atanh(double __a) { return __nv_atanh(__a); }
__DEVICE__ float atanhf(float __a) { return __nv_atanhf(__a); }
__DEVICE__ double cbrt(double __a) { return __nv_cbrt(__a); }
__DEVICE__ float cbrtf(float __a) { return __nv_cbrtf(__a); }
__DEVICE__ double ceil(double __a) { return __nv_ceil(__a); }
__DEVICE__ float ceilf(float __a) { return __nv_ceilf(__a); }
__DEVICE__ double copysign(double __a, double __b) {
return __nv_copysign(__a, __b);
}
__DEVICE__ float copysignf(float __a, float __b) {
return __nv_copysignf(__a, __b);
}
__DEVICE__ double cos(double __a) { return __nv_cos(__a); }
__DEVICE__ float cosf(float __a) {
return __FAST_OR_SLOW(__nv_fast_cosf, __nv_cosf)(__a);
}
__DEVICE__ double cosh(double __a) { return __nv_cosh(__a); }
__DEVICE__ float coshf(float __a) { return __nv_coshf(__a); }
__DEVICE__ double cospi(double __a) { return __nv_cospi(__a); }
__DEVICE__ float cospif(float __a) { return __nv_cospif(__a); }
__DEVICE__ double cyl_bessel_i0(double __a) { return __nv_cyl_bessel_i0(__a); }
__DEVICE__ float cyl_bessel_i0f(float __a) { return __nv_cyl_bessel_i0f(__a); }
__DEVICE__ double cyl_bessel_i1(double __a) { return __nv_cyl_bessel_i1(__a); }
__DEVICE__ float cyl_bessel_i1f(float __a) { return __nv_cyl_bessel_i1f(__a); }
__DEVICE__ double erf(double __a) { return __nv_erf(__a); }
__DEVICE__ double erfc(double __a) { return __nv_erfc(__a); }
__DEVICE__ float erfcf(float __a) { return __nv_erfcf(__a); }
__DEVICE__ double erfcinv(double __a) { return __nv_erfcinv(__a); }
__DEVICE__ float erfcinvf(float __a) { return __nv_erfcinvf(__a); }
__DEVICE__ double erfcx(double __a) { return __nv_erfcx(__a); }
__DEVICE__ float erfcxf(float __a) { return __nv_erfcxf(__a); }
__DEVICE__ float erff(float __a) { return __nv_erff(__a); }
__DEVICE__ double erfinv(double __a) { return __nv_erfinv(__a); }
__DEVICE__ float erfinvf(float __a) { return __nv_erfinvf(__a); }
__DEVICE__ double exp(double __a) { return __nv_exp(__a); }
__DEVICE__ double exp10(double __a) { return __nv_exp10(__a); }
__DEVICE__ float exp10f(float __a) { return __nv_exp10f(__a); }
__DEVICE__ double exp2(double __a) { return __nv_exp2(__a); }
__DEVICE__ float exp2f(float __a) { return __nv_exp2f(__a); }
__DEVICE__ float expf(float __a) { return __nv_expf(__a); }
__DEVICE__ double expm1(double __a) { return __nv_expm1(__a); }
__DEVICE__ float expm1f(float __a) { return __nv_expm1f(__a); }
__DEVICE__ float fabsf(float __a) { return __nv_fabsf(__a); }
__DEVICE__ double fdim(double __a, double __b) { return __nv_fdim(__a, __b); }
__DEVICE__ float fdimf(float __a, float __b) { return __nv_fdimf(__a, __b); }
__DEVICE__ double fdivide(double __a, double __b) { return __a / __b; }
__DEVICE__ float fdividef(float __a, float __b) {
#if __FAST_MATH__ && !__CUDA_PREC_DIV
return __nv_fast_fdividef(__a, __b);
#else
return __a / __b;
#endif
}
__DEVICE__ double floor(double __f) { return __nv_floor(__f); }
__DEVICE__ float floorf(float __f) { return __nv_floorf(__f); }
__DEVICE__ double fma(double __a, double __b, double __c) {
return __nv_fma(__a, __b, __c);
}
__DEVICE__ float fmaf(float __a, float __b, float __c) {
return __nv_fmaf(__a, __b, __c);
}
__DEVICE__ double fmax(double __a, double __b) { return __nv_fmax(__a, __b); }
__DEVICE__ float fmaxf(float __a, float __b) { return __nv_fmaxf(__a, __b); }
__DEVICE__ double fmin(double __a, double __b) { return __nv_fmin(__a, __b); }
__DEVICE__ float fminf(float __a, float __b) { return __nv_fminf(__a, __b); }
__DEVICE__ double fmod(double __a, double __b) { return __nv_fmod(__a, __b); }
__DEVICE__ float fmodf(float __a, float __b) { return __nv_fmodf(__a, __b); }
__DEVICE__ double frexp(double __a, int *__b) { return __nv_frexp(__a, __b); }
__DEVICE__ float frexpf(float __a, int *__b) { return __nv_frexpf(__a, __b); }
__DEVICE__ double hypot(double __a, double __b) { return __nv_hypot(__a, __b); }
__DEVICE__ float hypotf(float __a, float __b) { return __nv_hypotf(__a, __b); }
__DEVICE__ int ilogb(double __a) { return __nv_ilogb(__a); }
__DEVICE__ int ilogbf(float __a) { return __nv_ilogbf(__a); }
__DEVICE__ double j0(double __a) { return __nv_j0(__a); }
__DEVICE__ float j0f(float __a) { return __nv_j0f(__a); }
__DEVICE__ double j1(double __a) { return __nv_j1(__a); }
__DEVICE__ float j1f(float __a) { return __nv_j1f(__a); }
__DEVICE__ double jn(int __n, double __a) { return __nv_jn(__n, __a); }
__DEVICE__ float jnf(int __n, float __a) { return __nv_jnf(__n, __a); }
#if defined(__LP64__) || defined(_WIN64)
__DEVICE__ long labs(long __a) { return __nv_llabs(__a); };
#else
__DEVICE__ long labs(long __a) { return __nv_abs(__a); };
#endif
__DEVICE__ double ldexp(double __a, int __b) { return __nv_ldexp(__a, __b); }
__DEVICE__ float ldexpf(float __a, int __b) { return __nv_ldexpf(__a, __b); }
__DEVICE__ double lgamma(double __a) { return __nv_lgamma(__a); }
__DEVICE__ float lgammaf(float __a) { return __nv_lgammaf(__a); }
__DEVICE__ long long llabs(long long __a) { return __nv_llabs(__a); }
__DEVICE__ long long llmax(long long __a, long long __b) {
return __nv_llmax(__a, __b);
}
__DEVICE__ long long llmin(long long __a, long long __b) {
return __nv_llmin(__a, __b);
}
__DEVICE__ long long llrint(double __a) { return __nv_llrint(__a); }
__DEVICE__ long long llrintf(float __a) { return __nv_llrintf(__a); }
__DEVICE__ long long llround(double __a) { return __nv_llround(__a); }
__DEVICE__ long long llroundf(float __a) { return __nv_llroundf(__a); }
__DEVICE__ double round(double __a) { return __nv_round(__a); }
__DEVICE__ float roundf(float __a) { return __nv_roundf(__a); }
__DEVICE__ double log(double __a) { return __nv_log(__a); }
__DEVICE__ double log10(double __a) { return __nv_log10(__a); }
__DEVICE__ float log10f(float __a) { return __nv_log10f(__a); }
__DEVICE__ double log1p(double __a) { return __nv_log1p(__a); }
__DEVICE__ float log1pf(float __a) { return __nv_log1pf(__a); }
__DEVICE__ double log2(double __a) { return __nv_log2(__a); }
__DEVICE__ float log2f(float __a) {
return __FAST_OR_SLOW(__nv_fast_log2f, __nv_log2f)(__a);
}
__DEVICE__ double logb(double __a) { return __nv_logb(__a); }
__DEVICE__ float logbf(float __a) { return __nv_logbf(__a); }
__DEVICE__ float logf(float __a) {
return __FAST_OR_SLOW(__nv_fast_logf, __nv_logf)(__a);
}
#if defined(__LP64__) || defined(_WIN64)
__DEVICE__ long lrint(double __a) { return llrint(__a); }
__DEVICE__ long lrintf(float __a) { return __float2ll_rn(__a); }
__DEVICE__ long lround(double __a) { return llround(__a); }
__DEVICE__ long lroundf(float __a) { return llroundf(__a); }
#else
__DEVICE__ long lrint(double __a) { return (long)rint(__a); }
__DEVICE__ long lrintf(float __a) { return __float2int_rn(__a); }
__DEVICE__ long lround(double __a) { return round(__a); }
__DEVICE__ long lroundf(float __a) { return roundf(__a); }
#endif
__DEVICE__ int max(int __a, int __b) { return __nv_max(__a, __b); }
__DEVICE__ int min(int __a, int __b) { return __nv_min(__a, __b); }
__DEVICE__ double modf(double __a, double *__b) { return __nv_modf(__a, __b); }
__DEVICE__ float modff(float __a, float *__b) { return __nv_modff(__a, __b); }
__DEVICE__ double nearbyint(double __a) { return __builtin_nearbyint(__a); }
__DEVICE__ float nearbyintf(float __a) { return __builtin_nearbyintf(__a); }
__DEVICE__ double nextafter(double __a, double __b) {
return __nv_nextafter(__a, __b);
}
__DEVICE__ float nextafterf(float __a, float __b) {
return __nv_nextafterf(__a, __b);
}
__DEVICE__ double norm(int __dim, const double *__t) {
return __nv_norm(__dim, __t);
}
__DEVICE__ double norm3d(double __a, double __b, double __c) {
return __nv_norm3d(__a, __b, __c);
}
__DEVICE__ float norm3df(float __a, float __b, float __c) {
return __nv_norm3df(__a, __b, __c);
}
__DEVICE__ double norm4d(double __a, double __b, double __c, double __d) {
return __nv_norm4d(__a, __b, __c, __d);
}
__DEVICE__ float norm4df(float __a, float __b, float __c, float __d) {
return __nv_norm4df(__a, __b, __c, __d);
}
__DEVICE__ double normcdf(double __a) { return __nv_normcdf(__a); }
__DEVICE__ float normcdff(float __a) { return __nv_normcdff(__a); }
__DEVICE__ double normcdfinv(double __a) { return __nv_normcdfinv(__a); }
__DEVICE__ float normcdfinvf(float __a) { return __nv_normcdfinvf(__a); }
__DEVICE__ float normf(int __dim, const float *__t) {
return __nv_normf(__dim, __t);
}
__DEVICE__ double pow(double __a, double __b) { return __nv_pow(__a, __b); }
__DEVICE__ float powf(float __a, float __b) { return __nv_powf(__a, __b); }
__DEVICE__ double powi(double __a, int __b) { return __nv_powi(__a, __b); }
__DEVICE__ float powif(float __a, int __b) { return __nv_powif(__a, __b); }
__DEVICE__ double rcbrt(double __a) { return __nv_rcbrt(__a); }
__DEVICE__ float rcbrtf(float __a) { return __nv_rcbrtf(__a); }
__DEVICE__ double remainder(double __a, double __b) {
return __nv_remainder(__a, __b);
}
__DEVICE__ float remainderf(float __a, float __b) {
return __nv_remainderf(__a, __b);
}
__DEVICE__ double remquo(double __a, double __b, int *__c) {
return __nv_remquo(__a, __b, __c);
}
__DEVICE__ float remquof(float __a, float __b, int *__c) {
return __nv_remquof(__a, __b, __c);
}
__DEVICE__ double rhypot(double __a, double __b) {
return __nv_rhypot(__a, __b);
}
__DEVICE__ float rhypotf(float __a, float __b) {
return __nv_rhypotf(__a, __b);
}
// __nv_rint* in libdevice is buggy and produces incorrect results.
__DEVICE__ double rint(double __a) { return __builtin_rint(__a); }
__DEVICE__ float rintf(float __a) { return __builtin_rintf(__a); }
__DEVICE__ double rnorm(int __a, const double *__b) {
return __nv_rnorm(__a, __b);
}
__DEVICE__ double rnorm3d(double __a, double __b, double __c) {
return __nv_rnorm3d(__a, __b, __c);
}
__DEVICE__ float rnorm3df(float __a, float __b, float __c) {
return __nv_rnorm3df(__a, __b, __c);
}
__DEVICE__ double rnorm4d(double __a, double __b, double __c, double __d) {
return __nv_rnorm4d(__a, __b, __c, __d);
}
__DEVICE__ float rnorm4df(float __a, float __b, float __c, float __d) {
return __nv_rnorm4df(__a, __b, __c, __d);
}
__DEVICE__ float rnormf(int __dim, const float *__t) {
return __nv_rnormf(__dim, __t);
}
__DEVICE__ double rsqrt(double __a) { return __nv_rsqrt(__a); }
__DEVICE__ float rsqrtf(float __a) { return __nv_rsqrtf(__a); }
__DEVICE__ double scalbn(double __a, int __b) { return __nv_scalbn(__a, __b); }
__DEVICE__ float scalbnf(float __a, int __b) { return __nv_scalbnf(__a, __b); }
__DEVICE__ double scalbln(double __a, long __b) {
if (__b > INT_MAX)
return __a > 0 ? HUGE_VAL : -HUGE_VAL;
if (__b < INT_MIN)
return __a > 0 ? 0.0 : -0.0;
return scalbn(__a, (int)__b);
}
__DEVICE__ float scalblnf(float __a, long __b) {
if (__b > INT_MAX)
return __a > 0 ? HUGE_VALF : -HUGE_VALF;
if (__b < INT_MIN)
return __a > 0 ? 0.f : -0.f;
return scalbnf(__a, (int)__b);
}
__DEVICE__ double sin(double __a) { return __nv_sin(__a); }
__DEVICE_VOID__ void sincos(double __a, double *__s, double *__c) {
return __nv_sincos(__a, __s, __c);
}
__DEVICE_VOID__ void sincosf(float __a, float *__s, float *__c) {
return __FAST_OR_SLOW(__nv_fast_sincosf, __nv_sincosf)(__a, __s, __c);
}
__DEVICE_VOID__ void sincospi(double __a, double *__s, double *__c) {
return __nv_sincospi(__a, __s, __c);
}
__DEVICE_VOID__ void sincospif(float __a, float *__s, float *__c) {
return __nv_sincospif(__a, __s, __c);
}
__DEVICE__ float sinf(float __a) {
return __FAST_OR_SLOW(__nv_fast_sinf, __nv_sinf)(__a);
}
__DEVICE__ double sinh(double __a) { return __nv_sinh(__a); }
__DEVICE__ float sinhf(float __a) { return __nv_sinhf(__a); }
__DEVICE__ double sinpi(double __a) { return __nv_sinpi(__a); }
__DEVICE__ float sinpif(float __a) { return __nv_sinpif(__a); }
__DEVICE__ double sqrt(double __a) { return __nv_sqrt(__a); }
__DEVICE__ float sqrtf(float __a) { return __nv_sqrtf(__a); }
__DEVICE__ double tan(double __a) { return __nv_tan(__a); }
__DEVICE__ float tanf(float __a) { return __nv_tanf(__a); }
__DEVICE__ double tanh(double __a) { return __nv_tanh(__a); }
__DEVICE__ float tanhf(float __a) { return __nv_tanhf(__a); }
__DEVICE__ double tgamma(double __a) { return __nv_tgamma(__a); }
__DEVICE__ float tgammaf(float __a) { return __nv_tgammaf(__a); }
__DEVICE__ double trunc(double __a) { return __nv_trunc(__a); }
__DEVICE__ float truncf(float __a) { return __nv_truncf(__a); }
__DEVICE__ unsigned long long ullmax(unsigned long long __a,
unsigned long long __b) {
return __nv_ullmax(__a, __b);
}
__DEVICE__ unsigned long long ullmin(unsigned long long __a,
unsigned long long __b) {
return __nv_ullmin(__a, __b);
}
__DEVICE__ unsigned int umax(unsigned int __a, unsigned int __b) {
return __nv_umax(__a, __b);
}
__DEVICE__ unsigned int umin(unsigned int __a, unsigned int __b) {
return __nv_umin(__a, __b);
}
__DEVICE__ double y0(double __a) { return __nv_y0(__a); }
__DEVICE__ float y0f(float __a) { return __nv_y0f(__a); }
__DEVICE__ double y1(double __a) { return __nv_y1(__a); }
__DEVICE__ float y1f(float __a) { return __nv_y1f(__a); }
__DEVICE__ double yn(int __a, double __b) { return __nv_yn(__a, __b); }
__DEVICE__ float ynf(int __a, float __b) { return __nv_ynf(__a, __b); }
#pragma pop_macro("__DEVICE__")
#pragma pop_macro("__DEVICE_VOID__")
#pragma pop_macro("__FAST_OR_SLOW")
#endif // __CLANG_CUDA_MATH_H__

View File

@ -1,284 +0,0 @@
/*===- __clang_math_forward_declares.h - Prototypes of __device__ math fns --===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG__CUDA_MATH_FORWARD_DECLARES_H__
#define __CLANG__CUDA_MATH_FORWARD_DECLARES_H__
#if !defined(__CUDA__) && !__HIP__
#error "This file is for CUDA/HIP compilation only."
#endif
// This file forward-declares of some math functions we (or the CUDA headers)
// will define later. We need to do this, and do it before cmath is included,
// because the standard library may have constexpr math functions. In the
// absence of a prior __device__ decl, those constexpr functions may become
// implicitly host+device. host+device functions can't be overloaded, so that
// would preclude the use of our own __device__ overloads for these functions.
#pragma push_macro("__DEVICE__")
#define __DEVICE__ \
static __inline__ __attribute__((always_inline)) __attribute__((device))
__DEVICE__ long abs(long);
__DEVICE__ long long abs(long long);
__DEVICE__ double abs(double);
__DEVICE__ float abs(float);
__DEVICE__ int abs(int);
__DEVICE__ double acos(double);
__DEVICE__ float acos(float);
__DEVICE__ double acosh(double);
__DEVICE__ float acosh(float);
__DEVICE__ double asin(double);
__DEVICE__ float asin(float);
__DEVICE__ double asinh(double);
__DEVICE__ float asinh(float);
__DEVICE__ double atan2(double, double);
__DEVICE__ float atan2(float, float);
__DEVICE__ double atan(double);
__DEVICE__ float atan(float);
__DEVICE__ double atanh(double);
__DEVICE__ float atanh(float);
__DEVICE__ double cbrt(double);
__DEVICE__ float cbrt(float);
__DEVICE__ double ceil(double);
__DEVICE__ float ceil(float);
__DEVICE__ double copysign(double, double);
__DEVICE__ float copysign(float, float);
__DEVICE__ double cos(double);
__DEVICE__ float cos(float);
__DEVICE__ double cosh(double);
__DEVICE__ float cosh(float);
__DEVICE__ double erfc(double);
__DEVICE__ float erfc(float);
__DEVICE__ double erf(double);
__DEVICE__ float erf(float);
__DEVICE__ double exp2(double);
__DEVICE__ float exp2(float);
__DEVICE__ double exp(double);
__DEVICE__ float exp(float);
__DEVICE__ double expm1(double);
__DEVICE__ float expm1(float);
__DEVICE__ double fabs(double);
__DEVICE__ float fabs(float);
__DEVICE__ double fdim(double, double);
__DEVICE__ float fdim(float, float);
__DEVICE__ double floor(double);
__DEVICE__ float floor(float);
__DEVICE__ double fma(double, double, double);
__DEVICE__ float fma(float, float, float);
__DEVICE__ double fmax(double, double);
__DEVICE__ float fmax(float, float);
__DEVICE__ double fmin(double, double);
__DEVICE__ float fmin(float, float);
__DEVICE__ double fmod(double, double);
__DEVICE__ float fmod(float, float);
__DEVICE__ int fpclassify(double);
__DEVICE__ int fpclassify(float);
__DEVICE__ double frexp(double, int *);
__DEVICE__ float frexp(float, int *);
__DEVICE__ double hypot(double, double);
__DEVICE__ float hypot(float, float);
__DEVICE__ int ilogb(double);
__DEVICE__ int ilogb(float);
#ifdef _MSC_VER
__DEVICE__ bool isfinite(long double);
#endif
__DEVICE__ bool isfinite(double);
__DEVICE__ bool isfinite(float);
__DEVICE__ bool isgreater(double, double);
__DEVICE__ bool isgreaterequal(double, double);
__DEVICE__ bool isgreaterequal(float, float);
__DEVICE__ bool isgreater(float, float);
#ifdef _MSC_VER
__DEVICE__ bool isinf(long double);
#endif
__DEVICE__ bool isinf(double);
__DEVICE__ bool isinf(float);
__DEVICE__ bool isless(double, double);
__DEVICE__ bool islessequal(double, double);
__DEVICE__ bool islessequal(float, float);
__DEVICE__ bool isless(float, float);
__DEVICE__ bool islessgreater(double, double);
__DEVICE__ bool islessgreater(float, float);
#ifdef _MSC_VER
__DEVICE__ bool isnan(long double);
#endif
__DEVICE__ bool isnan(double);
__DEVICE__ bool isnan(float);
__DEVICE__ bool isnormal(double);
__DEVICE__ bool isnormal(float);
__DEVICE__ bool isunordered(double, double);
__DEVICE__ bool isunordered(float, float);
__DEVICE__ long labs(long);
__DEVICE__ double ldexp(double, int);
__DEVICE__ float ldexp(float, int);
__DEVICE__ double lgamma(double);
__DEVICE__ float lgamma(float);
__DEVICE__ long long llabs(long long);
__DEVICE__ long long llrint(double);
__DEVICE__ long long llrint(float);
__DEVICE__ double log10(double);
__DEVICE__ float log10(float);
__DEVICE__ double log1p(double);
__DEVICE__ float log1p(float);
__DEVICE__ double log2(double);
__DEVICE__ float log2(float);
__DEVICE__ double logb(double);
__DEVICE__ float logb(float);
__DEVICE__ double log(double);
__DEVICE__ float log(float);
__DEVICE__ long lrint(double);
__DEVICE__ long lrint(float);
__DEVICE__ long lround(double);
__DEVICE__ long lround(float);
__DEVICE__ long long llround(float); // No llround(double).
__DEVICE__ double modf(double, double *);
__DEVICE__ float modf(float, float *);
__DEVICE__ double nan(const char *);
__DEVICE__ float nanf(const char *);
__DEVICE__ double nearbyint(double);
__DEVICE__ float nearbyint(float);
__DEVICE__ double nextafter(double, double);
__DEVICE__ float nextafter(float, float);
__DEVICE__ double pow(double, double);
__DEVICE__ double pow(double, int);
__DEVICE__ float pow(float, float);
__DEVICE__ float pow(float, int);
__DEVICE__ double remainder(double, double);
__DEVICE__ float remainder(float, float);
__DEVICE__ double remquo(double, double, int *);
__DEVICE__ float remquo(float, float, int *);
__DEVICE__ double rint(double);
__DEVICE__ float rint(float);
__DEVICE__ double round(double);
__DEVICE__ float round(float);
__DEVICE__ double scalbln(double, long);
__DEVICE__ float scalbln(float, long);
__DEVICE__ double scalbn(double, int);
__DEVICE__ float scalbn(float, int);
#ifdef _MSC_VER
__DEVICE__ bool signbit(long double);
#endif
__DEVICE__ bool signbit(double);
__DEVICE__ bool signbit(float);
__DEVICE__ double sin(double);
__DEVICE__ float sin(float);
__DEVICE__ double sinh(double);
__DEVICE__ float sinh(float);
__DEVICE__ double sqrt(double);
__DEVICE__ float sqrt(float);
__DEVICE__ double tan(double);
__DEVICE__ float tan(float);
__DEVICE__ double tanh(double);
__DEVICE__ float tanh(float);
__DEVICE__ double tgamma(double);
__DEVICE__ float tgamma(float);
__DEVICE__ double trunc(double);
__DEVICE__ float trunc(float);
// Notably missing above is nexttoward, which we don't define on
// the device side because libdevice doesn't give us an implementation, and we
// don't want to be in the business of writing one ourselves.
// We need to define these overloads in exactly the namespace our standard
// library uses (including the right inline namespace), otherwise they won't be
// picked up by other functions in the standard library (e.g. functions in
// <complex>). Thus the ugliness below.
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
_LIBCPP_BEGIN_NAMESPACE_STD
#else
namespace std {
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#endif
#endif
using ::abs;
using ::acos;
using ::acosh;
using ::asin;
using ::asinh;
using ::atan;
using ::atan2;
using ::atanh;
using ::cbrt;
using ::ceil;
using ::copysign;
using ::cos;
using ::cosh;
using ::erf;
using ::erfc;
using ::exp;
using ::exp2;
using ::expm1;
using ::fabs;
using ::fdim;
using ::floor;
using ::fma;
using ::fmax;
using ::fmin;
using ::fmod;
using ::fpclassify;
using ::frexp;
using ::hypot;
using ::ilogb;
using ::isfinite;
using ::isgreater;
using ::isgreaterequal;
using ::isinf;
using ::isless;
using ::islessequal;
using ::islessgreater;
using ::isnan;
using ::isnormal;
using ::isunordered;
using ::labs;
using ::ldexp;
using ::lgamma;
using ::llabs;
using ::llrint;
using ::log;
using ::log10;
using ::log1p;
using ::log2;
using ::logb;
using ::lrint;
using ::lround;
using ::llround;
using ::modf;
using ::nan;
using ::nanf;
using ::nearbyint;
using ::nextafter;
using ::pow;
using ::remainder;
using ::remquo;
using ::rint;
using ::round;
using ::scalbln;
using ::scalbn;
using ::signbit;
using ::sin;
using ::sinh;
using ::sqrt;
using ::tan;
using ::tanh;
using ::tgamma;
using ::trunc;
#ifdef _LIBCPP_END_NAMESPACE_STD
_LIBCPP_END_NAMESPACE_STD
#else
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_END_NAMESPACE_VERSION
#endif
} // namespace std
#endif
#pragma pop_macro("__DEVICE__")
#endif

View File

@ -1,503 +0,0 @@
/*===---- __clang_cuda_runtime_wrapper.h - CUDA runtime support -------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
/*
* WARNING: This header is intended to be directly -include'd by
* the compiler and is not supposed to be included by users.
*
* CUDA headers are implemented in a way that currently makes it
* impossible for user code to #include directly when compiling with
* Clang. They present different view of CUDA-supplied functions
* depending on where in NVCC's compilation pipeline the headers are
* included. Neither of these modes provides function definitions with
* correct attributes, so we use preprocessor to force the headers
* into a form that Clang can use.
*
* Similarly to NVCC which -include's cuda_runtime.h, Clang -include's
* this file during every CUDA compilation.
*/
#ifndef __CLANG_CUDA_RUNTIME_WRAPPER_H__
#define __CLANG_CUDA_RUNTIME_WRAPPER_H__
#if defined(__CUDA__) && defined(__clang__)
// Include some forward declares that must come before cmath.
#include <__clang_cuda_math_forward_declares.h>
// Define __CUDACC__ early as libstdc++ standard headers with GNU extensions
// enabled depend on it to avoid using __float128, which is unsupported in
// CUDA.
#define __CUDACC__
// Include some standard headers to avoid CUDA headers including them
// while some required macros (like __THROW) are in a weird state.
#include <cmath>
#include <cstdlib>
#include <stdlib.h>
#include <string.h>
#undef __CUDACC__
// Preserve common macros that will be changed below by us or by CUDA
// headers.
#pragma push_macro("__THROW")
#pragma push_macro("__CUDA_ARCH__")
// WARNING: Preprocessor hacks below are based on specific details of
// CUDA-7.x headers and are not expected to work with any other
// version of CUDA headers.
#include "cuda.h"
#if !defined(CUDA_VERSION)
#error "cuda.h did not define CUDA_VERSION"
#elif CUDA_VERSION < 7000
#error "Unsupported CUDA version!"
#endif
#pragma push_macro("__CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__")
#if CUDA_VERSION >= 10000
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
#endif
// Make largest subset of device functions available during host
// compilation.
#ifndef __CUDA_ARCH__
#define __CUDA_ARCH__ 9999
#endif
#include "__clang_cuda_builtin_vars.h"
// No need for device_launch_parameters.h as __clang_cuda_builtin_vars.h above
// has taken care of builtin variables declared in the file.
#define __DEVICE_LAUNCH_PARAMETERS_H__
// {math,device}_functions.h only have declarations of the
// functions. We don't need them as we're going to pull in their
// definitions from .hpp files.
#define __DEVICE_FUNCTIONS_H__
#define __MATH_FUNCTIONS_H__
#define __COMMON_FUNCTIONS_H__
// device_functions_decls is replaced by __clang_cuda_device_functions.h
// included below.
#define __DEVICE_FUNCTIONS_DECLS_H__
#undef __CUDACC__
#if CUDA_VERSION < 9000
#define __CUDABE__
#else
#define __CUDACC__
#define __CUDA_LIBDEVICE__
#endif
// Disables definitions of device-side runtime support stubs in
// cuda_device_runtime_api.h
#include "host_defines.h"
#undef __CUDACC__
#include "driver_types.h"
#include "host_config.h"
// Temporarily replace "nv_weak" with weak, so __attribute__((nv_weak)) in
// cuda_device_runtime_api.h ends up being __attribute__((weak)) which is the
// functional equivalent of what we need.
#pragma push_macro("nv_weak")
#define nv_weak weak
#undef __CUDABE__
#undef __CUDA_LIBDEVICE__
#define __CUDACC__
#include "cuda_runtime.h"
#pragma pop_macro("nv_weak")
#undef __CUDACC__
#define __CUDABE__
// CUDA headers use __nvvm_memcpy and __nvvm_memset which Clang does
// not have at the moment. Emulate them with a builtin memcpy/memset.
#define __nvvm_memcpy(s, d, n, a) __builtin_memcpy(s, d, n)
#define __nvvm_memset(d, c, n, a) __builtin_memset(d, c, n)
#if CUDA_VERSION < 9000
#include "crt/device_runtime.h"
#endif
#include "crt/host_runtime.h"
// device_runtime.h defines __cxa_* macros that will conflict with
// cxxabi.h.
// FIXME: redefine these as __device__ functions.
#undef __cxa_vec_ctor
#undef __cxa_vec_cctor
#undef __cxa_vec_dtor
#undef __cxa_vec_new
#undef __cxa_vec_new2
#undef __cxa_vec_new3
#undef __cxa_vec_delete2
#undef __cxa_vec_delete
#undef __cxa_vec_delete3
#undef __cxa_pure_virtual
// math_functions.hpp expects this host function be defined on MacOS, but it
// ends up not being there because of the games we play here. Just define it
// ourselves; it's simple enough.
#ifdef __APPLE__
inline __host__ double __signbitd(double x) {
return std::signbit(x);
}
#endif
// CUDA 9.1 no longer provides declarations for libdevice functions, so we need
// to provide our own.
#include <__clang_cuda_libdevice_declares.h>
// Wrappers for many device-side standard library functions, incl. math
// functions, became compiler builtins in CUDA-9 and have been removed from the
// CUDA headers. Clang now provides its own implementation of the wrappers.
#if CUDA_VERSION >= 9000
#include <__clang_cuda_device_functions.h>
#include <__clang_cuda_math.h>
#endif
// __THROW is redefined to be empty by device_functions_decls.h in CUDA. Clang's
// counterpart does not do it, so we need to make it empty here to keep
// following CUDA includes happy.
#undef __THROW
#define __THROW
// CUDA 8.0.41 relies on __USE_FAST_MATH__ and __CUDA_PREC_DIV's values.
// Previous versions used to check whether they are defined or not.
// CU_DEVICE_INVALID macro is only defined in 8.0.41, so we use it
// here to detect the switch.
#if defined(CU_DEVICE_INVALID)
#if !defined(__USE_FAST_MATH__)
#define __USE_FAST_MATH__ 0
#endif
#if !defined(__CUDA_PREC_DIV)
#define __CUDA_PREC_DIV 0
#endif
#endif
// Temporarily poison __host__ macro to ensure it's not used by any of
// the headers we're about to include.
#pragma push_macro("__host__")
#define __host__ UNEXPECTED_HOST_ATTRIBUTE
// device_functions.hpp and math_functions*.hpp use 'static
// __forceinline__' (with no __device__) for definitions of device
// functions. Temporarily redefine __forceinline__ to include
// __device__.
#pragma push_macro("__forceinline__")
#define __forceinline__ __device__ __inline__ __attribute__((always_inline))
#if CUDA_VERSION < 9000
#include "device_functions.hpp"
#endif
// math_function.hpp uses the __USE_FAST_MATH__ macro to determine whether we
// get the slow-but-accurate or fast-but-inaccurate versions of functions like
// sin and exp. This is controlled in clang by -fcuda-approx-transcendentals.
//
// device_functions.hpp uses __USE_FAST_MATH__ for a different purpose (fast vs.
// slow divides), so we need to scope our define carefully here.
#pragma push_macro("__USE_FAST_MATH__")
#if defined(__CLANG_CUDA_APPROX_TRANSCENDENTALS__)
#define __USE_FAST_MATH__ 1
#endif
#if CUDA_VERSION >= 9000
#include "crt/math_functions.hpp"
#else
#include "math_functions.hpp"
#endif
#pragma pop_macro("__USE_FAST_MATH__")
#if CUDA_VERSION < 9000
#include "math_functions_dbl_ptx3.hpp"
#endif
#pragma pop_macro("__forceinline__")
// Pull in host-only functions that are only available when neither
// __CUDACC__ nor __CUDABE__ are defined.
#undef __MATH_FUNCTIONS_HPP__
#undef __CUDABE__
#if CUDA_VERSION < 9000
#include "math_functions.hpp"
#endif
// Alas, additional overloads for these functions are hard to get to.
// Considering that we only need these overloads for a few functions,
// we can provide them here.
static inline float rsqrt(float __a) { return rsqrtf(__a); }
static inline float rcbrt(float __a) { return rcbrtf(__a); }
static inline float sinpi(float __a) { return sinpif(__a); }
static inline float cospi(float __a) { return cospif(__a); }
static inline void sincospi(float __a, float *__b, float *__c) {
return sincospif(__a, __b, __c);
}
static inline float erfcinv(float __a) { return erfcinvf(__a); }
static inline float normcdfinv(float __a) { return normcdfinvf(__a); }
static inline float normcdf(float __a) { return normcdff(__a); }
static inline float erfcx(float __a) { return erfcxf(__a); }
#if CUDA_VERSION < 9000
// For some reason single-argument variant is not always declared by
// CUDA headers. Alas, device_functions.hpp included below needs it.
static inline __device__ void __brkpt(int __c) { __brkpt(); }
#endif
// Now include *.hpp with definitions of various GPU functions. Alas,
// a lot of thins get declared/defined with __host__ attribute which
// we don't want and we have to define it out. We also have to include
// {device,math}_functions.hpp again in order to extract the other
// branch of #if/else inside.
#define __host__
#undef __CUDABE__
#define __CUDACC__
#if CUDA_VERSION >= 9000
// Some atomic functions became compiler builtins in CUDA-9 , so we need their
// declarations.
#include "device_atomic_functions.h"
#endif
#undef __DEVICE_FUNCTIONS_HPP__
#include "device_atomic_functions.hpp"
#if CUDA_VERSION >= 9000
#include "crt/device_functions.hpp"
#include "crt/device_double_functions.hpp"
#else
#include "device_functions.hpp"
#define __CUDABE__
#include "device_double_functions.h"
#undef __CUDABE__
#endif
#include "sm_20_atomic_functions.hpp"
// Predicate functions used in `__builtin_assume` need to have no side effect.
// However, sm_20_intrinsics.hpp doesn't define them with neither pure nor
// const attribute. Rename definitions from sm_20_intrinsics.hpp and re-define
// them as pure ones.
#pragma push_macro("__isGlobal")
#pragma push_macro("__isShared")
#pragma push_macro("__isConstant")
#pragma push_macro("__isLocal")
#define __isGlobal __ignored_cuda___isGlobal
#define __isShared __ignored_cuda___isShared
#define __isConstant __ignored_cuda___isConstant
#define __isLocal __ignored_cuda___isLocal
#include "sm_20_intrinsics.hpp"
#pragma pop_macro("__isGlobal")
#pragma pop_macro("__isShared")
#pragma pop_macro("__isConstant")
#pragma pop_macro("__isLocal")
#pragma push_macro("__DEVICE__")
#define __DEVICE__ static __device__ __forceinline__ __attribute__((const))
__DEVICE__ unsigned int __isGlobal(const void *p) {
return __nvvm_isspacep_global(p);
}
__DEVICE__ unsigned int __isShared(const void *p) {
return __nvvm_isspacep_shared(p);
}
__DEVICE__ unsigned int __isConstant(const void *p) {
return __nvvm_isspacep_const(p);
}
__DEVICE__ unsigned int __isLocal(const void *p) {
return __nvvm_isspacep_local(p);
}
#pragma pop_macro("__DEVICE__")
#include "sm_32_atomic_functions.hpp"
// Don't include sm_30_intrinsics.h and sm_32_intrinsics.h. These define the
// __shfl and __ldg intrinsics using inline (volatile) asm, but we want to
// define them using builtins so that the optimizer can reason about and across
// these instructions. In particular, using intrinsics for ldg gets us the
// [addr+imm] addressing mode, which, although it doesn't actually exist in the
// hardware, seems to generate faster machine code because ptxas can more easily
// reason about our code.
#if CUDA_VERSION >= 8000
#pragma push_macro("__CUDA_ARCH__")
#undef __CUDA_ARCH__
#include "sm_60_atomic_functions.hpp"
#include "sm_61_intrinsics.hpp"
#pragma pop_macro("__CUDA_ARCH__")
#endif
#undef __MATH_FUNCTIONS_HPP__
// math_functions.hpp defines ::signbit as a __host__ __device__ function. This
// conflicts with libstdc++'s constexpr ::signbit, so we have to rename
// math_function.hpp's ::signbit. It's guarded by #undef signbit, but that's
// conditional on __GNUC__. :)
#pragma push_macro("signbit")
#pragma push_macro("__GNUC__")
#undef __GNUC__
#define signbit __ignored_cuda_signbit
// CUDA-9 omits device-side definitions of some math functions if it sees
// include guard from math.h wrapper from libstdc++. We have to undo the header
// guard temporarily to get the definitions we need.
#pragma push_macro("_GLIBCXX_MATH_H")
#pragma push_macro("_LIBCPP_VERSION")
#if CUDA_VERSION >= 9000
#undef _GLIBCXX_MATH_H
// We also need to undo another guard that checks for libc++ 3.8+
#ifdef _LIBCPP_VERSION
#define _LIBCPP_VERSION 3700
#endif
#endif
#if CUDA_VERSION >= 9000
#include "crt/math_functions.hpp"
#else
#include "math_functions.hpp"
#endif
#pragma pop_macro("_GLIBCXX_MATH_H")
#pragma pop_macro("_LIBCPP_VERSION")
#pragma pop_macro("__GNUC__")
#pragma pop_macro("signbit")
#pragma pop_macro("__host__")
// __clang_cuda_texture_intrinsics.h must be included first in order to provide
// implementation for __nv_tex_surf_handler that CUDA's headers depend on.
// The implementation requires c++11 and only works with CUDA-9 or newer.
#if __cplusplus >= 201103L && CUDA_VERSION >= 9000
// clang-format off
#include <__clang_cuda_texture_intrinsics.h>
// clang-format on
#else
#if CUDA_VERSION >= 9000
// Provide a hint that texture support needs C++11.
template <typename T> struct __nv_tex_needs_cxx11 {
const static bool value = false;
};
template <class T>
__host__ __device__ void __nv_tex_surf_handler(const char *name, T *ptr,
cudaTextureObject_t obj,
float x) {
_Static_assert(__nv_tex_needs_cxx11<T>::value,
"Texture support requires C++11");
}
#else
// Textures in CUDA-8 and older are not supported by clang.There's no
// convenient way to intercept texture use in these versions, so we can't
// produce a meaningful error. The source code that attempts to use textures
// will continue to fail as it does now.
#endif // CUDA_VERSION
#endif // __cplusplus >= 201103L && CUDA_VERSION >= 9000
#include "texture_fetch_functions.h"
#include "texture_indirect_functions.h"
// Restore state of __CUDA_ARCH__ and __THROW we had on entry.
#pragma pop_macro("__CUDA_ARCH__")
#pragma pop_macro("__THROW")
// Set up compiler macros expected to be seen during compilation.
#undef __CUDABE__
#define __CUDACC__
extern "C" {
// Device-side CUDA system calls.
// http://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability/index.html#system-calls
// We need these declarations and wrappers for device-side
// malloc/free/printf calls to work without relying on
// -fcuda-disable-target-call-checks option.
__device__ int vprintf(const char *, const char *);
__device__ void free(void *) __attribute((nothrow));
__device__ void *malloc(size_t) __attribute((nothrow)) __attribute__((malloc));
// __assertfail() used to have a `noreturn` attribute. Unfortunately that
// contributed to triggering the longstanding bug in ptxas when assert was used
// in sufficiently convoluted code. See
// https://bugs.llvm.org/show_bug.cgi?id=27738 for the details.
__device__ void __assertfail(const char *__message, const char *__file,
unsigned __line, const char *__function,
size_t __charSize);
// In order for standard assert() macro on linux to work we need to
// provide device-side __assert_fail()
__device__ static inline void __assert_fail(const char *__message,
const char *__file, unsigned __line,
const char *__function) {
__assertfail(__message, __file, __line, __function, sizeof(char));
}
// Clang will convert printf into vprintf, but we still need
// device-side declaration for it.
__device__ int printf(const char *, ...);
} // extern "C"
// We also need device-side std::malloc and std::free.
namespace std {
__device__ static inline void free(void *__ptr) { ::free(__ptr); }
__device__ static inline void *malloc(size_t __size) {
return ::malloc(__size);
}
} // namespace std
// Out-of-line implementations from __clang_cuda_builtin_vars.h. These need to
// come after we've pulled in the definition of uint3 and dim3.
__device__ inline __cuda_builtin_threadIdx_t::operator dim3() const {
return dim3(x, y, z);
}
__device__ inline __cuda_builtin_threadIdx_t::operator uint3() const {
return {x, y, z};
}
__device__ inline __cuda_builtin_blockIdx_t::operator dim3() const {
return dim3(x, y, z);
}
__device__ inline __cuda_builtin_blockIdx_t::operator uint3() const {
return {x, y, z};
}
__device__ inline __cuda_builtin_blockDim_t::operator dim3() const {
return dim3(x, y, z);
}
__device__ inline __cuda_builtin_blockDim_t::operator uint3() const {
return {x, y, z};
}
__device__ inline __cuda_builtin_gridDim_t::operator dim3() const {
return dim3(x, y, z);
}
__device__ inline __cuda_builtin_gridDim_t::operator uint3() const {
return {x, y, z};
}
#include <__clang_cuda_cmath.h>
#include <__clang_cuda_intrinsics.h>
#include <__clang_cuda_complex_builtins.h>
// curand_mtgp32_kernel helpfully redeclares blockDim and threadIdx in host
// mode, giving them their "proper" types of dim3 and uint3. This is
// incompatible with the types we give in __clang_cuda_builtin_vars.h. As as
// hack, force-include the header (nvcc doesn't include it by default) but
// redefine dim3 and uint3 to our builtin types. (Thankfully dim3 and uint3 are
// only used here for the redeclarations of blockDim and threadIdx.)
#pragma push_macro("dim3")
#pragma push_macro("uint3")
#define dim3 __cuda_builtin_blockDim_t
#define uint3 __cuda_builtin_threadIdx_t
#include "curand_mtgp32_kernel.h"
#pragma pop_macro("dim3")
#pragma pop_macro("uint3")
#pragma pop_macro("__USE_FAST_MATH__")
#pragma pop_macro("__CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__")
// CUDA runtime uses this undocumented function to access kernel launch
// configuration. The declaration is in crt/device_functions.h but that file
// includes a lot of other stuff we don't want. Instead, we'll provide our own
// declaration for it here.
#if CUDA_VERSION >= 9020
extern "C" unsigned __cudaPushCallConfiguration(dim3 gridDim, dim3 blockDim,
size_t sharedMem = 0,
void *stream = 0);
#endif
#endif // __CUDA__
#endif // __CLANG_CUDA_RUNTIME_WRAPPER_H__

View File

@ -1,742 +0,0 @@
/*===--- __clang_cuda_texture_intrinsics.h - Device-side texture support ---===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*
* This header provides in-header implmentations for NVCC's built-in
* __nv_tex_surf_handler() which is used by CUDA's texture-related headers. The
* built-in is unusual as it's actually a set of function overloads that use the
* first string literal argument as one of the overload parameters.
*/
#ifndef __CLANG_CUDA_TEXTURE_INTRINSICS_H__
#define __CLANG_CUDA_TEXTURE_INTRINSICS_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
// __nv_tex_surf_handler() provided by this header as a macro.
#define __nv_tex_surf_handler(__op, __ptr, ...) \
::__cuda_tex::__tex_fetch< \
::__cuda_tex::__Tag<::__cuda_tex::__tex_op_hash(__op)>>(__ptr, \
__VA_ARGS__)
#pragma push_macro("__ASM_OUT")
#pragma push_macro("__ASM_OUTP")
#pragma push_macro("__Args")
#pragma push_macro("__ID")
#pragma push_macro("__IDV")
#pragma push_macro("__IMPL_2DGATHER")
#pragma push_macro("__IMPL_ALIAS")
#pragma push_macro("__IMPL_ALIASI")
#pragma push_macro("__IMPL_F1")
#pragma push_macro("__IMPL_F3")
#pragma push_macro("__IMPL_F3N")
#pragma push_macro("__IMPL_F3S")
#pragma push_macro("__IMPL_S")
#pragma push_macro("__IMPL_S3")
#pragma push_macro("__IMPL_S3I")
#pragma push_macro("__IMPL_S3N")
#pragma push_macro("__IMPL_S3NI")
#pragma push_macro("__IMPL_S3S")
#pragma push_macro("__IMPL_S3SI")
#pragma push_macro("__IMPL_SI")
#pragma push_macro("__L")
#pragma push_macro("__STRIP_PARENS")
// Put all functions into anonymous namespace so they have internal linkage.
// The device-only function here must be internal in order to avoid ODR
// violations in case they are used from the files compiled with
// -fgpu-rdc. E.g. a library and an app using it may be built with a different
// version of this header file.
namespace {
// Put the implmentation into its own namespace so we don't pollute the TU.
namespace __cuda_tex {
// First, we need a perfect hash function and a few constexpr helper functions
// for converting a string literal into a numeric value which can be used to
// parametrize a template. We can not use string literals for that as that would
// require C++20.
//
// The hash function was generated with 'gperf' and then manually converted into
// its constexpr equivalent.
//
// NOTE: the perfect hashing scheme comes with inherent self-test. If the hash
// function has a collision for any of the texture operations, the compilation
// will fail due to an attempt to redefine a tag with the same value. If the
// header compiles, then the hash function is good enough for the job.
constexpr int __tex_len(const char *s) {
return (s[0] == 0) ? 0
: (s[1] == 0) ? 1
: (s[2] == 0) ? 2
: (s[3] == 0) ? 3
: (s[4] == 0) ? 4
: (s[5] == 0) ? 5
: (s[6] == 0) ? 6
: (s[7] == 0) ? 7
: (s[8] == 0) ? 8
: (s[9] == 0) ? 9
: (s[10] == 0) ? 10
: (s[11] == 0) ? 11
: (s[12] == 0) ? 12
: (s[13] == 0) ? 13
: (s[14] == 0) ? 14
: (s[15] == 0) ? 15
: (s[16] == 0) ? 16
: (s[17] == 0) ? 17
: (s[18] == 0) ? 18
: (s[19] == 0) ? 19
: (s[20] == 0) ? 20
: (s[21] == 0) ? 21
: (s[22] == 0) ? 22
: (s[23] == 0) ? 23
: (s[24] == 0) ? 24
: (s[25] == 0) ? 25
: (s[26] == 0) ? 26
: (s[27] == 0) ? 27
: (s[28] == 0) ? 28
: (s[29] == 0) ? 29
: (s[30] == 0) ? 30
: (s[31] == 0) ? 31
: 32;
}
constexpr int __tex_hash_map(int c) {
return (c == 49) ? 10
: (c == 50) ? 0
: (c == 51) ? 100
: (c == 52) ? 30
: (c == 67) ? 10
: (c == 68) ? 0
: (c == 69) ? 25
: (c == 72) ? 70
: (c == 77) ? 0
: (c == 96) ? 44
: (c == 99) ? 10
: (c == 100) ? 5
: (c == 101) ? 60
: (c == 102) ? 40
: (c == 103) ? 70
: (c == 104) ? 25
: (c == 112) ? 0
: (c == 114) ? 45
: (c == 117) ? 5
: (c == 118) ? 85
: (c == 120) ? 20
: 225;
}
constexpr int __tex_op_hash(const char *str) {
return __tex_len(str) + __tex_hash_map(str[7] + 1) + __tex_hash_map(str[6]) +
__tex_hash_map(str[5]) + __tex_hash_map(str[__tex_len(str) - 1]);
}
// Tag type to identify particular texture operation.
template <int N> struct __Tag;
#define __ID(__op) __Tag<__tex_op_hash(__op)>
// Tags for variants of particular operation. E.g. tex2Dgather can translate
// into 4 different instructions.
#define __IDV(__op, __variant) \
__Tag<10000 + __tex_op_hash(__op) * 100 + __variant>
// Helper classes for figuring out key data types for derived types.
// E.g. char2 has __base_t = char, __fetch_t = char4
template <class> struct __TypeInfoT;
// Type info for the fundamental types.
template <> struct __TypeInfoT<float> {
using __base_t = float;
using __fetch_t = float4;
};
template <> struct __TypeInfoT<char> {
using __base_t = char;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<signed char> {
using __base_t = signed char;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned char> {
using __base_t = unsigned char;
using __fetch_t = uint4;
};
template <> struct __TypeInfoT<short> {
using __base_t = short;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned short> {
using __base_t = unsigned short;
using __fetch_t = uint4;
};
template <> struct __TypeInfoT<int> {
using __base_t = int;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned int> {
using __base_t = unsigned int;
using __fetch_t = uint4;
};
// Derived base/fetch types for N-element vectors.
template <class __T> struct __TypeInfoT {
using __base_t = decltype(__T::x);
using __fetch_t = typename __TypeInfoT<__base_t>::__fetch_t;
};
// Classes that implement specific texture ops.
template <class __op> struct __tex_fetch_v4;
// Helper macros to strip parens from a macro argument.
#define __Args(...) __VA_ARGS__
#define __STRIP_PARENS(__X) __X
#define __L(__X) __STRIP_PARENS(__Args __X)
// Construct inline assembly output args.
// Results are stored in a temp var __r.
// isResident bool is pointed to by __ir
// Asm args for return values. It's a 4-element vector
#define __ASM_OUT(__t) \
("=" __t(__r.x), "=" __t(__r.y), "=" __t(__r.z), "=" __t(__r.w))
// .. possibly combined with a predicate.
#define __ASM_OUTP(__t) (__L(__ASM_OUT(__t)), "=h"(*__ir))
// Implements a single variant of texture fetch instruction.
#define __IMPL_F1(__rt, __dt, __args, __asm_op, __asm_outs, __asm_args) \
template <> \
__device__ __rt __run<__dt>(cudaTextureObject_t __obj, __L(__args)) { \
__rt __r; \
asm(__asm_op : __L(__asm_outs) : "l"(__obj), __L(__asm_args)); \
return __r; \
}
// Implements texture fetch instructions for int4/uint4/float4 data types.
#define __IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(float4, float4, __args, \
__asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUT("f"), \
__asm_args)
// Implements 'sparse' texture fetch instructions for int4/uint4/float4 data
// types. Similar to above, but returns a boolean 'isPresent' value in addition
// to texture data,
#define __IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUTP("r"), __asm_args) \
__IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \
__ASM_OUTP("r"), __asm_args) \
__IMPL_F1(float4, float4, __args, \
__asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUTP("f"), \
__asm_args)
// Similar to F3, but for integer data which is returned as normalized floats.
// Only instantiates fetch functions for int4/uint4.
#define __IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(float4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(float4, uint4, __args, \
__asm_op ".u32." __ctype "\t" __asm_op_args, __ASM_OUT("r"), \
__asm_args)
// Instantiates __tex_fetch_v4 with regular fetch functions.
#define __IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
// Same, but for sparse ops. Only available on sm_60+
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
#define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
#else
#define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#endif
// Same, but for normalized float ops.
#define __IMPL_S3NI(__op, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static float4 __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
// Regular and normalized float ops share a lot of similarities. This macro
// instantiates both variants -- normal for __op and normalized for __opn.
#define __IMPL_SI(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
__IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args); \
__IMPL_S3NI(__opn, __args, __asm_op, __ctype, __asm_op_args, __asm_args)
// Convenience macros which converts string literal __op into a __Tag,
#define __IMPL_S3(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3I(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S3S(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3SI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S3N(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3NI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
__IMPL_SI(__ID(__op), __ID(__opn), __args, __asm_op, __ctype, __asm_op_args, \
__asm_args)
// CUDA headers have some 'legacy' texture oprerations that duplicate
// functionality. So, we just inherit it, instead of refining a copy.
#define __IMPL_ALIASI(__op, __opn) \
template <> struct __tex_fetch_v4<__op> : __tex_fetch_v4<__opn> {}
#define __IMPL_ALIAS(__op, __opn) __IMPL_ALIASI(__ID(__op), __ID(__opn))
// Now we can instantiate everything we need for each specific texture fetch
// variant.
__IMPL_S("__tex1D_v2", "__tex1D_rmnf_v2", (float __x), "tex.1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5}];", ("f"(__x)));
__IMPL_S("__tex1Dfetch_v2", "__tex1Dfetch_rmnf_v2", (int __x), "tex.1d.v4",
"s32", "{%0, %1, %2, %3}, [%4, {%5}];", ("r"(__x)));
__IMPL_ALIAS("__itex1D", "__tex1D_v2");
__IMPL_ALIAS("__itex1Dfetch", "__tex1Dfetch_v2");
__IMPL_S("__tex1DGrad_v2", "__tex1DGrad_rmnf_v2",
(float __x, float __dPdx, float __dPdy), "tex.grad.1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5}], {%6}, {%7};",
("f"(__x), "f"(__dPdx), "f"(__dPdy)));
__IMPL_ALIAS("__itex1DGrad", "__tex1DGrad_v2");
__IMPL_S("__tex1DLayered_v2", "__tex1DLayered_rmnf_v2",
(float __x, int __layer), "tex.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}];", ("r"(__layer), "f"(__x)));
__IMPL_ALIAS("__itex1DLayered", "__tex1DLayered_v2");
__IMPL_S("__tex1DLayeredGrad_v2", "__tex1DLayeredGrad_rmnf_v2",
(float __x, int __layer, float __dPdx, float __dPdy),
"tex.grad.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], {%7}, {%8};",
("r"(__layer), "f"(__x), "f"(__dPdx), "f"(__dPdy)));
__IMPL_ALIAS("__itex1DLayeredGrad", "__tex1DLayeredGrad_v2");
__IMPL_S("__tex1DLayeredLod_v2", "__tex1DLayeredLod_rmnf_v2",
(float __x, int __layer, float __level), "tex.level.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], %7;",
("r"(__layer), "f"(__x), "f"(__level)));
__IMPL_ALIAS("__itex1DLayeredLod", "__tex1DLayeredLod_v2");
__IMPL_S("__tex1DLod_v2", "__tex1DLod_rmnf_v2", (float __x, float __level),
"tex.level.1d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5}], %6;",
("f"(__x), "f"(__level)));
__IMPL_ALIAS("__itex1DLod", "__tex1DLod_v2");
// 2D
__IMPL_S("__tex2D_v2", "__tex2D_rmnf_v2", (float __x, float __y), "tex.2d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y)));
__IMPL_ALIAS("__itex2D", "__tex2D_v2");
__IMPL_S3S("__itex2D_sparse", (float __x, float __y, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t"
" selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y)));
__IMPL_S("__tex2DGrad_v2", "__tex2DGrad_rmnf_v2",
(float __x, float __y, const float2 *__dPdx, const float2 *__dPdy),
"tex.grad.2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], {%7, %8}, {%9, %10};",
("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x),
"f"(__dPdy->y)));
__IMPL_ALIAS("__itex2DGrad_v2", "__tex2DGrad_v2");
__IMPL_S3S("__itex2DGrad_sparse",
(float __x, float __y, const float2 *__dPdx, const float2 *__dPdy,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], {%8, %9}, {%10, %11};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x),
"f"(__dPdy->y)));
__IMPL_S("__tex2DLayered_v2", "__tex2DLayered_rmnf_v2",
(float __x, float __y, int __layer), "tex.a2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("r"(__layer), "f"(__x), "f"(__y)));
__IMPL_ALIAS("__itex2DLayered", "__tex2DLayered_v2");
__IMPL_S3S("__itex2DLayered_sparse",
(float __x, float __y, int __layer, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y)));
__IMPL_S("__tex2DLayeredGrad_v2", "__tex2DLayeredGrad_rmnf_v2",
(float __x, float __y, int __layer, const float2 *__dPdx,
const float2 *__dPdy),
"tex.grad.a2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], {%8, %9}, {%10, %11};",
("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdy->x), "f"(__dPdy->y)));
__IMPL_ALIAS("__itex2DLayeredGrad_v2", "__tex2DLayeredGrad_v2");
__IMPL_S3S(
"__itex2DLayeredGrad_sparse",
(float __x, float __y, int __layer, const float2 *__dPdx,
const float2 *__dPdy, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], {%9, %10}, {%11, %12};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdy->x), "f"(__dPdy->y)));
__IMPL_S("__tex2DLayeredLod_v2", "__tex2DLayeredLod_rmnf_v2",
(float __x, float __y, int __layer, float __level), "tex.level.a2d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("r"(__layer), "f"(__x), "f"(__y), "f"(__level)));
__IMPL_ALIAS("__itex2DLayeredLod", "__tex2DLayeredLod_v2");
__IMPL_S3S("__itex2DLayeredLod_sparse",
(float __x, float __y, int __layer, float __level,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y), "f"(__level)));
__IMPL_S("__tex2DLod_v2", "__tex2DLod_rmnf_v2",
(float __x, float __y, float __level), "tex.level.2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], %7;",
("f"(__x), "f"(__y), "f"(__level)));
__IMPL_ALIAS("__itex2DLod", "__tex2DLod_v2");
__IMPL_S3S("__itex2DLod_sparse",
(float __x, float __y, float __level, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], %8;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__level)));
// 2D gather is special. Unlike other variants that translate into exactly one
// asm instruction, it uses one of the four different instructions selected by
// __comp. We implement each instruction variant separately, and dispatch the
// right one from the manually implemented 'umbrella' fetch.
#define __IMPL_2DGATHER(variant, instr) \
__IMPL_SI(__IDV("__tex2Dgather_v2", variant), \
__IDV("__tex2Dgather_rmnf_v2", variant), \
(float __x, float __y, int __comp), instr, "f32", \
"{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y))); \
__IMPL_ALIASI(__IDV("__itex2Dgather", variant), \
__IDV("__tex2Dgather_v2", variant)); \
__IMPL_S3SI(__IDV("__itex2Dgather_sparse", variant), \
(float __x, float __y, unsigned char *__ir, int __comp), \
"{.reg .pred %%p0;\n\t" instr, "f32", \
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t" \
"selp.u16 %4, 1, 0, %%p0; }", \
("f"(__x), "f"(__y)));
__IMPL_2DGATHER(0, "tld4.r.2d.v4");
__IMPL_2DGATHER(1, "tld4.g.2d.v4");
__IMPL_2DGATHER(2, "tld4.b.2d.v4");
__IMPL_2DGATHER(3, "tld4.a.2d.v4");
// Umbrella dispatcher -- calls into specific 2Dgather variant.
template <> struct __tex_fetch_v4<__ID("__tex2Dgather_v2")> {
template <class __T>
__device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y,
int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 0)>::__run<__T>(
__obj, __x, __y, __comp);
case 1:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 1)>::__run<__T>(
__obj, __x, __y, __comp);
case 2:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 2)>::__run<__T>(
__obj, __x, __y, __comp);
case 3:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 3)>::__run<__T>(
__obj, __x, __y, __comp);
}
}
};
__IMPL_ALIAS("__itex2Dgather", "__tex2Dgather_v2");
template <> struct __tex_fetch_v4<__ID("__tex2Dgather_rmnf_v2")> {
template <class __T>
__device__ static float4 __run(cudaTextureObject_t __obj, float __x,
float __y, int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 0)>::__run<__T>(
__obj, __x, __y, __comp);
case 1:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 1)>::__run<__T>(
__obj, __x, __y, __comp);
case 2:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 2)>::__run<__T>(
__obj, __x, __y, __comp);
case 3:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 3)>::__run<__T>(
__obj, __x, __y, __comp);
}
}
};
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
template <> struct __tex_fetch_v4<__ID("__itex2Dgather_sparse")> {
template <class __T>
__device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y,
unsigned char *__ir, int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 0)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 1:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 1)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 2:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 2)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 3:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 3)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
}
}
};
#endif
// 3D
__IMPL_S("__tex3D_v2", "__tex3D_rmnf_v2", (float __x, float __y, float __z),
"tex.3d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itex3D", "__tex3D_v2");
__IMPL_S3S("__itex3D_sparse",
(float __x, float __y, float __z, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_S("__tex3DGrad_v2", "__tex3DGrad_rmnf_v2",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.3d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], "
"{%8, %9, %10, %10}, {%11, %12, %13, %13};",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_ALIAS("__itex3DGrad_v2", "__tex3DGrad_v2");
__IMPL_S3S("__itex3DGrad_sparse",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], "
"{%9, %10, %11, %11}, {%12, %13, %14, %14};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_S("__tex3DLod_v2", "__tex3DLod_rmnf_v2",
(float __x, float __y, float __z, float __level), "tex.level.3d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itex3DLod", "__tex3DLod_v2");
__IMPL_S3S("__itex3DLod_sparse",
(float __x, float __y, float __z, float __level,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
// Cubemap
__IMPL_S("__texCubemap_v2", "__texCubemap_rmnf_v2",
(float __x, float __y, float __z), "tex.cube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itexCubemap", "__texCubemap_v2");
__IMPL_S3S("__itexCubemap_sparse",
(float __x, float __y, float __z, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.cube.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_S("__texCubemapGrad_v2", "__texCubemapGrad_rmnf_v2",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.cube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], "
"{%8, %9, %10, %10}, {%11, %12, %13, %13};",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_ALIAS("__itexCubemapGrad_v2", "__texCubemapGrad_v2");
__IMPL_S("__texCubemapLayered_v2", "__texCubemapLayered_rmnf_v2",
(float __x, float __y, float __z, int __layer), "tex.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}];",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itexCubemapLayered", "__texCubemapLayered_v2");
__IMPL_S("__texCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_rmnf_v2",
(float __x, float __y, float __z, int __layer, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], "
"{%9, %10, %11, %11}, {%12, %13, %14, %14};",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x),
"f"(__dPdx->y), "f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y),
"f"(__dPdy->z)));
__IMPL_ALIAS("__itexCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_v2");
__IMPL_S("__texCubemapLayeredLod_v2", "__texCubemapLayeredLod_rmnf_v2",
(float __x, float __y, float __z, int __layer, float __level),
"tex.level.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], %9;",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itexCubemapLayeredLod", "__texCubemapLayeredLod_v2");
__IMPL_S("__texCubemapLod_v2", "__texCubemapLod_rmnf_v2",
(float __x, float __y, float __z, float __level), "tex.level.cube.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itexCubemapLod", "__texCubemapLod_v2");
// Helper class for extracting slice of data from V4 fetch results.
template <class __DestT, class __SrcT> struct __convert {
template <int __NElements = sizeof(__DestT) /
sizeof(typename __TypeInfoT<__DestT>::__base_t)>
__device__ static __DestT __run(__SrcT __v);
template <> __device__ static __DestT __run<1>(__SrcT __v) { return {__v.x}; }
template <> __device__ static __DestT __run<2>(__SrcT __v) {
return {__v.x, __v.y};
}
template <> __device__ static __DestT __run<3>(__SrcT __v) {
return {__v.x, __v.y, __v.z};
}
template <> __device__ static __DestT __run<4>(__SrcT __v) {
return {__v.x, __v.y, __v.z, __v.w};
}
};
// These are the top-level function overloads the __nv_tex_surf_handler expands
// to. Each overload deals with one of the several ways __nv_tex_surf_handler
// is called by CUDA headers. In the end, each of the overloads does the same
// job -- it figures out which `__tex_fetch_v4::run` variant should be used to
// fetch texture data and which `__convert::run` is needed to convert it into
// appropriate return type.
// __nv_tex_surf_handler("__tex...", &ret, cudaTextureObject_t handle, args...);
// Data type and return type are based on ret.
template <class __op, class __T, class... __Args>
__device__ static void __tex_fetch(__T *__ptr, cudaTextureObject_t __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__T>::__fetch_t;
*__ptr = __convert<__T, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(__handle, __args...));
}
#if CUDA_VERSION < 12000
// texture<> objects get magically converted into a texture reference. However,
// there's no way to convert them to cudaTextureObject_t on C++ level. So, we
// cheat a bit and use inline assembly to do it. It costs us an extra register
// and a move, but that is easy for ptxas to optimize away.
template <class __T>
__device__ cudaTextureObject_t __tex_handle_to_obj(__T __handle) {
cudaTextureObject_t __obj;
asm("mov.b64 %0, %1; " : "=l"(__obj) : "l"(__handle));
return __obj;
}
// __nv_tex_surf_handler ("__tex...", &ret, textureReference, args...);
// Data type and return type is based on ret.
template <class __op, class __T, class __HandleT, class... __Args>
__device__ static void __tex_fetch(__T *__ptr, __HandleT __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__T>::__fetch_t;
*__ptr = __convert<__T, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
// __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...);
// cudaReadModeNormalizedFloat fetches always return float4.
template <class __op, class __DataT, class __RetT, int __TexT, class... __Args>
__device__ static void
__tex_fetch(__DataT *, __RetT *__ptr,
texture<__DataT, __TexT, cudaReadModeNormalizedFloat> __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t;
*__ptr = __convert<__RetT, float4>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
// __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...);
// For cudaReadModeElementType fetch return type is based on type_dummy.
template <class __op, class __DataT, class __RetT, int __TexT, class... __Args>
__device__ static void
__tex_fetch(__DataT *, __RetT *__ptr,
texture<__DataT, __TexT, cudaReadModeElementType> __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t;
*__ptr = __convert<__RetT, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
#endif // CUDA_VERSION
} // namespace __cuda_tex
} // namespace
#pragma pop_macro("__ASM_OUT")
#pragma pop_macro("__ASM_OUTP")
#pragma pop_macro("__Args")
#pragma pop_macro("__ID")
#pragma pop_macro("__IDV")
#pragma pop_macro("__IMPL_2DGATHER")
#pragma pop_macro("__IMPL_ALIAS")
#pragma pop_macro("__IMPL_ALIASI")
#pragma pop_macro("__IMPL_F1")
#pragma pop_macro("__IMPL_F3")
#pragma pop_macro("__IMPL_F3N")
#pragma pop_macro("__IMPL_F3S")
#pragma pop_macro("__IMPL_S")
#pragma pop_macro("__IMPL_S3")
#pragma pop_macro("__IMPL_S3I")
#pragma pop_macro("__IMPL_S3N")
#pragma pop_macro("__IMPL_S3NI")
#pragma pop_macro("__IMPL_S3S")
#pragma pop_macro("__IMPL_S3SI")
#pragma pop_macro("__IMPL_SI")
#pragma pop_macro("__L")
#pragma pop_macro("__STRIP_PARENS")
#endif // __CLANG_CUDA_TEXTURE_INTRINSICS_H__

View File

@ -1,842 +0,0 @@
/*===---- __clang_hip_cmath.h - HIP cmath decls -----------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_HIP_CMATH_H__
#define __CLANG_HIP_CMATH_H__
#if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
#error "This file is for HIP and OpenMP AMDGCN device compilation only."
#endif
#if !defined(__HIPCC_RTC__)
#if defined(__cplusplus)
#include <limits>
#include <type_traits>
#include <utility>
#endif
#include <limits.h>
#include <stdint.h>
#endif // !defined(__HIPCC_RTC__)
#pragma push_macro("__DEVICE__")
#pragma push_macro("__CONSTEXPR__")
#ifdef __OPENMP_AMDGCN__
#define __DEVICE__ static __attribute__((always_inline, nothrow))
#define __CONSTEXPR__ constexpr
#else
#define __DEVICE__ static __device__ inline __attribute__((always_inline))
#define __CONSTEXPR__
#endif // __OPENMP_AMDGCN__
// Start with functions that cannot be defined by DEF macros below.
#if defined(__cplusplus)
#if defined __OPENMP_AMDGCN__
__DEVICE__ __CONSTEXPR__ float fabs(float __x) { return ::fabsf(__x); }
__DEVICE__ __CONSTEXPR__ float sin(float __x) { return ::sinf(__x); }
__DEVICE__ __CONSTEXPR__ float cos(float __x) { return ::cosf(__x); }
#endif
__DEVICE__ __CONSTEXPR__ double abs(double __x) { return ::fabs(__x); }
__DEVICE__ __CONSTEXPR__ float abs(float __x) { return ::fabsf(__x); }
__DEVICE__ __CONSTEXPR__ long long abs(long long __n) { return ::llabs(__n); }
__DEVICE__ __CONSTEXPR__ long abs(long __n) { return ::labs(__n); }
__DEVICE__ __CONSTEXPR__ float fma(float __x, float __y, float __z) {
return ::fmaf(__x, __y, __z);
}
#if !defined(__HIPCC_RTC__)
// The value returned by fpclassify is platform dependent, therefore it is not
// supported by hipRTC.
__DEVICE__ __CONSTEXPR__ int fpclassify(float __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
__DEVICE__ __CONSTEXPR__ int fpclassify(double __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
#endif // !defined(__HIPCC_RTC__)
__DEVICE__ __CONSTEXPR__ float frexp(float __arg, int *__exp) {
return ::frexpf(__arg, __exp);
}
#if defined(__OPENMP_AMDGCN__)
// For OpenMP we work around some old system headers that have non-conforming
// `isinf(float)` and `isnan(float)` implementations that return an `int`. We do
// this by providing two versions of these functions, differing only in the
// return type. To avoid conflicting definitions we disable implicit base
// function generation. That means we will end up with two specializations, one
// per type, but only one has a base function defined by the system header.
#pragma omp begin declare variant match( \
implementation = {extension(disable_implicit_base)})
// FIXME: We lack an extension to customize the mangling of the variants, e.g.,
// add a suffix. This means we would clash with the names of the variants
// (note that we do not create implicit base functions here). To avoid
// this clash we add a new trait to some of them that is always true
// (this is LLVM after all ;)). It will only influence the mangled name
// of the variants inside the inner region and avoid the clash.
#pragma omp begin declare variant match(implementation = {vendor(llvm)})
__DEVICE__ __CONSTEXPR__ int isinf(float __x) { return ::__isinff(__x); }
__DEVICE__ __CONSTEXPR__ int isinf(double __x) { return ::__isinf(__x); }
__DEVICE__ __CONSTEXPR__ int isfinite(float __x) { return ::__finitef(__x); }
__DEVICE__ __CONSTEXPR__ int isfinite(double __x) { return ::__finite(__x); }
__DEVICE__ __CONSTEXPR__ int isnan(float __x) { return ::__isnanf(__x); }
__DEVICE__ __CONSTEXPR__ int isnan(double __x) { return ::__isnan(__x); }
#pragma omp end declare variant
#endif // defined(__OPENMP_AMDGCN__)
__DEVICE__ __CONSTEXPR__ bool isinf(float __x) { return ::__isinff(__x); }
__DEVICE__ __CONSTEXPR__ bool isinf(double __x) { return ::__isinf(__x); }
__DEVICE__ __CONSTEXPR__ bool isfinite(float __x) { return ::__finitef(__x); }
__DEVICE__ __CONSTEXPR__ bool isfinite(double __x) { return ::__finite(__x); }
__DEVICE__ __CONSTEXPR__ bool isnan(float __x) { return ::__isnanf(__x); }
__DEVICE__ __CONSTEXPR__ bool isnan(double __x) { return ::__isnan(__x); }
#if defined(__OPENMP_AMDGCN__)
#pragma omp end declare variant
#endif // defined(__OPENMP_AMDGCN__)
__DEVICE__ __CONSTEXPR__ bool isgreater(float __x, float __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isgreater(double __x, double __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isgreaterequal(float __x, float __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isgreaterequal(double __x, double __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isless(float __x, float __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isless(double __x, double __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessequal(float __x, float __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessequal(double __x, double __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessgreater(float __x, float __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool islessgreater(double __x, double __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isnormal(float __x) {
return __builtin_isnormal(__x);
}
__DEVICE__ __CONSTEXPR__ bool isnormal(double __x) {
return __builtin_isnormal(__x);
}
__DEVICE__ __CONSTEXPR__ bool isunordered(float __x, float __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ __CONSTEXPR__ bool isunordered(double __x, double __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ __CONSTEXPR__ float modf(float __x, float *__iptr) {
return ::modff(__x, __iptr);
}
__DEVICE__ __CONSTEXPR__ float pow(float __base, int __iexp) {
return ::powif(__base, __iexp);
}
__DEVICE__ __CONSTEXPR__ double pow(double __base, int __iexp) {
return ::powi(__base, __iexp);
}
__DEVICE__ __CONSTEXPR__ float remquo(float __x, float __y, int *__quo) {
return ::remquof(__x, __y, __quo);
}
__DEVICE__ __CONSTEXPR__ float scalbln(float __x, long int __n) {
return ::scalblnf(__x, __n);
}
__DEVICE__ __CONSTEXPR__ bool signbit(float __x) { return ::__signbitf(__x); }
__DEVICE__ __CONSTEXPR__ bool signbit(double __x) { return ::__signbit(__x); }
// Notably missing above is nexttoward. We omit it because
// ocml doesn't provide an implementation, and we don't want to be in the
// business of implementing tricky libm functions in this header.
// Other functions.
__DEVICE__ __CONSTEXPR__ _Float16 fma(_Float16 __x, _Float16 __y,
_Float16 __z) {
return __builtin_fmaf16(__x, __y, __z);
}
__DEVICE__ __CONSTEXPR__ _Float16 pow(_Float16 __base, int __iexp) {
return __ocml_pown_f16(__base, __iexp);
}
#ifndef __OPENMP_AMDGCN__
// BEGIN DEF_FUN and HIP_OVERLOAD
// BEGIN DEF_FUN
#pragma push_macro("__DEF_FUN1")
#pragma push_macro("__DEF_FUN2")
#pragma push_macro("__DEF_FUN2_FI")
// Define cmath functions with float argument and returns __retty.
#define __DEF_FUN1(__retty, __func) \
__DEVICE__ __CONSTEXPR__ __retty __func(float __x) { return __func##f(__x); }
// Define cmath functions with two float arguments and returns __retty.
#define __DEF_FUN2(__retty, __func) \
__DEVICE__ __CONSTEXPR__ __retty __func(float __x, float __y) { \
return __func##f(__x, __y); \
}
// Define cmath functions with a float and an int argument and returns __retty.
#define __DEF_FUN2_FI(__retty, __func) \
__DEVICE__ __CONSTEXPR__ __retty __func(float __x, int __y) { \
return __func##f(__x, __y); \
}
__DEF_FUN1(float, acos)
__DEF_FUN1(float, acosh)
__DEF_FUN1(float, asin)
__DEF_FUN1(float, asinh)
__DEF_FUN1(float, atan)
__DEF_FUN2(float, atan2)
__DEF_FUN1(float, atanh)
__DEF_FUN1(float, cbrt)
__DEF_FUN1(float, ceil)
__DEF_FUN2(float, copysign)
__DEF_FUN1(float, cos)
__DEF_FUN1(float, cosh)
__DEF_FUN1(float, erf)
__DEF_FUN1(float, erfc)
__DEF_FUN1(float, exp)
__DEF_FUN1(float, exp2)
__DEF_FUN1(float, expm1)
__DEF_FUN1(float, fabs)
__DEF_FUN2(float, fdim)
__DEF_FUN1(float, floor)
__DEF_FUN2(float, fmax)
__DEF_FUN2(float, fmin)
__DEF_FUN2(float, fmod)
__DEF_FUN2(float, hypot)
__DEF_FUN1(int, ilogb)
__DEF_FUN2_FI(float, ldexp)
__DEF_FUN1(float, lgamma)
__DEF_FUN1(float, log)
__DEF_FUN1(float, log10)
__DEF_FUN1(float, log1p)
__DEF_FUN1(float, log2)
__DEF_FUN1(float, logb)
__DEF_FUN1(long long, llrint)
__DEF_FUN1(long long, llround)
__DEF_FUN1(long, lrint)
__DEF_FUN1(long, lround)
__DEF_FUN1(float, nearbyint)
__DEF_FUN2(float, nextafter)
__DEF_FUN2(float, pow)
__DEF_FUN2(float, remainder)
__DEF_FUN1(float, rint)
__DEF_FUN1(float, round)
__DEF_FUN2_FI(float, scalbn)
__DEF_FUN1(float, sin)
__DEF_FUN1(float, sinh)
__DEF_FUN1(float, sqrt)
__DEF_FUN1(float, tan)
__DEF_FUN1(float, tanh)
__DEF_FUN1(float, tgamma)
__DEF_FUN1(float, trunc)
#pragma pop_macro("__DEF_FUN1")
#pragma pop_macro("__DEF_FUN2")
#pragma pop_macro("__DEF_FUN2_FI")
// END DEF_FUN
// BEGIN HIP_OVERLOAD
#pragma push_macro("__HIP_OVERLOAD1")
#pragma push_macro("__HIP_OVERLOAD2")
// __hip_enable_if::type is a type function which returns __T if __B is true.
template <bool __B, class __T = void> struct __hip_enable_if {};
template <class __T> struct __hip_enable_if<true, __T> { typedef __T type; };
namespace __hip {
template <class _Tp> struct is_integral {
enum { value = 0 };
};
template <> struct is_integral<bool> {
enum { value = 1 };
};
template <> struct is_integral<char> {
enum { value = 1 };
};
template <> struct is_integral<signed char> {
enum { value = 1 };
};
template <> struct is_integral<unsigned char> {
enum { value = 1 };
};
template <> struct is_integral<wchar_t> {
enum { value = 1 };
};
template <> struct is_integral<short> {
enum { value = 1 };
};
template <> struct is_integral<unsigned short> {
enum { value = 1 };
};
template <> struct is_integral<int> {
enum { value = 1 };
};
template <> struct is_integral<unsigned int> {
enum { value = 1 };
};
template <> struct is_integral<long> {
enum { value = 1 };
};
template <> struct is_integral<unsigned long> {
enum { value = 1 };
};
template <> struct is_integral<long long> {
enum { value = 1 };
};
template <> struct is_integral<unsigned long long> {
enum { value = 1 };
};
// ToDo: specializes is_arithmetic<_Float16>
template <class _Tp> struct is_arithmetic {
enum { value = 0 };
};
template <> struct is_arithmetic<bool> {
enum { value = 1 };
};
template <> struct is_arithmetic<char> {
enum { value = 1 };
};
template <> struct is_arithmetic<signed char> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned char> {
enum { value = 1 };
};
template <> struct is_arithmetic<wchar_t> {
enum { value = 1 };
};
template <> struct is_arithmetic<short> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned short> {
enum { value = 1 };
};
template <> struct is_arithmetic<int> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned int> {
enum { value = 1 };
};
template <> struct is_arithmetic<long> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned long> {
enum { value = 1 };
};
template <> struct is_arithmetic<long long> {
enum { value = 1 };
};
template <> struct is_arithmetic<unsigned long long> {
enum { value = 1 };
};
template <> struct is_arithmetic<float> {
enum { value = 1 };
};
template <> struct is_arithmetic<double> {
enum { value = 1 };
};
struct true_type {
static const __constant__ bool value = true;
};
struct false_type {
static const __constant__ bool value = false;
};
template <typename __T, typename __U> struct is_same : public false_type {};
template <typename __T> struct is_same<__T, __T> : public true_type {};
template <typename __T> struct add_rvalue_reference { typedef __T &&type; };
template <typename __T> typename add_rvalue_reference<__T>::type declval();
// decltype is only available in C++11 and above.
#if __cplusplus >= 201103L
// __hip_promote
template <class _Tp> struct __numeric_type {
static void __test(...);
static _Float16 __test(_Float16);
static float __test(float);
static double __test(char);
static double __test(int);
static double __test(unsigned);
static double __test(long);
static double __test(unsigned long);
static double __test(long long);
static double __test(unsigned long long);
static double __test(double);
// No support for long double, use double instead.
static double __test(long double);
typedef decltype(__test(declval<_Tp>())) type;
static const bool value = !is_same<type, void>::value;
};
template <> struct __numeric_type<void> { static const bool value = true; };
template <class _A1, class _A2 = void, class _A3 = void,
bool = __numeric_type<_A1>::value &&__numeric_type<_A2>::value
&&__numeric_type<_A3>::value>
class __promote_imp {
public:
static const bool value = false;
};
template <class _A1, class _A2, class _A3>
class __promote_imp<_A1, _A2, _A3, true> {
private:
typedef typename __promote_imp<_A1>::type __type1;
typedef typename __promote_imp<_A2>::type __type2;
typedef typename __promote_imp<_A3>::type __type3;
public:
typedef decltype(__type1() + __type2() + __type3()) type;
static const bool value = true;
};
template <class _A1, class _A2> class __promote_imp<_A1, _A2, void, true> {
private:
typedef typename __promote_imp<_A1>::type __type1;
typedef typename __promote_imp<_A2>::type __type2;
public:
typedef decltype(__type1() + __type2()) type;
static const bool value = true;
};
template <class _A1> class __promote_imp<_A1, void, void, true> {
public:
typedef typename __numeric_type<_A1>::type type;
static const bool value = true;
};
template <class _A1, class _A2 = void, class _A3 = void>
class __promote : public __promote_imp<_A1, _A2, _A3> {};
#endif //__cplusplus >= 201103L
} // namespace __hip
// __HIP_OVERLOAD1 is used to resolve function calls with integer argument to
// avoid compilation error due to ambibuity. e.g. floor(5) is resolved with
// floor(double).
#define __HIP_OVERLOAD1(__retty, __fn) \
template <typename __T> \
__DEVICE__ __CONSTEXPR__ \
typename __hip_enable_if<__hip::is_integral<__T>::value, __retty>::type \
__fn(__T __x) { \
return ::__fn((double)__x); \
}
// __HIP_OVERLOAD2 is used to resolve function calls with mixed float/double
// or integer argument to avoid compilation error due to ambibuity. e.g.
// max(5.0f, 6.0) is resolved with max(double, double).
#if __cplusplus >= 201103L
#define __HIP_OVERLOAD2(__retty, __fn) \
template <typename __T1, typename __T2> \
__DEVICE__ __CONSTEXPR__ typename __hip_enable_if< \
__hip::is_arithmetic<__T1>::value && __hip::is_arithmetic<__T2>::value, \
typename __hip::__promote<__T1, __T2>::type>::type \
__fn(__T1 __x, __T2 __y) { \
typedef typename __hip::__promote<__T1, __T2>::type __result_type; \
return __fn((__result_type)__x, (__result_type)__y); \
}
#else
#define __HIP_OVERLOAD2(__retty, __fn) \
template <typename __T1, typename __T2> \
__DEVICE__ __CONSTEXPR__ \
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value && \
__hip::is_arithmetic<__T2>::value, \
__retty>::type \
__fn(__T1 __x, __T2 __y) { \
return __fn((double)__x, (double)__y); \
}
#endif
__HIP_OVERLOAD1(double, acos)
__HIP_OVERLOAD1(double, acosh)
__HIP_OVERLOAD1(double, asin)
__HIP_OVERLOAD1(double, asinh)
__HIP_OVERLOAD1(double, atan)
__HIP_OVERLOAD2(double, atan2)
__HIP_OVERLOAD1(double, atanh)
__HIP_OVERLOAD1(double, cbrt)
__HIP_OVERLOAD1(double, ceil)
__HIP_OVERLOAD2(double, copysign)
__HIP_OVERLOAD1(double, cos)
__HIP_OVERLOAD1(double, cosh)
__HIP_OVERLOAD1(double, erf)
__HIP_OVERLOAD1(double, erfc)
__HIP_OVERLOAD1(double, exp)
__HIP_OVERLOAD1(double, exp2)
__HIP_OVERLOAD1(double, expm1)
__HIP_OVERLOAD1(double, fabs)
__HIP_OVERLOAD2(double, fdim)
__HIP_OVERLOAD1(double, floor)
__HIP_OVERLOAD2(double, fmax)
__HIP_OVERLOAD2(double, fmin)
__HIP_OVERLOAD2(double, fmod)
#if !defined(__HIPCC_RTC__)
__HIP_OVERLOAD1(int, fpclassify)
#endif // !defined(__HIPCC_RTC__)
__HIP_OVERLOAD2(double, hypot)
__HIP_OVERLOAD1(int, ilogb)
__HIP_OVERLOAD1(bool, isfinite)
__HIP_OVERLOAD2(bool, isgreater)
__HIP_OVERLOAD2(bool, isgreaterequal)
__HIP_OVERLOAD1(bool, isinf)
__HIP_OVERLOAD2(bool, isless)
__HIP_OVERLOAD2(bool, islessequal)
__HIP_OVERLOAD2(bool, islessgreater)
__HIP_OVERLOAD1(bool, isnan)
__HIP_OVERLOAD1(bool, isnormal)
__HIP_OVERLOAD2(bool, isunordered)
__HIP_OVERLOAD1(double, lgamma)
__HIP_OVERLOAD1(double, log)
__HIP_OVERLOAD1(double, log10)
__HIP_OVERLOAD1(double, log1p)
__HIP_OVERLOAD1(double, log2)
__HIP_OVERLOAD1(double, logb)
__HIP_OVERLOAD1(long long, llrint)
__HIP_OVERLOAD1(long long, llround)
__HIP_OVERLOAD1(long, lrint)
__HIP_OVERLOAD1(long, lround)
__HIP_OVERLOAD1(double, nearbyint)
__HIP_OVERLOAD2(double, nextafter)
__HIP_OVERLOAD2(double, pow)
__HIP_OVERLOAD2(double, remainder)
__HIP_OVERLOAD1(double, rint)
__HIP_OVERLOAD1(double, round)
__HIP_OVERLOAD1(bool, signbit)
__HIP_OVERLOAD1(double, sin)
__HIP_OVERLOAD1(double, sinh)
__HIP_OVERLOAD1(double, sqrt)
__HIP_OVERLOAD1(double, tan)
__HIP_OVERLOAD1(double, tanh)
__HIP_OVERLOAD1(double, tgamma)
__HIP_OVERLOAD1(double, trunc)
// Overload these but don't add them to std, they are not part of cmath.
__HIP_OVERLOAD2(double, max)
__HIP_OVERLOAD2(double, min)
// Additional Overloads that don't quite match HIP_OVERLOAD.
#if __cplusplus >= 201103L
template <typename __T1, typename __T2, typename __T3>
__DEVICE__ __CONSTEXPR__ typename __hip_enable_if<
__hip::is_arithmetic<__T1>::value && __hip::is_arithmetic<__T2>::value &&
__hip::is_arithmetic<__T3>::value,
typename __hip::__promote<__T1, __T2, __T3>::type>::type
fma(__T1 __x, __T2 __y, __T3 __z) {
typedef typename __hip::__promote<__T1, __T2, __T3>::type __result_type;
return ::fma((__result_type)__x, (__result_type)__y, (__result_type)__z);
}
#else
template <typename __T1, typename __T2, typename __T3>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value &&
__hip::is_arithmetic<__T2>::value &&
__hip::is_arithmetic<__T3>::value,
double>::type
fma(__T1 __x, __T2 __y, __T3 __z) {
return ::fma((double)__x, (double)__y, (double)__z);
}
#endif
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
frexp(__T __x, int *__exp) {
return ::frexp((double)__x, __exp);
}
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
ldexp(__T __x, int __exp) {
return ::ldexp((double)__x, __exp);
}
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
modf(__T __x, double *__exp) {
return ::modf((double)__x, __exp);
}
#if __cplusplus >= 201103L
template <typename __T1, typename __T2>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value &&
__hip::is_arithmetic<__T2>::value,
typename __hip::__promote<__T1, __T2>::type>::type
remquo(__T1 __x, __T2 __y, int *__quo) {
typedef typename __hip::__promote<__T1, __T2>::type __result_type;
return ::remquo((__result_type)__x, (__result_type)__y, __quo);
}
#else
template <typename __T1, typename __T2>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_arithmetic<__T1>::value &&
__hip::is_arithmetic<__T2>::value,
double>::type
remquo(__T1 __x, __T2 __y, int *__quo) {
return ::remquo((double)__x, (double)__y, __quo);
}
#endif
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
scalbln(__T __x, long int __exp) {
return ::scalbln((double)__x, __exp);
}
template <typename __T>
__DEVICE__ __CONSTEXPR__
typename __hip_enable_if<__hip::is_integral<__T>::value, double>::type
scalbn(__T __x, int __exp) {
return ::scalbn((double)__x, __exp);
}
#pragma pop_macro("__HIP_OVERLOAD1")
#pragma pop_macro("__HIP_OVERLOAD2")
// END HIP_OVERLOAD
// END DEF_FUN and HIP_OVERLOAD
#endif // ifndef __OPENMP_AMDGCN__
#endif // defined(__cplusplus)
#ifndef __OPENMP_AMDGCN__
// Define these overloads inside the namespace our standard library uses.
#if !defined(__HIPCC_RTC__)
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
_LIBCPP_BEGIN_NAMESPACE_STD
#else
namespace std {
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#endif // _GLIBCXX_BEGIN_NAMESPACE_VERSION
#endif // _LIBCPP_BEGIN_NAMESPACE_STD
// Pull the new overloads we defined above into namespace std.
// using ::abs; - This may be considered for C++.
using ::acos;
using ::acosh;
using ::asin;
using ::asinh;
using ::atan;
using ::atan2;
using ::atanh;
using ::cbrt;
using ::ceil;
using ::copysign;
using ::cos;
using ::cosh;
using ::erf;
using ::erfc;
using ::exp;
using ::exp2;
using ::expm1;
using ::fabs;
using ::fdim;
using ::floor;
using ::fma;
using ::fmax;
using ::fmin;
using ::fmod;
using ::fpclassify;
using ::frexp;
using ::hypot;
using ::ilogb;
using ::isfinite;
using ::isgreater;
using ::isgreaterequal;
using ::isless;
using ::islessequal;
using ::islessgreater;
using ::isnormal;
using ::isunordered;
using ::ldexp;
using ::lgamma;
using ::llrint;
using ::llround;
using ::log;
using ::log10;
using ::log1p;
using ::log2;
using ::logb;
using ::lrint;
using ::lround;
using ::modf;
// using ::nan; - This may be considered for C++.
// using ::nanf; - This may be considered for C++.
// using ::nanl; - This is not yet defined.
using ::nearbyint;
using ::nextafter;
// using ::nexttoward; - Omit this since we do not have a definition.
using ::pow;
using ::remainder;
using ::remquo;
using ::rint;
using ::round;
using ::scalbln;
using ::scalbn;
using ::signbit;
using ::sin;
using ::sinh;
using ::sqrt;
using ::tan;
using ::tanh;
using ::tgamma;
using ::trunc;
// Well this is fun: We need to pull these symbols in for libc++, but we can't
// pull them in with libstdc++, because its ::isinf and ::isnan are different
// than its std::isinf and std::isnan.
#ifndef __GLIBCXX__
using ::isinf;
using ::isnan;
#endif
// Finally, pull the "foobarf" functions that HIP defines into std.
using ::acosf;
using ::acoshf;
using ::asinf;
using ::asinhf;
using ::atan2f;
using ::atanf;
using ::atanhf;
using ::cbrtf;
using ::ceilf;
using ::copysignf;
using ::cosf;
using ::coshf;
using ::erfcf;
using ::erff;
using ::exp2f;
using ::expf;
using ::expm1f;
using ::fabsf;
using ::fdimf;
using ::floorf;
using ::fmaf;
using ::fmaxf;
using ::fminf;
using ::fmodf;
using ::frexpf;
using ::hypotf;
using ::ilogbf;
using ::ldexpf;
using ::lgammaf;
using ::llrintf;
using ::llroundf;
using ::log10f;
using ::log1pf;
using ::log2f;
using ::logbf;
using ::logf;
using ::lrintf;
using ::lroundf;
using ::modff;
using ::nearbyintf;
using ::nextafterf;
// using ::nexttowardf; - Omit this since we do not have a definition.
using ::powf;
using ::remainderf;
using ::remquof;
using ::rintf;
using ::roundf;
using ::scalblnf;
using ::scalbnf;
using ::sinf;
using ::sinhf;
using ::sqrtf;
using ::tanf;
using ::tanhf;
using ::tgammaf;
using ::truncf;
#ifdef _LIBCPP_END_NAMESPACE_STD
_LIBCPP_END_NAMESPACE_STD
#else
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_END_NAMESPACE_VERSION
#endif // _GLIBCXX_BEGIN_NAMESPACE_VERSION
} // namespace std
#endif // _LIBCPP_END_NAMESPACE_STD
#endif // !defined(__HIPCC_RTC__)
// Define device-side math functions from <ymath.h> on MSVC.
#if !defined(__HIPCC_RTC__)
#if defined(_MSC_VER)
// Before VS2019, `<ymath.h>` is also included in `<limits>` and other headers.
// But, from VS2019, it's only included in `<complex>`. Need to include
// `<ymath.h>` here to ensure C functions declared there won't be markded as
// `__host__` and `__device__` through `<complex>` wrapper.
#include <ymath.h>
#if defined(__cplusplus)
extern "C" {
#endif // defined(__cplusplus)
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) double _Cosh(double x,
double y) {
return cosh(x) * y;
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) float _FCosh(float x,
float y) {
return coshf(x) * y;
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) short _Dtest(double *p) {
return fpclassify(*p);
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) short _FDtest(float *p) {
return fpclassify(*p);
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) double _Sinh(double x,
double y) {
return sinh(x) * y;
}
__DEVICE__ __CONSTEXPR__ __attribute__((overloadable)) float _FSinh(float x,
float y) {
return sinhf(x) * y;
}
#if defined(__cplusplus)
}
#endif // defined(__cplusplus)
#endif // defined(_MSC_VER)
#endif // !defined(__HIPCC_RTC__)
#endif // ifndef __OPENMP_AMDGCN__
#pragma pop_macro("__DEVICE__")
#pragma pop_macro("__CONSTEXPR__")
#endif // __CLANG_HIP_CMATH_H__

View File

@ -1,353 +0,0 @@
/*===---- __clang_hip_libdevice_declares.h - HIP device library decls -------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_HIP_LIBDEVICE_DECLARES_H__
#define __CLANG_HIP_LIBDEVICE_DECLARES_H__
#if !defined(__HIPCC_RTC__) && __has_include("hip/hip_version.h")
#include "hip/hip_version.h"
#endif // __has_include("hip/hip_version.h")
#ifdef __cplusplus
extern "C" {
#endif
// BEGIN FLOAT
__device__ __attribute__((const)) float __ocml_acos_f32(float);
__device__ __attribute__((pure)) float __ocml_acosh_f32(float);
__device__ __attribute__((const)) float __ocml_asin_f32(float);
__device__ __attribute__((pure)) float __ocml_asinh_f32(float);
__device__ __attribute__((const)) float __ocml_atan2_f32(float, float);
__device__ __attribute__((const)) float __ocml_atan_f32(float);
__device__ __attribute__((pure)) float __ocml_atanh_f32(float);
__device__ __attribute__((pure)) float __ocml_cbrt_f32(float);
__device__ __attribute__((const)) float __ocml_ceil_f32(float);
__device__ __attribute__((const)) __device__ float __ocml_copysign_f32(float,
float);
__device__ float __ocml_cos_f32(float);
__device__ float __ocml_native_cos_f32(float);
__device__ __attribute__((pure)) __device__ float __ocml_cosh_f32(float);
__device__ float __ocml_cospi_f32(float);
__device__ float __ocml_i0_f32(float);
__device__ float __ocml_i1_f32(float);
__device__ __attribute__((pure)) float __ocml_erfc_f32(float);
__device__ __attribute__((pure)) float __ocml_erfcinv_f32(float);
__device__ __attribute__((pure)) float __ocml_erfcx_f32(float);
__device__ __attribute__((pure)) float __ocml_erf_f32(float);
__device__ __attribute__((pure)) float __ocml_erfinv_f32(float);
__device__ __attribute__((pure)) float __ocml_exp10_f32(float);
__device__ __attribute__((pure)) float __ocml_native_exp10_f32(float);
__device__ __attribute__((pure)) float __ocml_exp2_f32(float);
__device__ __attribute__((pure)) float __ocml_exp_f32(float);
__device__ __attribute__((pure)) float __ocml_native_exp_f32(float);
__device__ __attribute__((pure)) float __ocml_expm1_f32(float);
__device__ __attribute__((const)) float __ocml_fabs_f32(float);
__device__ __attribute__((const)) float __ocml_fdim_f32(float, float);
__device__ __attribute__((const)) float __ocml_floor_f32(float);
__device__ __attribute__((const)) float __ocml_fma_f32(float, float, float);
__device__ __attribute__((const)) float __ocml_fmax_f32(float, float);
__device__ __attribute__((const)) float __ocml_fmin_f32(float, float);
__device__ __attribute__((const)) __device__ float __ocml_fmod_f32(float,
float);
__device__ float __ocml_frexp_f32(float,
__attribute__((address_space(5))) int *);
__device__ __attribute__((const)) float __ocml_hypot_f32(float, float);
__device__ __attribute__((const)) int __ocml_ilogb_f32(float);
__device__ __attribute__((const)) int __ocml_isfinite_f32(float);
__device__ __attribute__((const)) int __ocml_isinf_f32(float);
__device__ __attribute__((const)) int __ocml_isnan_f32(float);
__device__ float __ocml_j0_f32(float);
__device__ float __ocml_j1_f32(float);
__device__ __attribute__((const)) float __ocml_ldexp_f32(float, int);
__device__ float __ocml_lgamma_f32(float);
__device__ __attribute__((pure)) float __ocml_log10_f32(float);
__device__ __attribute__((pure)) float __ocml_native_log10_f32(float);
__device__ __attribute__((pure)) float __ocml_log1p_f32(float);
__device__ __attribute__((pure)) float __ocml_log2_f32(float);
__device__ __attribute__((pure)) float __ocml_native_log2_f32(float);
__device__ __attribute__((const)) float __ocml_logb_f32(float);
__device__ __attribute__((pure)) float __ocml_log_f32(float);
__device__ __attribute__((pure)) float __ocml_native_log_f32(float);
__device__ float __ocml_modf_f32(float,
__attribute__((address_space(5))) float *);
__device__ __attribute__((const)) float __ocml_nearbyint_f32(float);
__device__ __attribute__((const)) float __ocml_nextafter_f32(float, float);
__device__ __attribute__((const)) float __ocml_len3_f32(float, float, float);
__device__ __attribute__((const)) float __ocml_len4_f32(float, float, float,
float);
__device__ __attribute__((pure)) float __ocml_ncdf_f32(float);
__device__ __attribute__((pure)) float __ocml_ncdfinv_f32(float);
__device__ __attribute__((pure)) float __ocml_pow_f32(float, float);
__device__ __attribute__((pure)) float __ocml_pown_f32(float, int);
__device__ __attribute__((pure)) float __ocml_rcbrt_f32(float);
__device__ __attribute__((const)) float __ocml_remainder_f32(float, float);
__device__ float __ocml_remquo_f32(float, float,
__attribute__((address_space(5))) int *);
__device__ __attribute__((const)) float __ocml_rhypot_f32(float, float);
__device__ __attribute__((const)) float __ocml_rint_f32(float);
__device__ __attribute__((const)) float __ocml_rlen3_f32(float, float, float);
__device__ __attribute__((const)) float __ocml_rlen4_f32(float, float, float,
float);
__device__ __attribute__((const)) float __ocml_round_f32(float);
__device__ __attribute__((pure)) float __ocml_rsqrt_f32(float);
__device__ __attribute__((const)) float __ocml_scalb_f32(float, float);
__device__ __attribute__((const)) float __ocml_scalbn_f32(float, int);
__device__ __attribute__((const)) int __ocml_signbit_f32(float);
__device__ float __ocml_sincos_f32(float,
__attribute__((address_space(5))) float *);
__device__ float __ocml_sincospi_f32(float,
__attribute__((address_space(5))) float *);
__device__ float __ocml_sin_f32(float);
__device__ float __ocml_native_sin_f32(float);
__device__ __attribute__((pure)) float __ocml_sinh_f32(float);
__device__ float __ocml_sinpi_f32(float);
__device__ __attribute__((const)) float __ocml_sqrt_f32(float);
__device__ __attribute__((const)) float __ocml_native_sqrt_f32(float);
__device__ float __ocml_tan_f32(float);
__device__ __attribute__((pure)) float __ocml_tanh_f32(float);
__device__ float __ocml_tgamma_f32(float);
__device__ __attribute__((const)) float __ocml_trunc_f32(float);
__device__ float __ocml_y0_f32(float);
__device__ float __ocml_y1_f32(float);
// BEGIN INTRINSICS
__device__ __attribute__((const)) float __ocml_add_rte_f32(float, float);
__device__ __attribute__((const)) float __ocml_add_rtn_f32(float, float);
__device__ __attribute__((const)) float __ocml_add_rtp_f32(float, float);
__device__ __attribute__((const)) float __ocml_add_rtz_f32(float, float);
__device__ __attribute__((const)) float __ocml_sub_rte_f32(float, float);
__device__ __attribute__((const)) float __ocml_sub_rtn_f32(float, float);
__device__ __attribute__((const)) float __ocml_sub_rtp_f32(float, float);
__device__ __attribute__((const)) float __ocml_sub_rtz_f32(float, float);
__device__ __attribute__((const)) float __ocml_mul_rte_f32(float, float);
__device__ __attribute__((const)) float __ocml_mul_rtn_f32(float, float);
__device__ __attribute__((const)) float __ocml_mul_rtp_f32(float, float);
__device__ __attribute__((const)) float __ocml_mul_rtz_f32(float, float);
__device__ __attribute__((const)) float __ocml_div_rte_f32(float, float);
__device__ __attribute__((const)) float __ocml_div_rtn_f32(float, float);
__device__ __attribute__((const)) float __ocml_div_rtp_f32(float, float);
__device__ __attribute__((const)) float __ocml_div_rtz_f32(float, float);
__device__ __attribute__((const)) float __ocml_sqrt_rte_f32(float);
__device__ __attribute__((const)) float __ocml_sqrt_rtn_f32(float);
__device__ __attribute__((const)) float __ocml_sqrt_rtp_f32(float);
__device__ __attribute__((const)) float __ocml_sqrt_rtz_f32(float);
__device__ __attribute__((const)) float __ocml_fma_rte_f32(float, float, float);
__device__ __attribute__((const)) float __ocml_fma_rtn_f32(float, float, float);
__device__ __attribute__((const)) float __ocml_fma_rtp_f32(float, float, float);
__device__ __attribute__((const)) float __ocml_fma_rtz_f32(float, float, float);
// END INTRINSICS
// END FLOAT
// BEGIN DOUBLE
__device__ __attribute__((const)) double __ocml_acos_f64(double);
__device__ __attribute__((pure)) double __ocml_acosh_f64(double);
__device__ __attribute__((const)) double __ocml_asin_f64(double);
__device__ __attribute__((pure)) double __ocml_asinh_f64(double);
__device__ __attribute__((const)) double __ocml_atan2_f64(double, double);
__device__ __attribute__((const)) double __ocml_atan_f64(double);
__device__ __attribute__((pure)) double __ocml_atanh_f64(double);
__device__ __attribute__((pure)) double __ocml_cbrt_f64(double);
__device__ __attribute__((const)) double __ocml_ceil_f64(double);
__device__ __attribute__((const)) double __ocml_copysign_f64(double, double);
__device__ double __ocml_cos_f64(double);
__device__ __attribute__((pure)) double __ocml_cosh_f64(double);
__device__ double __ocml_cospi_f64(double);
__device__ double __ocml_i0_f64(double);
__device__ double __ocml_i1_f64(double);
__device__ __attribute__((pure)) double __ocml_erfc_f64(double);
__device__ __attribute__((pure)) double __ocml_erfcinv_f64(double);
__device__ __attribute__((pure)) double __ocml_erfcx_f64(double);
__device__ __attribute__((pure)) double __ocml_erf_f64(double);
__device__ __attribute__((pure)) double __ocml_erfinv_f64(double);
__device__ __attribute__((pure)) double __ocml_exp10_f64(double);
__device__ __attribute__((pure)) double __ocml_exp2_f64(double);
__device__ __attribute__((pure)) double __ocml_exp_f64(double);
__device__ __attribute__((pure)) double __ocml_expm1_f64(double);
__device__ __attribute__((const)) double __ocml_fabs_f64(double);
__device__ __attribute__((const)) double __ocml_fdim_f64(double, double);
__device__ __attribute__((const)) double __ocml_floor_f64(double);
__device__ __attribute__((const)) double __ocml_fma_f64(double, double, double);
__device__ __attribute__((const)) double __ocml_fmax_f64(double, double);
__device__ __attribute__((const)) double __ocml_fmin_f64(double, double);
__device__ __attribute__((const)) double __ocml_fmod_f64(double, double);
__device__ double __ocml_frexp_f64(double,
__attribute__((address_space(5))) int *);
__device__ __attribute__((const)) double __ocml_hypot_f64(double, double);
__device__ __attribute__((const)) int __ocml_ilogb_f64(double);
__device__ __attribute__((const)) int __ocml_isfinite_f64(double);
__device__ __attribute__((const)) int __ocml_isinf_f64(double);
__device__ __attribute__((const)) int __ocml_isnan_f64(double);
__device__ double __ocml_j0_f64(double);
__device__ double __ocml_j1_f64(double);
__device__ __attribute__((const)) double __ocml_ldexp_f64(double, int);
__device__ double __ocml_lgamma_f64(double);
__device__ __attribute__((pure)) double __ocml_log10_f64(double);
__device__ __attribute__((pure)) double __ocml_log1p_f64(double);
__device__ __attribute__((pure)) double __ocml_log2_f64(double);
__device__ __attribute__((const)) double __ocml_logb_f64(double);
__device__ __attribute__((pure)) double __ocml_log_f64(double);
__device__ double __ocml_modf_f64(double,
__attribute__((address_space(5))) double *);
__device__ __attribute__((const)) double __ocml_nearbyint_f64(double);
__device__ __attribute__((const)) double __ocml_nextafter_f64(double, double);
__device__ __attribute__((const)) double __ocml_len3_f64(double, double,
double);
__device__ __attribute__((const)) double __ocml_len4_f64(double, double, double,
double);
__device__ __attribute__((pure)) double __ocml_ncdf_f64(double);
__device__ __attribute__((pure)) double __ocml_ncdfinv_f64(double);
__device__ __attribute__((pure)) double __ocml_pow_f64(double, double);
__device__ __attribute__((pure)) double __ocml_pown_f64(double, int);
__device__ __attribute__((pure)) double __ocml_rcbrt_f64(double);
__device__ __attribute__((const)) double __ocml_remainder_f64(double, double);
__device__ double __ocml_remquo_f64(double, double,
__attribute__((address_space(5))) int *);
__device__ __attribute__((const)) double __ocml_rhypot_f64(double, double);
__device__ __attribute__((const)) double __ocml_rint_f64(double);
__device__ __attribute__((const)) double __ocml_rlen3_f64(double, double,
double);
__device__ __attribute__((const)) double __ocml_rlen4_f64(double, double,
double, double);
__device__ __attribute__((const)) double __ocml_round_f64(double);
__device__ __attribute__((pure)) double __ocml_rsqrt_f64(double);
__device__ __attribute__((const)) double __ocml_scalb_f64(double, double);
__device__ __attribute__((const)) double __ocml_scalbn_f64(double, int);
__device__ __attribute__((const)) int __ocml_signbit_f64(double);
__device__ double __ocml_sincos_f64(double,
__attribute__((address_space(5))) double *);
__device__ double
__ocml_sincospi_f64(double, __attribute__((address_space(5))) double *);
__device__ double __ocml_sin_f64(double);
__device__ __attribute__((pure)) double __ocml_sinh_f64(double);
__device__ double __ocml_sinpi_f64(double);
__device__ __attribute__((const)) double __ocml_sqrt_f64(double);
__device__ double __ocml_tan_f64(double);
__device__ __attribute__((pure)) double __ocml_tanh_f64(double);
__device__ double __ocml_tgamma_f64(double);
__device__ __attribute__((const)) double __ocml_trunc_f64(double);
__device__ double __ocml_y0_f64(double);
__device__ double __ocml_y1_f64(double);
// BEGIN INTRINSICS
__device__ __attribute__((const)) double __ocml_add_rte_f64(double, double);
__device__ __attribute__((const)) double __ocml_add_rtn_f64(double, double);
__device__ __attribute__((const)) double __ocml_add_rtp_f64(double, double);
__device__ __attribute__((const)) double __ocml_add_rtz_f64(double, double);
__device__ __attribute__((const)) double __ocml_sub_rte_f64(double, double);
__device__ __attribute__((const)) double __ocml_sub_rtn_f64(double, double);
__device__ __attribute__((const)) double __ocml_sub_rtp_f64(double, double);
__device__ __attribute__((const)) double __ocml_sub_rtz_f64(double, double);
__device__ __attribute__((const)) double __ocml_mul_rte_f64(double, double);
__device__ __attribute__((const)) double __ocml_mul_rtn_f64(double, double);
__device__ __attribute__((const)) double __ocml_mul_rtp_f64(double, double);
__device__ __attribute__((const)) double __ocml_mul_rtz_f64(double, double);
__device__ __attribute__((const)) double __ocml_div_rte_f64(double, double);
__device__ __attribute__((const)) double __ocml_div_rtn_f64(double, double);
__device__ __attribute__((const)) double __ocml_div_rtp_f64(double, double);
__device__ __attribute__((const)) double __ocml_div_rtz_f64(double, double);
__device__ __attribute__((const)) double __ocml_sqrt_rte_f64(double);
__device__ __attribute__((const)) double __ocml_sqrt_rtn_f64(double);
__device__ __attribute__((const)) double __ocml_sqrt_rtp_f64(double);
__device__ __attribute__((const)) double __ocml_sqrt_rtz_f64(double);
__device__ __attribute__((const)) double __ocml_fma_rte_f64(double, double,
double);
__device__ __attribute__((const)) double __ocml_fma_rtn_f64(double, double,
double);
__device__ __attribute__((const)) double __ocml_fma_rtp_f64(double, double,
double);
__device__ __attribute__((const)) double __ocml_fma_rtz_f64(double, double,
double);
__device__ __attribute__((const)) _Float16 __ocml_ceil_f16(_Float16);
__device__ _Float16 __ocml_cos_f16(_Float16);
__device__ __attribute__((const)) _Float16 __ocml_cvtrtn_f16_f32(float);
__device__ __attribute__((const)) _Float16 __ocml_cvtrtp_f16_f32(float);
__device__ __attribute__((const)) _Float16 __ocml_cvtrtz_f16_f32(float);
__device__ __attribute__((pure)) _Float16 __ocml_exp_f16(_Float16);
__device__ __attribute__((pure)) _Float16 __ocml_exp10_f16(_Float16);
__device__ __attribute__((pure)) _Float16 __ocml_exp2_f16(_Float16);
__device__ __attribute__((const)) _Float16 __ocml_floor_f16(_Float16);
__device__ __attribute__((const)) _Float16 __ocml_fma_f16(_Float16, _Float16,
_Float16);
__device__ __attribute__((const)) _Float16 __ocml_fmax_f16(_Float16, _Float16);
__device__ __attribute__((const)) _Float16 __ocml_fmin_f16(_Float16, _Float16);
__device__ __attribute__((const)) _Float16 __ocml_fabs_f16(_Float16);
__device__ __attribute__((const)) int __ocml_isinf_f16(_Float16);
__device__ __attribute__((const)) int __ocml_isnan_f16(_Float16);
__device__ __attribute__((pure)) _Float16 __ocml_log_f16(_Float16);
__device__ __attribute__((pure)) _Float16 __ocml_log10_f16(_Float16);
__device__ __attribute__((pure)) _Float16 __ocml_log2_f16(_Float16);
__device__ __attribute__((const)) _Float16 __ocml_rint_f16(_Float16);
__device__ __attribute__((const)) _Float16 __ocml_rsqrt_f16(_Float16);
__device__ _Float16 __ocml_sin_f16(_Float16);
__device__ __attribute__((const)) _Float16 __ocml_sqrt_f16(_Float16);
__device__ __attribute__((const)) _Float16 __ocml_trunc_f16(_Float16);
__device__ __attribute__((pure)) _Float16 __ocml_pown_f16(_Float16, int);
typedef _Float16 __2f16 __attribute__((ext_vector_type(2)));
typedef short __2i16 __attribute__((ext_vector_type(2)));
// We need to match C99's bool and get an i1 in the IR.
#ifdef __cplusplus
typedef bool __ockl_bool;
#else
typedef _Bool __ockl_bool;
#endif
__device__ __attribute__((const)) float __ockl_fdot2(__2f16 a, __2f16 b,
float c, __ockl_bool s);
__device__ __attribute__((const)) __2f16 __ocml_ceil_2f16(__2f16);
__device__ __attribute__((const)) __2f16 __ocml_fabs_2f16(__2f16);
__device__ __2f16 __ocml_cos_2f16(__2f16);
__device__ __attribute__((pure)) __2f16 __ocml_exp_2f16(__2f16);
__device__ __attribute__((pure)) __2f16 __ocml_exp10_2f16(__2f16);
__device__ __attribute__((pure)) __2f16 __ocml_exp2_2f16(__2f16);
__device__ __attribute__((const)) __2f16 __ocml_floor_2f16(__2f16);
__device__ __attribute__((const))
__2f16 __ocml_fma_2f16(__2f16, __2f16, __2f16);
__device__ __attribute__((const)) __2i16 __ocml_isinf_2f16(__2f16);
__device__ __attribute__((const)) __2i16 __ocml_isnan_2f16(__2f16);
__device__ __attribute__((pure)) __2f16 __ocml_log_2f16(__2f16);
__device__ __attribute__((pure)) __2f16 __ocml_log10_2f16(__2f16);
__device__ __attribute__((pure)) __2f16 __ocml_log2_2f16(__2f16);
#if HIP_VERSION_MAJOR * 100 + HIP_VERSION_MINOR >= 560
#define __DEPRECATED_SINCE_HIP_560(X) __attribute__((deprecated(X)))
#else
#define __DEPRECATED_SINCE_HIP_560(X)
#endif
// Deprecated, should be removed when rocm releases using it are no longer
// relevant.
__DEPRECATED_SINCE_HIP_560("use ((_Float16)1.0) / ")
__device__ inline _Float16 __llvm_amdgcn_rcp_f16(_Float16 x) {
return ((_Float16)1.0f) / x;
}
__DEPRECATED_SINCE_HIP_560("use ((__2f16)1.0) / ")
__device__ inline __2f16
__llvm_amdgcn_rcp_2f16(__2f16 __x)
{
return ((__2f16)1.0f) / __x;
}
#undef __DEPRECATED_SINCE_HIP_560
__device__ __attribute__((const)) __2f16 __ocml_rint_2f16(__2f16);
__device__ __attribute__((const)) __2f16 __ocml_rsqrt_2f16(__2f16);
__device__ __2f16 __ocml_sin_2f16(__2f16);
__device__ __attribute__((const)) __2f16 __ocml_sqrt_2f16(__2f16);
__device__ __attribute__((const)) __2f16 __ocml_trunc_2f16(__2f16);
__device__ __attribute__((const)) __2f16 __ocml_pown_2f16(__2f16, __2i16);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // __CLANG_HIP_LIBDEVICE_DECLARES_H__

File diff suppressed because it is too large Load Diff

View File

@ -1,151 +0,0 @@
/*===---- __clang_hip_runtime_wrapper.h - HIP runtime support ---------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
/*
* WARNING: This header is intended to be directly -include'd by
* the compiler and is not supposed to be included by users.
*
*/
#ifndef __CLANG_HIP_RUNTIME_WRAPPER_H__
#define __CLANG_HIP_RUNTIME_WRAPPER_H__
#if __HIP__
#define __host__ __attribute__((host))
#define __device__ __attribute__((device))
#define __global__ __attribute__((global))
#define __shared__ __attribute__((shared))
#define __constant__ __attribute__((constant))
#define __managed__ __attribute__((managed))
#if !defined(__cplusplus) || __cplusplus < 201103L
#define nullptr NULL;
#endif
#ifdef __cplusplus
extern "C" {
__attribute__((__visibility__("default")))
__attribute__((weak))
__attribute__((noreturn))
__device__ void __cxa_pure_virtual(void) {
__builtin_trap();
}
__attribute__((__visibility__("default")))
__attribute__((weak))
__attribute__((noreturn))
__device__ void __cxa_deleted_virtual(void) {
__builtin_trap();
}
}
#endif //__cplusplus
#if !defined(__HIPCC_RTC__)
#include <cmath>
#include <cstdlib>
#include <stdlib.h>
#if __has_include("hip/hip_version.h")
#include "hip/hip_version.h"
#endif // __has_include("hip/hip_version.h")
#else
typedef __SIZE_TYPE__ size_t;
// Define macros which are needed to declare HIP device API's without standard
// C/C++ headers. This is for readability so that these API's can be written
// the same way as non-hipRTC use case. These macros need to be popped so that
// they do not pollute users' name space.
#pragma push_macro("NULL")
#pragma push_macro("uint32_t")
#pragma push_macro("uint64_t")
#pragma push_macro("CHAR_BIT")
#pragma push_macro("INT_MAX")
#define NULL (void *)0
#define uint32_t __UINT32_TYPE__
#define uint64_t __UINT64_TYPE__
#define CHAR_BIT __CHAR_BIT__
#define INT_MAX __INTMAX_MAX__
#endif // __HIPCC_RTC__
typedef __SIZE_TYPE__ __hip_size_t;
#ifdef __cplusplus
extern "C" {
#endif //__cplusplus
#if HIP_VERSION_MAJOR * 100 + HIP_VERSION_MINOR >= 405
extern "C" __device__ unsigned long long __ockl_dm_alloc(unsigned long long __size);
extern "C" __device__ void __ockl_dm_dealloc(unsigned long long __addr);
#if __has_feature(address_sanitizer)
extern "C" __device__ unsigned long long __asan_malloc_impl(unsigned long long __size, unsigned long long __pc);
extern "C" __device__ void __asan_free_impl(unsigned long long __addr, unsigned long long __pc);
__attribute__((noinline, weak)) __device__ void *malloc(__hip_size_t __size) {
unsigned long long __pc = (unsigned long long)__builtin_return_address(0);
return (void *)__asan_malloc_impl(__size, __pc);
}
__attribute__((noinline, weak)) __device__ void free(void *__ptr) {
unsigned long long __pc = (unsigned long long)__builtin_return_address(0);
__asan_free_impl((unsigned long long)__ptr, __pc);
}
#else
__attribute__((weak)) inline __device__ void *malloc(__hip_size_t __size) {
return (void *) __ockl_dm_alloc(__size);
}
__attribute__((weak)) inline __device__ void free(void *__ptr) {
__ockl_dm_dealloc((unsigned long long)__ptr);
}
#endif // __has_feature(address_sanitizer)
#else // HIP version check
#if __HIP_ENABLE_DEVICE_MALLOC__
__device__ void *__hip_malloc(__hip_size_t __size);
__device__ void *__hip_free(void *__ptr);
__attribute__((weak)) inline __device__ void *malloc(__hip_size_t __size) {
return __hip_malloc(__size);
}
__attribute__((weak)) inline __device__ void free(void *__ptr) {
__hip_free(__ptr);
}
#else
__attribute__((weak)) inline __device__ void *malloc(__hip_size_t __size) {
__builtin_trap();
return (void *)0;
}
__attribute__((weak)) inline __device__ void free(void *__ptr) {
__builtin_trap();
}
#endif
#endif // HIP version check
#ifdef __cplusplus
} // extern "C"
#endif //__cplusplus
#include <__clang_hip_libdevice_declares.h>
#include <__clang_hip_math.h>
#include <__clang_hip_stdlib.h>
#if defined(__HIPCC_RTC__)
#include <__clang_hip_cmath.h>
#else
#include <__clang_cuda_math_forward_declares.h>
#include <__clang_hip_cmath.h>
#include <__clang_cuda_complex_builtins.h>
#include <algorithm>
#include <complex>
#include <new>
#endif // __HIPCC_RTC__
#define __CLANG_HIP_RUNTIME_WRAPPER_INCLUDED__ 1
#if defined(__HIPCC_RTC__)
#pragma pop_macro("NULL")
#pragma pop_macro("uint32_t")
#pragma pop_macro("uint64_t")
#pragma pop_macro("CHAR_BIT")
#pragma pop_macro("INT_MAX")
#endif // __HIPCC_RTC__
#endif // __HIP__
#endif // __CLANG_HIP_RUNTIME_WRAPPER_H__

View File

@ -1,43 +0,0 @@
/*===---- __clang_hip_stdlib.h - Device-side HIP math support --------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_HIP_STDLIB_H__
#if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
#error "This file is for HIP and OpenMP AMDGCN device compilation only."
#endif
#if !defined(__cplusplus)
#include <limits.h>
#ifdef __OPENMP_AMDGCN__
#define __DEVICE__ static inline __attribute__((always_inline, nothrow))
#else
#define __DEVICE__ static __device__ inline __attribute__((always_inline))
#endif
__DEVICE__
int abs(int __x) {
int __sgn = __x >> (sizeof(int) * CHAR_BIT - 1);
return (__x ^ __sgn) - __sgn;
}
__DEVICE__
long labs(long __x) {
long __sgn = __x >> (sizeof(long) * CHAR_BIT - 1);
return (__x ^ __sgn) - __sgn;
}
__DEVICE__
long long llabs(long long __x) {
long long __sgn = __x >> (sizeof(long long) * CHAR_BIT - 1);
return (__x ^ __sgn) - __sgn;
}
#endif // !defined(__cplusplus)
#endif // #define __CLANG_HIP_STDLIB_H__

View File

@ -1,27 +0,0 @@
/*===---- __stddef_max_align_t.h - Definition of max_align_t for modules ---===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_MAX_ALIGN_T_DEFINED
#define __CLANG_MAX_ALIGN_T_DEFINED
#if defined(_MSC_VER)
typedef double max_align_t;
#elif defined(__APPLE__)
typedef long double max_align_t;
#else
// Define 'max_align_t' to match the GCC definition.
typedef struct {
long long __clang_max_align_nonce1
__attribute__((__aligned__(__alignof__(long long))));
long double __clang_max_align_nonce2
__attribute__((__aligned__(__alignof__(long double))));
} max_align_t;
#endif
#endif

View File

@ -1,140 +0,0 @@
/*===---- __wmmintrin_aes.h - AES intrinsics -------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __WMMINTRIN_H
#error "Never use <__wmmintrin_aes.h> directly; include <wmmintrin.h> instead."
#endif
#ifndef __WMMINTRIN_AES_H
#define __WMMINTRIN_AES_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("aes"), __min_vector_width__(128)))
/// Performs a single round of AES encryption using the Equivalent
/// Inverse Cipher, transforming the state value from the first source
/// operand using a 128-bit round key value contained in the second source
/// operand, and writes the result to the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VAESENC </c> instruction.
///
/// \param __V
/// A 128-bit integer vector containing the state value.
/// \param __R
/// A 128-bit integer vector containing the round key value.
/// \returns A 128-bit integer vector containing the encrypted value.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_aesenc_si128(__m128i __V, __m128i __R)
{
return (__m128i)__builtin_ia32_aesenc128((__v2di)__V, (__v2di)__R);
}
/// Performs the final round of AES encryption using the Equivalent
/// Inverse Cipher, transforming the state value from the first source
/// operand using a 128-bit round key value contained in the second source
/// operand, and writes the result to the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VAESENCLAST </c> instruction.
///
/// \param __V
/// A 128-bit integer vector containing the state value.
/// \param __R
/// A 128-bit integer vector containing the round key value.
/// \returns A 128-bit integer vector containing the encrypted value.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_aesenclast_si128(__m128i __V, __m128i __R)
{
return (__m128i)__builtin_ia32_aesenclast128((__v2di)__V, (__v2di)__R);
}
/// Performs a single round of AES decryption using the Equivalent
/// Inverse Cipher, transforming the state value from the first source
/// operand using a 128-bit round key value contained in the second source
/// operand, and writes the result to the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VAESDEC </c> instruction.
///
/// \param __V
/// A 128-bit integer vector containing the state value.
/// \param __R
/// A 128-bit integer vector containing the round key value.
/// \returns A 128-bit integer vector containing the decrypted value.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_aesdec_si128(__m128i __V, __m128i __R)
{
return (__m128i)__builtin_ia32_aesdec128((__v2di)__V, (__v2di)__R);
}
/// Performs the final round of AES decryption using the Equivalent
/// Inverse Cipher, transforming the state value from the first source
/// operand using a 128-bit round key value contained in the second source
/// operand, and writes the result to the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VAESDECLAST </c> instruction.
///
/// \param __V
/// A 128-bit integer vector containing the state value.
/// \param __R
/// A 128-bit integer vector containing the round key value.
/// \returns A 128-bit integer vector containing the decrypted value.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_aesdeclast_si128(__m128i __V, __m128i __R)
{
return (__m128i)__builtin_ia32_aesdeclast128((__v2di)__V, (__v2di)__R);
}
/// Applies the AES InvMixColumns() transformation to an expanded key
/// contained in the source operand, and writes the result to the
/// destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VAESIMC </c> instruction.
///
/// \param __V
/// A 128-bit integer vector containing the expanded key.
/// \returns A 128-bit integer vector containing the transformed value.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_aesimc_si128(__m128i __V)
{
return (__m128i)__builtin_ia32_aesimc128((__v2di)__V);
}
/// Generates a round key for AES encryption, operating on 128-bit data
/// specified in the first source operand and using an 8-bit round constant
/// specified by the second source operand, and writes the result to the
/// destination.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_aeskeygenassist_si128(__m128i C, const int R);
/// \endcode
///
/// This intrinsic corresponds to the <c> AESKEYGENASSIST </c> instruction.
///
/// \param C
/// A 128-bit integer vector that is used to generate the AES encryption key.
/// \param R
/// An 8-bit round constant used to generate the AES encryption key.
/// \returns A 128-bit round key for AES encryption.
#define _mm_aeskeygenassist_si128(C, R) \
((__m128i)__builtin_ia32_aeskeygenassist128((__v2di)(__m128i)(C), (int)(R)))
#undef __DEFAULT_FN_ATTRS
#endif /* __WMMINTRIN_AES_H */

View File

@ -1,48 +0,0 @@
/*===---- __wmmintrin_pclmul.h - PCMUL intrinsics ---------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __WMMINTRIN_H
#error "Never use <__wmmintrin_pclmul.h> directly; include <wmmintrin.h> instead."
#endif
#ifndef __WMMINTRIN_PCLMUL_H
#define __WMMINTRIN_PCLMUL_H
/// Multiplies two 64-bit integer values, which are selected from source
/// operands using the immediate-value operand. The multiplication is a
/// carry-less multiplication, and the 128-bit integer product is stored in
/// the destination.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_clmulepi64_si128(__m128i X, __m128i Y, const int I);
/// \endcode
///
/// This intrinsic corresponds to the <c> VPCLMULQDQ </c> instruction.
///
/// \param X
/// A 128-bit vector of [2 x i64] containing one of the source operands.
/// \param Y
/// A 128-bit vector of [2 x i64] containing one of the source operands.
/// \param I
/// An immediate value specifying which 64-bit values to select from the
/// operands. Bit 0 is used to select a value from operand \a X, and bit
/// 4 is used to select a value from operand \a Y: \n
/// Bit[0]=0 indicates that bits[63:0] of operand \a X are used. \n
/// Bit[0]=1 indicates that bits[127:64] of operand \a X are used. \n
/// Bit[4]=0 indicates that bits[63:0] of operand \a Y are used. \n
/// Bit[4]=1 indicates that bits[127:64] of operand \a Y are used.
/// \returns The 128-bit integer vector containing the result of the carry-less
/// multiplication of the selected 64-bit values.
#define _mm_clmulepi64_si128(X, Y, I) \
((__m128i)__builtin_ia32_pclmulqdq128((__v2di)(__m128i)(X), \
(__v2di)(__m128i)(Y), (char)(I)))
#endif /* __WMMINTRIN_PCLMUL_H */

View File

@ -1,227 +0,0 @@
/*===---- adxintrin.h - ADX intrinsics -------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <adxintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __ADXINTRIN_H
#define __ADXINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__))
/* Use C++ inline semantics in C++, GNU inline for C mode. */
#if defined(__cplusplus)
#define __INLINE __inline
#else
#define __INLINE static __inline
#endif
#if defined(__cplusplus)
extern "C" {
#endif
/* Intrinsics that are available only if __ADX__ is defined. */
/// Adds unsigned 32-bit integers \a __x and \a __y, plus 0 or 1 as indicated
/// by the carry flag \a __cf. Stores the unsigned 32-bit sum in the memory
/// at \a __p, and returns the 8-bit carry-out (carry flag).
///
/// \code{.operation}
/// temp := (__cf == 0) ? 0 : 1
/// Store32(__p, __x + __y + temp)
/// result := CF
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c ADCX instruction.
///
/// \param __cf
/// The 8-bit unsigned carry flag; any non-zero value indicates carry.
/// \param __x
/// A 32-bit unsigned addend.
/// \param __y
/// A 32-bit unsigned addend.
/// \param __p
/// Pointer to memory for storing the sum.
/// \returns The 8-bit unsigned carry-out value.
__INLINE unsigned char
__attribute__((__always_inline__, __nodebug__, __target__("adx")))
_addcarryx_u32(unsigned char __cf, unsigned int __x, unsigned int __y,
unsigned int *__p) {
return __builtin_ia32_addcarryx_u32(__cf, __x, __y, __p);
}
#ifdef __x86_64__
/// Adds unsigned 64-bit integers \a __x and \a __y, plus 0 or 1 as indicated
/// by the carry flag \a __cf. Stores the unsigned 64-bit sum in the memory
/// at \a __p, and returns the 8-bit carry-out (carry flag).
///
/// \code{.operation}
/// temp := (__cf == 0) ? 0 : 1
/// Store64(__p, __x + __y + temp)
/// result := CF
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c ADCX instruction.
///
/// \param __cf
/// The 8-bit unsigned carry flag; any non-zero value indicates carry.
/// \param __x
/// A 64-bit unsigned addend.
/// \param __y
/// A 64-bit unsigned addend.
/// \param __p
/// Pointer to memory for storing the sum.
/// \returns The 8-bit unsigned carry-out value.
__INLINE unsigned char
__attribute__((__always_inline__, __nodebug__, __target__("adx")))
_addcarryx_u64(unsigned char __cf, unsigned long long __x,
unsigned long long __y, unsigned long long *__p) {
return __builtin_ia32_addcarryx_u64(__cf, __x, __y, __p);
}
#endif
/* Intrinsics that are also available if __ADX__ is undefined. */
/// Adds unsigned 32-bit integers \a __x and \a __y, plus 0 or 1 as indicated
/// by the carry flag \a __cf. Stores the unsigned 32-bit sum in the memory
/// at \a __p, and returns the 8-bit carry-out (carry flag).
///
/// \code{.operation}
/// temp := (__cf == 0) ? 0 : 1
/// Store32(__p, __x + __y + temp)
/// result := CF
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c ADC instruction.
///
/// \param __cf
/// The 8-bit unsigned carry flag; any non-zero value indicates carry.
/// \param __x
/// A 32-bit unsigned addend.
/// \param __y
/// A 32-bit unsigned addend.
/// \param __p
/// Pointer to memory for storing the sum.
/// \returns The 8-bit unsigned carry-out value.
__INLINE unsigned char __DEFAULT_FN_ATTRS _addcarry_u32(unsigned char __cf,
unsigned int __x,
unsigned int __y,
unsigned int *__p) {
return __builtin_ia32_addcarryx_u32(__cf, __x, __y, __p);
}
#ifdef __x86_64__
/// Adds unsigned 64-bit integers \a __x and \a __y, plus 0 or 1 as indicated
/// by the carry flag \a __cf. Stores the unsigned 64-bit sum in the memory
/// at \a __p, and returns the 8-bit carry-out (carry flag).
///
/// \code{.operation}
/// temp := (__cf == 0) ? 0 : 1
/// Store64(__p, __x + __y + temp)
/// result := CF
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c ADC instruction.
///
/// \param __cf
/// The 8-bit unsigned carry flag; any non-zero value indicates carry.
/// \param __x
/// A 64-bit unsigned addend.
/// \param __y
/// A 64-bit unsigned addend.
/// \param __p
/// Pointer to memory for storing the sum.
/// \returns The 8-bit unsigned carry-out value.
__INLINE unsigned char __DEFAULT_FN_ATTRS
_addcarry_u64(unsigned char __cf, unsigned long long __x,
unsigned long long __y, unsigned long long *__p) {
return __builtin_ia32_addcarryx_u64(__cf, __x, __y, __p);
}
#endif
/// Adds unsigned 32-bit integer \a __y to 0 or 1 as indicated by the carry
/// flag \a __cf, and subtracts the result from unsigned 32-bit integer
/// \a __x. Stores the unsigned 32-bit difference in the memory at \a __p,
/// and returns the 8-bit carry-out (carry or overflow flag).
///
/// \code{.operation}
/// temp := (__cf == 0) ? 0 : 1
/// Store32(__p, __x - (__y + temp))
/// result := CF
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c SBB instruction.
///
/// \param __cf
/// The 8-bit unsigned carry flag; any non-zero value indicates carry.
/// \param __x
/// The 32-bit unsigned minuend.
/// \param __y
/// The 32-bit unsigned subtrahend.
/// \param __p
/// Pointer to memory for storing the difference.
/// \returns The 8-bit unsigned carry-out value.
__INLINE unsigned char __DEFAULT_FN_ATTRS _subborrow_u32(unsigned char __cf,
unsigned int __x,
unsigned int __y,
unsigned int *__p) {
return __builtin_ia32_subborrow_u32(__cf, __x, __y, __p);
}
#ifdef __x86_64__
/// Adds unsigned 64-bit integer \a __y to 0 or 1 as indicated by the carry
/// flag \a __cf, and subtracts the result from unsigned 64-bit integer
/// \a __x. Stores the unsigned 64-bit difference in the memory at \a __p,
/// and returns the 8-bit carry-out (carry or overflow flag).
///
/// \code{.operation}
/// temp := (__cf == 0) ? 0 : 1
/// Store64(__p, __x - (__y + temp))
/// result := CF
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c ADC instruction.
///
/// \param __cf
/// The 8-bit unsigned carry flag; any non-zero value indicates carry.
/// \param __x
/// The 64-bit unsigned minuend.
/// \param __y
/// The 64-bit unsigned subtrahend.
/// \param __p
/// Pointer to memory for storing the difference.
/// \returns The 8-bit unsigned carry-out value.
__INLINE unsigned char __DEFAULT_FN_ATTRS
_subborrow_u64(unsigned char __cf, unsigned long long __x,
unsigned long long __y, unsigned long long *__p) {
return __builtin_ia32_subborrow_u64(__cf, __x, __y, __p);
}
#endif
#if defined(__cplusplus)
}
#endif
#undef __DEFAULT_FN_ATTRS
#endif /* __ADXINTRIN_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,183 +0,0 @@
/*===---- ammintrin.h - SSE4a intrinsics -----------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __AMMINTRIN_H
#define __AMMINTRIN_H
#if !defined(__i386__) && !defined(__x86_64__)
#error "This header is only meant to be used on x86 and x64 architecture"
#endif
#include <pmmintrin.h>
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4a"), __min_vector_width__(128)))
/// Extracts the specified bits from the lower 64 bits of the 128-bit
/// integer vector operand at the index \a idx and of the length \a len.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_extracti_si64(__m128i x, const int len, const int idx);
/// \endcode
///
/// This intrinsic corresponds to the <c> EXTRQ </c> instruction.
///
/// \param x
/// The value from which bits are extracted.
/// \param len
/// Bits [5:0] specify the length; the other bits are ignored. If bits [5:0]
/// are zero, the length is interpreted as 64.
/// \param idx
/// Bits [5:0] specify the index of the least significant bit; the other
/// bits are ignored. If the sum of the index and length is greater than 64,
/// the result is undefined. If the length and index are both zero, bits
/// [63:0] of parameter \a x are extracted. If the length is zero but the
/// index is non-zero, the result is undefined.
/// \returns A 128-bit integer vector whose lower 64 bits contain the bits
/// extracted from the source operand.
#define _mm_extracti_si64(x, len, idx) \
((__m128i)__builtin_ia32_extrqi((__v2di)(__m128i)(x), \
(char)(len), (char)(idx)))
/// Extracts the specified bits from the lower 64 bits of the 128-bit
/// integer vector operand at the index and of the length specified by
/// \a __y.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> EXTRQ </c> instruction.
///
/// \param __x
/// The value from which bits are extracted.
/// \param __y
/// Specifies the index of the least significant bit at [13:8] and the
/// length at [5:0]; all other bits are ignored. If bits [5:0] are zero, the
/// length is interpreted as 64. If the sum of the index and length is
/// greater than 64, the result is undefined. If the length and index are
/// both zero, bits [63:0] of parameter \a __x are extracted. If the length
/// is zero but the index is non-zero, the result is undefined.
/// \returns A 128-bit vector whose lower 64 bits contain the bits extracted
/// from the source operand.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_extract_si64(__m128i __x, __m128i __y)
{
return (__m128i)__builtin_ia32_extrq((__v2di)__x, (__v16qi)__y);
}
/// Inserts bits of a specified length from the source integer vector
/// \a y into the lower 64 bits of the destination integer vector \a x at
/// the index \a idx and of the length \a len.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_inserti_si64(__m128i x, __m128i y, const int len,
/// const int idx);
/// \endcode
///
/// This intrinsic corresponds to the <c> INSERTQ </c> instruction.
///
/// \param x
/// The destination operand where bits will be inserted. The inserted bits
/// are defined by the length \a len and by the index \a idx specifying the
/// least significant bit.
/// \param y
/// The source operand containing the bits to be extracted. The extracted
/// bits are the least significant bits of operand \a y of length \a len.
/// \param len
/// Bits [5:0] specify the length; the other bits are ignored. If bits [5:0]
/// are zero, the length is interpreted as 64.
/// \param idx
/// Bits [5:0] specify the index of the least significant bit; the other
/// bits are ignored. If the sum of the index and length is greater than 64,
/// the result is undefined. If the length and index are both zero, bits
/// [63:0] of parameter \a y are inserted into parameter \a x. If the length
/// is zero but the index is non-zero, the result is undefined.
/// \returns A 128-bit integer vector containing the original lower 64-bits of
/// destination operand \a x with the specified bitfields replaced by the
/// lower bits of source operand \a y. The upper 64 bits of the return value
/// are undefined.
#define _mm_inserti_si64(x, y, len, idx) \
((__m128i)__builtin_ia32_insertqi((__v2di)(__m128i)(x), \
(__v2di)(__m128i)(y), \
(char)(len), (char)(idx)))
/// Inserts bits of a specified length from the source integer vector
/// \a __y into the lower 64 bits of the destination integer vector \a __x
/// at the index and of the length specified by \a __y.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> INSERTQ </c> instruction.
///
/// \param __x
/// The destination operand where bits will be inserted. The inserted bits
/// are defined by the length and by the index of the least significant bit
/// specified by operand \a __y.
/// \param __y
/// The source operand containing the bits to be extracted. The extracted
/// bits are the least significant bits of operand \a __y with length
/// specified by bits [69:64]. These are inserted into the destination at the
/// index specified by bits [77:72]; all other bits are ignored. If bits
/// [69:64] are zero, the length is interpreted as 64. If the sum of the
/// index and length is greater than 64, the result is undefined. If the
/// length and index are both zero, bits [63:0] of parameter \a __y are
/// inserted into parameter \a __x. If the length is zero but the index is
/// non-zero, the result is undefined.
/// \returns A 128-bit integer vector containing the original lower 64-bits of
/// destination operand \a __x with the specified bitfields replaced by the
/// lower bits of source operand \a __y. The upper 64 bits of the return
/// value are undefined.
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_insert_si64(__m128i __x, __m128i __y)
{
return (__m128i)__builtin_ia32_insertq((__v2di)__x, (__v2di)__y);
}
/// Stores a 64-bit double-precision value in a 64-bit memory location.
/// To minimize caching, the data is flagged as non-temporal (unlikely to be
/// used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MOVNTSD </c> instruction.
///
/// \param __p
/// The 64-bit memory location used to store the register value.
/// \param __a
/// The 64-bit double-precision floating-point register value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_stream_sd(double *__p, __m128d __a)
{
__builtin_ia32_movntsd(__p, (__v2df)__a);
}
/// Stores a 32-bit single-precision floating-point value in a 32-bit
/// memory location. To minimize caching, the data is flagged as
/// non-temporal (unlikely to be used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MOVNTSS </c> instruction.
///
/// \param __p
/// The 32-bit memory location used to store the register value.
/// \param __a
/// The 32-bit single-precision floating-point register value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_stream_ss(float *__p, __m128 __a)
{
__builtin_ia32_movntss(__p, (__v4sf)__a);
}
#undef __DEFAULT_FN_ATTRS
#endif /* __AMMINTRIN_H */

View File

@ -1,169 +0,0 @@
/*===--------- amxcomplexintrin.h - AMXCOMPLEX intrinsics -*- C++ -*---------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===------------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <amxcomplexintrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __AMX_COMPLEXINTRIN_H
#define __AMX_COMPLEXINTRIN_H
#ifdef __x86_64__
#define __DEFAULT_FN_ATTRS_COMPLEX \
__attribute__((__always_inline__, __nodebug__, __target__("amx-complex")))
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles \a a and \a b is interpreted as a complex number
/// with FP16 real part and FP16 imaginary part.
/// Calculates the imaginary part of the result. For each possible combination
/// of (row of \a a, column of \a b), it performs a set of multiplication
/// and accumulations on all corresponding complex numbers (one from \a a
/// and one from \a b). The imaginary part of the \a a element is multiplied
/// with the real part of the corresponding \a b element, and the real part
/// of the \a a element is multiplied with the imaginary part of the
/// corresponding \a b elements. The two accumulated results are added, and
/// then accumulated into the corresponding row and column of \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _tile_cmmimfp16ps(__tile dst, __tile a, __tile b);
/// \endcode
///
/// \code{.operation}
/// FOR m := 0 TO dst.rows - 1
/// tmp := dst.row[m]
/// FOR k := 0 TO (a.colsb / 4) - 1
/// FOR n := 0 TO (dst.colsb / 4) - 1
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+1])
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+0])
/// ENDFOR
/// ENDFOR
/// write_row_and_zero(dst, m, tmp, dst.colsb)
/// ENDFOR
/// zero_upper_rows(dst, dst.rows)
/// zero_tileconfig_start()
/// \endcode
///
/// This intrinsic corresponds to the \c TCMMIMFP16PS instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param a
/// The 1st source tile. Max size is 1024 Bytes.
/// \param b
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_cmmimfp16ps(dst, a, b) __builtin_ia32_tcmmimfp16ps(dst, a, b)
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles \a a and \a b is interpreted as a complex number
/// with FP16 real part and FP16 imaginary part.
/// Calculates the real part of the result. For each possible combination
/// of (row of \a a, column of \a b), it performs a set of multiplication
/// and accumulations on all corresponding complex numbers (one from \a a
/// and one from \a b). The real part of the \a a element is multiplied
/// with the real part of the corresponding \a b element, and the negated
/// imaginary part of the \a a element is multiplied with the imaginary
/// part of the corresponding \a b elements. The two accumulated results
/// are added, and then accumulated into the corresponding row and column
/// of \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _tile_cmmrlfp16ps(__tile dst, __tile a, __tile b);
/// \endcode
///
/// \code{.operation}
/// FOR m := 0 TO dst.rows - 1
/// tmp := dst.row[m]
/// FOR k := 0 TO (a.colsb / 4) - 1
/// FOR n := 0 TO (dst.colsb / 4) - 1
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) * FP32(b.row[k].fp16[2*n+0])
/// tmp.fp32[n] += FP32(-a.row[m].fp16[2*k+1]) * FP32(b.row[k].fp16[2*n+1])
/// ENDFOR
/// ENDFOR
/// write_row_and_zero(dst, m, tmp, dst.colsb)
/// ENDFOR
/// zero_upper_rows(dst, dst.rows)
/// zero_tileconfig_start()
/// \endcode
///
/// This intrinsic corresponds to the \c TCMMIMFP16PS instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param a
/// The 1st source tile. Max size is 1024 Bytes.
/// \param b
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_cmmrlfp16ps(dst, a, b) __builtin_ia32_tcmmrlfp16ps(dst, a, b)
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_COMPLEX
_tile_cmmimfp16ps_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tcmmimfp16ps_internal(m, n, k, dst, src1, src2);
}
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_COMPLEX
_tile_cmmrlfp16ps_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tcmmrlfp16ps_internal(m, n, k, dst, src1, src2);
}
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles src0 and src1 is interpreted as a complex number with
/// FP16 real part and FP16 imaginary part.
/// This function calculates the imaginary part of the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TCMMIMFP16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_COMPLEX
static void __tile_cmmimfp16ps(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_cmmimfp16ps_internal(src0.row, src1.col, src0.col,
dst->tile, src0.tile, src1.tile);
}
/// Perform matrix multiplication of two tiles containing complex elements and
/// accumulate the results into a packed single precision tile. Each dword
/// element in input tiles src0 and src1 is interpreted as a complex number with
/// FP16 real part and FP16 imaginary part.
/// This function calculates the real part of the result.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TCMMRLFP16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_COMPLEX
static void __tile_cmmrlfp16ps(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_cmmrlfp16ps_internal(src0.row, src1.col, src0.col,
dst->tile, src0.tile, src1.tile);
}
#endif // __x86_64__
#endif // __AMX_COMPLEXINTRIN_H

View File

@ -1,58 +0,0 @@
/*===------------- amxfp16intrin.h - AMX_FP16 intrinsics -*- C++ -*---------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===------------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <amxfp16intrin.h> directly; use <immintrin.h> instead."
#endif /* __IMMINTRIN_H */
#ifndef __AMX_FP16INTRIN_H
#define __AMX_FP16INTRIN_H
#ifdef __x86_64__
/// Compute dot-product of FP16 (16-bit) floating-point pairs in tiles \a a
/// and \a b, accumulating the intermediate single-precision (32-bit)
/// floating-point elements with elements in \a dst, and store the 32-bit
/// result back to tile \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// void _tile_dpfp16ps (__tile dst, __tile a, __tile b)
/// \endcode
///
/// \code{.operation}
/// FOR m := 0 TO dst.rows - 1
/// tmp := dst.row[m]
/// FOR k := 0 TO (a.colsb / 4) - 1
/// FOR n := 0 TO (dst.colsb / 4) - 1
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+0]) *
/// FP32(b.row[k].fp16[2*n+0])
/// tmp.fp32[n] += FP32(a.row[m].fp16[2*k+1]) *
/// FP32(b.row[k].fp16[2*n+1])
/// ENDFOR
/// ENDFOR
/// write_row_and_zero(dst, m, tmp, dst.colsb)
/// ENDFOR
/// zero_upper_rows(dst, dst.rows)
/// zero_tileconfig_start()
/// \endcode
///
/// This intrinsic corresponds to the \c TDPFP16PS instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param a
/// The 1st source tile. Max size is 1024 Bytes.
/// \param b
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_dpfp16ps(dst, a, b) \
__builtin_ia32_tdpfp16ps(dst, a, b)
#endif /* __x86_64__ */
#endif /* __AMX_FP16INTRIN_H */

View File

@ -1,524 +0,0 @@
/*===--------------- amxintrin.h - AMX intrinsics -*- C/C++ -*---------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===------------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <amxintrin.h> directly; include <immintrin.h> instead."
#endif /* __IMMINTRIN_H */
#ifndef __AMXINTRIN_H
#define __AMXINTRIN_H
#ifdef __x86_64__
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS_TILE \
__attribute__((__always_inline__, __nodebug__, __target__("amx-tile")))
#define __DEFAULT_FN_ATTRS_INT8 \
__attribute__((__always_inline__, __nodebug__, __target__("amx-int8")))
#define __DEFAULT_FN_ATTRS_BF16 \
__attribute__((__always_inline__, __nodebug__, __target__("amx-bf16")))
#define __DEFAULT_FN_ATTRS_FP16 \
__attribute__((__always_inline__, __nodebug__, __target__("amx-fp16")))
/// Load tile configuration from a 64-byte memory location specified by
/// "mem_addr". The tile configuration includes the tile type palette, the
/// number of bytes per row, and the number of rows. If the specified
/// palette_id is zero, that signifies the init state for both the tile
/// config and the tile data, and the tiles are zeroed. Any invalid
/// configurations will result in #GP fault.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> LDTILECFG </c> instruction.
///
/// \param __config
/// A pointer to 512-bits configuration
static __inline__ void __DEFAULT_FN_ATTRS_TILE
_tile_loadconfig(const void *__config) {
__builtin_ia32_tile_loadconfig(__config);
}
/// Stores the current tile configuration to a 64-byte memory location
/// specified by "mem_addr". The tile configuration includes the tile type
/// palette, the number of bytes per row, and the number of rows. If tiles
/// are not configured, all zeroes will be stored to memory.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> STTILECFG </c> instruction.
///
/// \param __config
/// A pointer to 512-bits configuration
static __inline__ void __DEFAULT_FN_ATTRS_TILE
_tile_storeconfig(void *__config) {
__builtin_ia32_tile_storeconfig(__config);
}
/// Release the tile configuration to return to the init state, which
/// releases all storage it currently holds.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILERELEASE </c> instruction.
static __inline__ void __DEFAULT_FN_ATTRS_TILE _tile_release(void) {
__builtin_ia32_tilerelease();
}
/// Load tile rows from memory specifieid by "base" address and "stride" into
/// destination tile "dst" using the tile configuration previously configured
/// via "_tile_loadconfig".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADD </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
#define _tile_loadd(dst, base, stride) \
__builtin_ia32_tileloadd64((dst), ((const void *)(base)), \
(__SIZE_TYPE__)(stride))
/// Load tile rows from memory specifieid by "base" address and "stride" into
/// destination tile "dst" using the tile configuration previously configured
/// via "_tile_loadconfig". This intrinsic provides a hint to the implementation
/// that the data will likely not be reused in the near future and the data
/// caching can be optimized accordingly.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADDT1 </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
#define _tile_stream_loadd(dst, base, stride) \
__builtin_ia32_tileloaddt164((dst), ((const void *)(base)), \
(__SIZE_TYPE__)(stride))
/// Store the tile specified by "src" to memory specifieid by "base" address and
/// "stride" using the tile configuration previously configured via
/// "_tile_loadconfig".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILESTORED </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be stored in memory.
#define _tile_stored(dst, base, stride) \
__builtin_ia32_tilestored64((dst), ((void *)(base)), (__SIZE_TYPE__)(stride))
/// Zero the tile specified by "tdest".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILEZERO </c> instruction.
///
/// \param tile
/// The destination tile to be zero. Max size is 1024 Bytes.
#define _tile_zero(tile) __builtin_ia32_tilezero((tile))
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBSSD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_dpbssd(dst, src0, src1) \
__builtin_ia32_tdpbssd((dst), (src0), (src1))
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding unsigned 8-bit integers in src1, producing 4 intermediate
/// 32-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in "dst", and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBSUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_dpbsud(dst, src0, src1) \
__builtin_ia32_tdpbsud((dst), (src0), (src1))
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBUSD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_dpbusd(dst, src0, src1) \
__builtin_ia32_tdpbusd((dst), (src0), (src1))
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with
/// corresponding unsigned 8-bit integers in src1, producing 4 intermediate
/// 32-bit results. Sum these 4 results with the corresponding 32-bit integer in
/// "dst", and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBUUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_dpbuud(dst, src0, src1) \
__builtin_ia32_tdpbuud((dst), (src0), (src1))
/// Compute dot-product of BF16 (16-bit) floating-point pairs in tiles src0 and
/// src1, accumulating the intermediate single-precision (32-bit) floating-point
/// elements with elements in "dst", and store the 32-bit result back to tile
/// "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBF16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
#define _tile_dpbf16ps(dst, src0, src1) \
__builtin_ia32_tdpbf16ps((dst), (src0), (src1))
/// AMX tile register size can be configured, the maximum size is 16x64=1024
/// bytes. Since there is no 2D type in llvm IR, we use vector type to
/// represent 2D tile and the fixed size is maximum amx tile register size.
typedef int _tile1024i __attribute__((__vector_size__(1024), __aligned__(64)));
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_INT8
_tile_loadd_internal(unsigned short m, unsigned short n, const void *base,
__SIZE_TYPE__ stride) {
return __builtin_ia32_tileloadd64_internal(m, n, base,
(__SIZE_TYPE__)(stride));
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_INT8
_tile_loaddt1_internal(unsigned short m, unsigned short n, const void *base,
__SIZE_TYPE__ stride) {
return __builtin_ia32_tileloaddt164_internal(m, n, base,
(__SIZE_TYPE__)(stride));
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_INT8
_tile_dpbssd_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tdpbssd_internal(m, n, k, dst, src1, src2);
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_INT8
_tile_dpbsud_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tdpbsud_internal(m, n, k, dst, src1, src2);
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_INT8
_tile_dpbusd_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tdpbusd_internal(m, n, k, dst, src1, src2);
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_INT8
_tile_dpbuud_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tdpbuud_internal(m, n, k, dst, src1, src2);
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ void __DEFAULT_FN_ATTRS_INT8
_tile_stored_internal(unsigned short m, unsigned short n, void *base,
__SIZE_TYPE__ stride, _tile1024i tile) {
return __builtin_ia32_tilestored64_internal(m, n, base,
(__SIZE_TYPE__)(stride), tile);
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_BF16
_tile_dpbf16ps_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tdpbf16ps_internal(m, n, k, dst, src1, src2);
}
/// This is internal intrinsic. C/C++ user should avoid calling it directly.
static __inline__ _tile1024i __DEFAULT_FN_ATTRS_FP16
_tile_dpfp16ps_internal(unsigned short m, unsigned short n, unsigned short k,
_tile1024i dst, _tile1024i src1, _tile1024i src2) {
return __builtin_ia32_tdpfp16ps_internal(m, n, k, dst, src1, src2);
}
/// This struct pack the shape and tile data together for user. We suggest
/// initializing the struct as early as possible, because compiler depends
/// on the shape information to do configure. The constant value is preferred
/// for optimization by compiler.
typedef struct __tile1024i_str {
const unsigned short row;
const unsigned short col;
_tile1024i tile;
} __tile1024i;
/// Load tile rows from memory specifieid by "base" address and "stride" into
/// destination tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADD </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
__DEFAULT_FN_ATTRS_TILE
static __inline__ void __tile_loadd(__tile1024i *dst, const void *base,
__SIZE_TYPE__ stride) {
dst->tile = _tile_loadd_internal(dst->row, dst->col, base, stride);
}
/// Load tile rows from memory specifieid by "base" address and "stride" into
/// destination tile "dst". This intrinsic provides a hint to the implementation
/// that the data will likely not be reused in the near future and the data
/// caching can be optimized accordingly.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADDT1 </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
__DEFAULT_FN_ATTRS_TILE
static __inline__ void __tile_stream_loadd(__tile1024i *dst, const void *base,
__SIZE_TYPE__ stride) {
dst->tile = _tile_loaddt1_internal(dst->row, dst->col, base, stride);
}
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBSSD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_INT8
static __inline__ void __tile_dpbssd(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_dpbssd_internal(src0.row, src1.col, src0.col, dst->tile,
src0.tile, src1.tile);
}
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding unsigned 8-bit integers in src1, producing 4 intermediate
/// 32-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in "dst", and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBSUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_INT8
static __inline__ void __tile_dpbsud(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_dpbsud_internal(src0.row, src1.col, src0.col, dst->tile,
src0.tile, src1.tile);
}
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBUSD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_INT8
static __inline__ void __tile_dpbusd(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_dpbusd_internal(src0.row, src1.col, src0.col, dst->tile,
src0.tile, src1.tile);
}
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with
/// corresponding unsigned 8-bit integers in src1, producing 4 intermediate
/// 32-bit results. Sum these 4 results with the corresponding 32-bit integer in
/// "dst", and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBUUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_INT8
static __inline__ void __tile_dpbuud(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_dpbuud_internal(src0.row, src1.col, src0.col, dst->tile,
src0.tile, src1.tile);
}
/// Store the tile specified by "src" to memory specifieid by "base" address and
/// "stride".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILESTORED </c> instruction.
///
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be stored in memory.
__DEFAULT_FN_ATTRS_TILE
static __inline__ void __tile_stored(void *base, __SIZE_TYPE__ stride,
__tile1024i src) {
_tile_stored_internal(src.row, src.col, base, stride, src.tile);
}
/// Zero the tile specified by "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILEZERO </c> instruction.
///
/// \param dst
/// The destination tile to be zero. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_TILE
static __inline__ void __tile_zero(__tile1024i *dst) {
dst->tile = __builtin_ia32_tilezero_internal(dst->row, dst->col);
}
/// Compute dot-product of BF16 (16-bit) floating-point pairs in tiles src0 and
/// src1, accumulating the intermediate single-precision (32-bit) floating-point
/// elements with elements in "dst", and store the 32-bit result back to tile
/// "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBF16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_BF16
static __inline__ void __tile_dpbf16ps(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_dpbf16ps_internal(src0.row, src1.col, src0.col, dst->tile,
src0.tile, src1.tile);
}
/// Compute dot-product of FP16 (16-bit) floating-point pairs in tiles src0 and
/// src1, accumulating the intermediate single-precision (32-bit) floating-point
/// elements with elements in "dst", and store the 32-bit result back to tile
/// "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPFP16PS </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
__DEFAULT_FN_ATTRS_FP16
static __inline__ void __tile_dpfp16ps(__tile1024i *dst, __tile1024i src0,
__tile1024i src1) {
dst->tile = _tile_dpfp16ps_internal(src0.row, src1.col, src0.col, dst->tile,
src0.tile, src1.tile);
}
#undef __DEFAULT_FN_ATTRS_TILE
#undef __DEFAULT_FN_ATTRS_INT8
#undef __DEFAULT_FN_ATTRS_BF16
#undef __DEFAULT_FN_ATTRS_FP16
#endif /* __x86_64__ */
#endif /* __AMXINTRIN_H */

View File

@ -1,35 +0,0 @@
/*===---- arm64intr.h - ARM64 Windows intrinsics -------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
/* Only include this if we're compiling for the windows platform. */
#ifndef _MSC_VER
#include_next <arm64intr.h>
#else
#ifndef __ARM64INTR_H
#define __ARM64INTR_H
typedef enum
{
_ARM64_BARRIER_SY = 0xF,
_ARM64_BARRIER_ST = 0xE,
_ARM64_BARRIER_LD = 0xD,
_ARM64_BARRIER_ISH = 0xB,
_ARM64_BARRIER_ISHST = 0xA,
_ARM64_BARRIER_ISHLD = 0x9,
_ARM64_BARRIER_NSH = 0x7,
_ARM64_BARRIER_NSHST = 0x6,
_ARM64_BARRIER_NSHLD = 0x5,
_ARM64_BARRIER_OSH = 0x3,
_ARM64_BARRIER_OSHST = 0x2,
_ARM64_BARRIER_OSHLD = 0x1
} _ARM64INTR_BARRIER_TYPE;
#endif /* __ARM64INTR_H */
#endif /* _MSC_VER */

View File

@ -1,782 +0,0 @@
/*===---- arm_acle.h - ARM Non-Neon intrinsics -----------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __ARM_ACLE_H
#define __ARM_ACLE_H
#ifndef __ARM_ACLE
#error "ACLE intrinsics support not enabled."
#endif
#include <stdint.h>
#if defined(__cplusplus)
extern "C" {
#endif
/* 8 SYNCHRONIZATION, BARRIER AND HINT INTRINSICS */
/* 8.3 Memory barriers */
#if !__has_builtin(__dmb)
#define __dmb(i) __builtin_arm_dmb(i)
#endif
#if !__has_builtin(__dsb)
#define __dsb(i) __builtin_arm_dsb(i)
#endif
#if !__has_builtin(__isb)
#define __isb(i) __builtin_arm_isb(i)
#endif
/* 8.4 Hints */
#if !__has_builtin(__wfi)
static __inline__ void __attribute__((__always_inline__, __nodebug__)) __wfi(void) {
__builtin_arm_wfi();
}
#endif
#if !__has_builtin(__wfe)
static __inline__ void __attribute__((__always_inline__, __nodebug__)) __wfe(void) {
__builtin_arm_wfe();
}
#endif
#if !__has_builtin(__sev)
static __inline__ void __attribute__((__always_inline__, __nodebug__)) __sev(void) {
__builtin_arm_sev();
}
#endif
#if !__has_builtin(__sevl)
static __inline__ void __attribute__((__always_inline__, __nodebug__)) __sevl(void) {
__builtin_arm_sevl();
}
#endif
#if !__has_builtin(__yield)
static __inline__ void __attribute__((__always_inline__, __nodebug__)) __yield(void) {
__builtin_arm_yield();
}
#endif
#if defined(__ARM_32BIT_STATE) && __ARM_32BIT_STATE
#define __dbg(t) __builtin_arm_dbg(t)
#endif
/* 8.5 Swap */
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
__swp(uint32_t __x, volatile uint32_t *__p) {
uint32_t v;
do
v = __builtin_arm_ldrex(__p);
while (__builtin_arm_strex(__x, __p));
return v;
}
/* 8.6 Memory prefetch intrinsics */
/* 8.6.1 Data prefetch */
#define __pld(addr) __pldx(0, 0, 0, addr)
#if defined(__ARM_32BIT_STATE) && __ARM_32BIT_STATE
#define __pldx(access_kind, cache_level, retention_policy, addr) \
__builtin_arm_prefetch(addr, access_kind, 1)
#else
#define __pldx(access_kind, cache_level, retention_policy, addr) \
__builtin_arm_prefetch(addr, access_kind, cache_level, retention_policy, 1)
#endif
/* 8.6.2 Instruction prefetch */
#define __pli(addr) __plix(0, 0, addr)
#if defined(__ARM_32BIT_STATE) && __ARM_32BIT_STATE
#define __plix(cache_level, retention_policy, addr) \
__builtin_arm_prefetch(addr, 0, 0)
#else
#define __plix(cache_level, retention_policy, addr) \
__builtin_arm_prefetch(addr, 0, cache_level, retention_policy, 0)
#endif
/* 8.7 NOP */
#if !defined(_MSC_VER) || !defined(__aarch64__)
static __inline__ void __attribute__((__always_inline__, __nodebug__)) __nop(void) {
__builtin_arm_nop();
}
#endif
/* 9 DATA-PROCESSING INTRINSICS */
/* 9.2 Miscellaneous data-processing intrinsics */
/* ROR */
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
__ror(uint32_t __x, uint32_t __y) {
__y %= 32;
if (__y == 0)
return __x;
return (__x >> __y) | (__x << (32 - __y));
}
static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
__rorll(uint64_t __x, uint32_t __y) {
__y %= 64;
if (__y == 0)
return __x;
return (__x >> __y) | (__x << (64 - __y));
}
static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
__rorl(unsigned long __x, uint32_t __y) {
#if __SIZEOF_LONG__ == 4
return __ror(__x, __y);
#else
return __rorll(__x, __y);
#endif
}
/* CLZ */
static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
__clz(uint32_t __t) {
return __builtin_arm_clz(__t);
}
static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
__clzl(unsigned long __t) {
#if __SIZEOF_LONG__ == 4
return __builtin_arm_clz(__t);
#else
return __builtin_arm_clz64(__t);
#endif
}
static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
__clzll(uint64_t __t) {
return __builtin_arm_clz64(__t);
}
/* CLS */
static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
__cls(uint32_t __t) {
return __builtin_arm_cls(__t);
}
static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
__clsl(unsigned long __t) {
#if __SIZEOF_LONG__ == 4
return __builtin_arm_cls(__t);
#else
return __builtin_arm_cls64(__t);
#endif
}
static __inline__ unsigned int __attribute__((__always_inline__, __nodebug__))
__clsll(uint64_t __t) {
return __builtin_arm_cls64(__t);
}
/* REV */
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
__rev(uint32_t __t) {
return __builtin_bswap32(__t);
}
static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
__revl(unsigned long __t) {
#if __SIZEOF_LONG__ == 4
return __builtin_bswap32(__t);
#else
return __builtin_bswap64(__t);
#endif
}
static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
__revll(uint64_t __t) {
return __builtin_bswap64(__t);
}
/* REV16 */
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
__rev16(uint32_t __t) {
return __ror(__rev(__t), 16);
}
static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
__rev16ll(uint64_t __t) {
return (((uint64_t)__rev16(__t >> 32)) << 32) | (uint64_t)__rev16((uint32_t)__t);
}
static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
__rev16l(unsigned long __t) {
#if __SIZEOF_LONG__ == 4
return __rev16(__t);
#else
return __rev16ll(__t);
#endif
}
/* REVSH */
static __inline__ int16_t __attribute__((__always_inline__, __nodebug__))
__revsh(int16_t __t) {
return (int16_t)__builtin_bswap16((uint16_t)__t);
}
/* RBIT */
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
__rbit(uint32_t __t) {
return __builtin_arm_rbit(__t);
}
static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__))
__rbitll(uint64_t __t) {
#if defined(__ARM_32BIT_STATE) && __ARM_32BIT_STATE
return (((uint64_t)__builtin_arm_rbit(__t)) << 32) |
__builtin_arm_rbit(__t >> 32);
#else
return __builtin_arm_rbit64(__t);
#endif
}
static __inline__ unsigned long __attribute__((__always_inline__, __nodebug__))
__rbitl(unsigned long __t) {
#if __SIZEOF_LONG__ == 4
return __rbit(__t);
#else
return __rbitll(__t);
#endif
}
/*
* 9.3 16-bit multiplications
*/
#if defined(__ARM_FEATURE_DSP) && __ARM_FEATURE_DSP
static __inline__ int32_t __attribute__((__always_inline__,__nodebug__))
__smulbb(int32_t __a, int32_t __b) {
return __builtin_arm_smulbb(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__,__nodebug__))
__smulbt(int32_t __a, int32_t __b) {
return __builtin_arm_smulbt(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__,__nodebug__))
__smultb(int32_t __a, int32_t __b) {
return __builtin_arm_smultb(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__,__nodebug__))
__smultt(int32_t __a, int32_t __b) {
return __builtin_arm_smultt(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__,__nodebug__))
__smulwb(int32_t __a, int32_t __b) {
return __builtin_arm_smulwb(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__,__nodebug__))
__smulwt(int32_t __a, int32_t __b) {
return __builtin_arm_smulwt(__a, __b);
}
#endif
/*
* 9.4 Saturating intrinsics
*
* FIXME: Change guard to their corresponding __ARM_FEATURE flag when Q flag
* intrinsics are implemented and the flag is enabled.
*/
/* 9.4.1 Width-specified saturation intrinsics */
#if defined(__ARM_FEATURE_SAT) && __ARM_FEATURE_SAT
#define __ssat(x, y) __builtin_arm_ssat(x, y)
#define __usat(x, y) __builtin_arm_usat(x, y)
#endif
/* 9.4.2 Saturating addition and subtraction intrinsics */
#if defined(__ARM_FEATURE_DSP) && __ARM_FEATURE_DSP
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__qadd(int32_t __t, int32_t __v) {
return __builtin_arm_qadd(__t, __v);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__qsub(int32_t __t, int32_t __v) {
return __builtin_arm_qsub(__t, __v);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__qdbl(int32_t __t) {
return __builtin_arm_qadd(__t, __t);
}
#endif
/* 9.4.3 Accumultating multiplications */
#if defined(__ARM_FEATURE_DSP) && __ARM_FEATURE_DSP
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlabb(int32_t __a, int32_t __b, int32_t __c) {
return __builtin_arm_smlabb(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlabt(int32_t __a, int32_t __b, int32_t __c) {
return __builtin_arm_smlabt(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlatb(int32_t __a, int32_t __b, int32_t __c) {
return __builtin_arm_smlatb(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlatt(int32_t __a, int32_t __b, int32_t __c) {
return __builtin_arm_smlatt(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlawb(int32_t __a, int32_t __b, int32_t __c) {
return __builtin_arm_smlawb(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlawt(int32_t __a, int32_t __b, int32_t __c) {
return __builtin_arm_smlawt(__a, __b, __c);
}
#endif
/* 9.5.4 Parallel 16-bit saturation */
#if defined(__ARM_FEATURE_SIMD32) && __ARM_FEATURE_SIMD32
#define __ssat16(x, y) __builtin_arm_ssat16(x, y)
#define __usat16(x, y) __builtin_arm_usat16(x, y)
#endif
/* 9.5.5 Packing and unpacking */
#if defined(__ARM_FEATURE_SIMD32) && __ARM_FEATURE_SIMD32
typedef int32_t int8x4_t;
typedef int32_t int16x2_t;
typedef uint32_t uint8x4_t;
typedef uint32_t uint16x2_t;
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__sxtab16(int16x2_t __a, int8x4_t __b) {
return __builtin_arm_sxtab16(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__sxtb16(int8x4_t __a) {
return __builtin_arm_sxtb16(__a);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__uxtab16(int16x2_t __a, int8x4_t __b) {
return __builtin_arm_uxtab16(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__uxtb16(int8x4_t __a) {
return __builtin_arm_uxtb16(__a);
}
#endif
/* 9.5.6 Parallel selection */
#if defined(__ARM_FEATURE_SIMD32) && __ARM_FEATURE_SIMD32
static __inline__ uint8x4_t __attribute__((__always_inline__, __nodebug__))
__sel(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_sel(__a, __b);
}
#endif
/* 9.5.7 Parallel 8-bit addition and subtraction */
#if defined(__ARM_FEATURE_SIMD32) && __ARM_FEATURE_SIMD32
static __inline__ int8x4_t __attribute__((__always_inline__, __nodebug__))
__qadd8(int8x4_t __a, int8x4_t __b) {
return __builtin_arm_qadd8(__a, __b);
}
static __inline__ int8x4_t __attribute__((__always_inline__, __nodebug__))
__qsub8(int8x4_t __a, int8x4_t __b) {
return __builtin_arm_qsub8(__a, __b);
}
static __inline__ int8x4_t __attribute__((__always_inline__, __nodebug__))
__sadd8(int8x4_t __a, int8x4_t __b) {
return __builtin_arm_sadd8(__a, __b);
}
static __inline__ int8x4_t __attribute__((__always_inline__, __nodebug__))
__shadd8(int8x4_t __a, int8x4_t __b) {
return __builtin_arm_shadd8(__a, __b);
}
static __inline__ int8x4_t __attribute__((__always_inline__, __nodebug__))
__shsub8(int8x4_t __a, int8x4_t __b) {
return __builtin_arm_shsub8(__a, __b);
}
static __inline__ int8x4_t __attribute__((__always_inline__, __nodebug__))
__ssub8(int8x4_t __a, int8x4_t __b) {
return __builtin_arm_ssub8(__a, __b);
}
static __inline__ uint8x4_t __attribute__((__always_inline__, __nodebug__))
__uadd8(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_uadd8(__a, __b);
}
static __inline__ uint8x4_t __attribute__((__always_inline__, __nodebug__))
__uhadd8(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_uhadd8(__a, __b);
}
static __inline__ uint8x4_t __attribute__((__always_inline__, __nodebug__))
__uhsub8(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_uhsub8(__a, __b);
}
static __inline__ uint8x4_t __attribute__((__always_inline__, __nodebug__))
__uqadd8(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_uqadd8(__a, __b);
}
static __inline__ uint8x4_t __attribute__((__always_inline__, __nodebug__))
__uqsub8(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_uqsub8(__a, __b);
}
static __inline__ uint8x4_t __attribute__((__always_inline__, __nodebug__))
__usub8(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_usub8(__a, __b);
}
#endif
/* 9.5.8 Sum of 8-bit absolute differences */
#if defined(__ARM_FEATURE_SIMD32) && __ARM_FEATURE_SIMD32
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
__usad8(uint8x4_t __a, uint8x4_t __b) {
return __builtin_arm_usad8(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__))
__usada8(uint8x4_t __a, uint8x4_t __b, uint32_t __c) {
return __builtin_arm_usada8(__a, __b, __c);
}
#endif
/* 9.5.9 Parallel 16-bit addition and subtraction */
#if defined(__ARM_FEATURE_SIMD32) && __ARM_FEATURE_SIMD32
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__qadd16(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_qadd16(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__qasx(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_qasx(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__qsax(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_qsax(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__qsub16(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_qsub16(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__sadd16(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_sadd16(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__sasx(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_sasx(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__shadd16(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_shadd16(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__shasx(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_shasx(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__shsax(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_shsax(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__shsub16(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_shsub16(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__ssax(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_ssax(__a, __b);
}
static __inline__ int16x2_t __attribute__((__always_inline__, __nodebug__))
__ssub16(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_ssub16(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uadd16(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uadd16(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uasx(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uasx(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uhadd16(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uhadd16(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uhasx(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uhasx(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uhsax(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uhsax(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uhsub16(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uhsub16(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uqadd16(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uqadd16(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uqasx(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uqasx(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uqsax(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uqsax(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__uqsub16(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_uqsub16(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__usax(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_usax(__a, __b);
}
static __inline__ uint16x2_t __attribute__((__always_inline__, __nodebug__))
__usub16(uint16x2_t __a, uint16x2_t __b) {
return __builtin_arm_usub16(__a, __b);
}
#endif
/* 9.5.10 Parallel 16-bit multiplications */
#if defined(__ARM_FEATURE_SIMD32) && __ARM_FEATURE_SIMD32
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlad(int16x2_t __a, int16x2_t __b, int32_t __c) {
return __builtin_arm_smlad(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smladx(int16x2_t __a, int16x2_t __b, int32_t __c) {
return __builtin_arm_smladx(__a, __b, __c);
}
static __inline__ int64_t __attribute__((__always_inline__, __nodebug__))
__smlald(int16x2_t __a, int16x2_t __b, int64_t __c) {
return __builtin_arm_smlald(__a, __b, __c);
}
static __inline__ int64_t __attribute__((__always_inline__, __nodebug__))
__smlaldx(int16x2_t __a, int16x2_t __b, int64_t __c) {
return __builtin_arm_smlaldx(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlsd(int16x2_t __a, int16x2_t __b, int32_t __c) {
return __builtin_arm_smlsd(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smlsdx(int16x2_t __a, int16x2_t __b, int32_t __c) {
return __builtin_arm_smlsdx(__a, __b, __c);
}
static __inline__ int64_t __attribute__((__always_inline__, __nodebug__))
__smlsld(int16x2_t __a, int16x2_t __b, int64_t __c) {
return __builtin_arm_smlsld(__a, __b, __c);
}
static __inline__ int64_t __attribute__((__always_inline__, __nodebug__))
__smlsldx(int16x2_t __a, int16x2_t __b, int64_t __c) {
return __builtin_arm_smlsldx(__a, __b, __c);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smuad(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_smuad(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smuadx(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_smuadx(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smusd(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_smusd(__a, __b);
}
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__))
__smusdx(int16x2_t __a, int16x2_t __b) {
return __builtin_arm_smusdx(__a, __b);
}
#endif
/* 9.7 CRC32 intrinsics */
#if (defined(__ARM_FEATURE_CRC32) && __ARM_FEATURE_CRC32) || \
(defined(__ARM_64BIT_STATE) && __ARM_64BIT_STATE)
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32b(uint32_t __a, uint8_t __b) {
return __builtin_arm_crc32b(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32h(uint32_t __a, uint16_t __b) {
return __builtin_arm_crc32h(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32w(uint32_t __a, uint32_t __b) {
return __builtin_arm_crc32w(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32d(uint32_t __a, uint64_t __b) {
return __builtin_arm_crc32d(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32cb(uint32_t __a, uint8_t __b) {
return __builtin_arm_crc32cb(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32ch(uint32_t __a, uint16_t __b) {
return __builtin_arm_crc32ch(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32cw(uint32_t __a, uint32_t __b) {
return __builtin_arm_crc32cw(__a, __b);
}
static __inline__ uint32_t __attribute__((__always_inline__, __nodebug__, target("crc")))
__crc32cd(uint32_t __a, uint64_t __b) {
return __builtin_arm_crc32cd(__a, __b);
}
#endif
/* Armv8.3-A Javascript conversion intrinsic */
#if defined(__ARM_64BIT_STATE) && __ARM_64BIT_STATE
static __inline__ int32_t __attribute__((__always_inline__, __nodebug__, target("v8.3a")))
__jcvt(double __a) {
return __builtin_arm_jcvt(__a);
}
#endif
/* Armv8.5-A FP rounding intrinsics */
#if defined(__ARM_64BIT_STATE) && __ARM_64BIT_STATE
static __inline__ float __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint32zf(float __a) {
return __builtin_arm_rint32zf(__a);
}
static __inline__ double __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint32z(double __a) {
return __builtin_arm_rint32z(__a);
}
static __inline__ float __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint64zf(float __a) {
return __builtin_arm_rint64zf(__a);
}
static __inline__ double __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint64z(double __a) {
return __builtin_arm_rint64z(__a);
}
static __inline__ float __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint32xf(float __a) {
return __builtin_arm_rint32xf(__a);
}
static __inline__ double __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint32x(double __a) {
return __builtin_arm_rint32x(__a);
}
static __inline__ float __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint64xf(float __a) {
return __builtin_arm_rint64xf(__a);
}
static __inline__ double __attribute__((__always_inline__, __nodebug__, target("v8.5a")))
__rint64x(double __a) {
return __builtin_arm_rint64x(__a);
}
#endif
/* Armv8.7-A load/store 64-byte intrinsics */
#if defined(__ARM_64BIT_STATE) && __ARM_64BIT_STATE
typedef struct {
uint64_t val[8];
} data512_t;
static __inline__ data512_t __attribute__((__always_inline__, __nodebug__, target("ls64")))
__arm_ld64b(const void *__addr) {
data512_t __value;
__builtin_arm_ld64b(__addr, __value.val);
return __value;
}
static __inline__ void __attribute__((__always_inline__, __nodebug__, target("ls64")))
__arm_st64b(void *__addr, data512_t __value) {
__builtin_arm_st64b(__addr, __value.val);
}
static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__, target("ls64")))
__arm_st64bv(void *__addr, data512_t __value) {
return __builtin_arm_st64bv(__addr, __value.val);
}
static __inline__ uint64_t __attribute__((__always_inline__, __nodebug__, target("ls64")))
__arm_st64bv0(void *__addr, data512_t __value) {
return __builtin_arm_st64bv0(__addr, __value.val);
}
#endif
/* 10.1 Special register intrinsics */
#define __arm_rsr(sysreg) __builtin_arm_rsr(sysreg)
#define __arm_rsr64(sysreg) __builtin_arm_rsr64(sysreg)
#define __arm_rsr128(sysreg) __builtin_arm_rsr128(sysreg)
#define __arm_rsrp(sysreg) __builtin_arm_rsrp(sysreg)
#define __arm_rsrf(sysreg) __builtin_bit_cast(float, __arm_rsr(sysreg))
#define __arm_rsrf64(sysreg) __builtin_bit_cast(double, __arm_rsr64(sysreg))
#define __arm_wsr(sysreg, v) __builtin_arm_wsr(sysreg, v)
#define __arm_wsr64(sysreg, v) __builtin_arm_wsr64(sysreg, v)
#define __arm_wsr128(sysreg, v) __builtin_arm_wsr128(sysreg, v)
#define __arm_wsrp(sysreg, v) __builtin_arm_wsrp(sysreg, v)
#define __arm_wsrf(sysreg, v) __arm_wsr(sysreg, __builtin_bit_cast(uint32_t, v))
#define __arm_wsrf64(sysreg, v) __arm_wsr64(sysreg, __builtin_bit_cast(uint64_t, v))
/* Memory Tagging Extensions (MTE) Intrinsics */
#if defined(__ARM_64BIT_STATE) && __ARM_64BIT_STATE
#define __arm_mte_create_random_tag(__ptr, __mask) __builtin_arm_irg(__ptr, __mask)
#define __arm_mte_increment_tag(__ptr, __tag_offset) __builtin_arm_addg(__ptr, __tag_offset)
#define __arm_mte_exclude_tag(__ptr, __excluded) __builtin_arm_gmi(__ptr, __excluded)
#define __arm_mte_get_tag(__ptr) __builtin_arm_ldg(__ptr)
#define __arm_mte_set_tag(__ptr) __builtin_arm_stg(__ptr)
#define __arm_mte_ptrdiff(__ptra, __ptrb) __builtin_arm_subp(__ptra, __ptrb)
/* Memory Operations Intrinsics */
#define __arm_mops_memset_tag(__tagged_address, __value, __size) \
__builtin_arm_mops_memset_tag(__tagged_address, __value, __size)
#endif
/* Transactional Memory Extension (TME) Intrinsics */
#if defined(__ARM_FEATURE_TME) && __ARM_FEATURE_TME
#define _TMFAILURE_REASON 0x00007fffu
#define _TMFAILURE_RTRY 0x00008000u
#define _TMFAILURE_CNCL 0x00010000u
#define _TMFAILURE_MEM 0x00020000u
#define _TMFAILURE_IMP 0x00040000u
#define _TMFAILURE_ERR 0x00080000u
#define _TMFAILURE_SIZE 0x00100000u
#define _TMFAILURE_NEST 0x00200000u
#define _TMFAILURE_DBG 0x00400000u
#define _TMFAILURE_INT 0x00800000u
#define _TMFAILURE_TRIVIAL 0x01000000u
#define __tstart() __builtin_arm_tstart()
#define __tcommit() __builtin_arm_tcommit()
#define __tcancel(__arg) __builtin_arm_tcancel(__arg)
#define __ttest() __builtin_arm_ttest()
#endif /* __ARM_FEATURE_TME */
/* Armv8.5-A Random number generation intrinsics */
#if defined(__ARM_64BIT_STATE) && __ARM_64BIT_STATE
static __inline__ int __attribute__((__always_inline__, __nodebug__, target("rand")))
__rndr(uint64_t *__p) {
return __builtin_arm_rndr(__p);
}
static __inline__ int __attribute__((__always_inline__, __nodebug__, target("rand")))
__rndrrs(uint64_t *__p) {
return __builtin_arm_rndrrs(__p);
}
#endif
#if defined(__cplusplus)
}
#endif
#endif /* __ARM_ACLE_H */

View File

@ -1,20 +0,0 @@
/*===---- arm_bf16.h - ARM BF16 intrinsics -----------------------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __ARM_BF16_H
#define __ARM_BF16_H
typedef __bf16 bfloat16_t;
#define __ai static __inline__ __attribute__((__always_inline__, __nodebug__))
#undef __ai
#endif

View File

@ -1,410 +0,0 @@
/*===---- arm_cde.h - ARM CDE intrinsics -----------------------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __ARM_CDE_H
#define __ARM_CDE_H
#if !__ARM_FEATURE_CDE
#error "CDE support not enabled"
#endif
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx1)))
uint32_t __arm_cx1(int, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx1a)))
uint32_t __arm_cx1a(int, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx1d)))
uint64_t __arm_cx1d(int, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx1da)))
uint64_t __arm_cx1da(int, uint64_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx2)))
uint32_t __arm_cx2(int, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx2a)))
uint32_t __arm_cx2a(int, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx2d)))
uint64_t __arm_cx2d(int, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx2da)))
uint64_t __arm_cx2da(int, uint64_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx3)))
uint32_t __arm_cx3(int, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx3a)))
uint32_t __arm_cx3a(int, uint32_t, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx3d)))
uint64_t __arm_cx3d(int, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_cx3da)))
uint64_t __arm_cx3da(int, uint64_t, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx1_u32)))
uint32_t __arm_vcx1_u32(int, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx1a_u32)))
uint32_t __arm_vcx1a_u32(int, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx1d_u64)))
uint64_t __arm_vcx1d_u64(int, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx1da_u64)))
uint64_t __arm_vcx1da_u64(int, uint64_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx2_u32)))
uint32_t __arm_vcx2_u32(int, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx2a_u32)))
uint32_t __arm_vcx2a_u32(int, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx2d_u64)))
uint64_t __arm_vcx2d_u64(int, uint64_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx2da_u64)))
uint64_t __arm_vcx2da_u64(int, uint64_t, uint64_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx3_u32)))
uint32_t __arm_vcx3_u32(int, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx3a_u32)))
uint32_t __arm_vcx3a_u32(int, uint32_t, uint32_t, uint32_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx3d_u64)))
uint64_t __arm_vcx3d_u64(int, uint64_t, uint64_t, uint32_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx3da_u64)))
uint64_t __arm_vcx3da_u64(int, uint64_t, uint64_t, uint64_t, uint32_t);
#if __ARM_FEATURE_MVE
typedef uint16_t mve_pred16_t;
typedef __attribute__((__neon_vector_type__(8), __clang_arm_mve_strict_polymorphism)) int16_t int16x8_t;
typedef __attribute__((__neon_vector_type__(4), __clang_arm_mve_strict_polymorphism)) int32_t int32x4_t;
typedef __attribute__((__neon_vector_type__(2), __clang_arm_mve_strict_polymorphism)) int64_t int64x2_t;
typedef __attribute__((__neon_vector_type__(16), __clang_arm_mve_strict_polymorphism)) int8_t int8x16_t;
typedef __attribute__((__neon_vector_type__(8), __clang_arm_mve_strict_polymorphism)) uint16_t uint16x8_t;
typedef __attribute__((__neon_vector_type__(4), __clang_arm_mve_strict_polymorphism)) uint32_t uint32x4_t;
typedef __attribute__((__neon_vector_type__(2), __clang_arm_mve_strict_polymorphism)) uint64_t uint64x2_t;
typedef __attribute__((__neon_vector_type__(16), __clang_arm_mve_strict_polymorphism)) uint8_t uint8x16_t;
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_s16)))
int16x8_t __arm_vcx1q_m(int, int16x8_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_s32)))
int32x4_t __arm_vcx1q_m(int, int32x4_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_s64)))
int64x2_t __arm_vcx1q_m(int, int64x2_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_s8)))
int8x16_t __arm_vcx1q_m(int, int8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_u16)))
uint16x8_t __arm_vcx1q_m(int, uint16x8_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_u32)))
uint32x4_t __arm_vcx1q_m(int, uint32x4_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_u64)))
uint64x2_t __arm_vcx1q_m(int, uint64x2_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_u8)))
uint8x16_t __arm_vcx1q_m(int, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_u8)))
uint8x16_t __arm_vcx1q_u8(int, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_s16)))
int16x8_t __arm_vcx1qa_m(int, int16x8_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_s32)))
int32x4_t __arm_vcx1qa_m(int, int32x4_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_s64)))
int64x2_t __arm_vcx1qa_m(int, int64x2_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_s8)))
int8x16_t __arm_vcx1qa_m(int, int8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_u16)))
uint16x8_t __arm_vcx1qa_m(int, uint16x8_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_u32)))
uint32x4_t __arm_vcx1qa_m(int, uint32x4_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_u64)))
uint64x2_t __arm_vcx1qa_m(int, uint64x2_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_u8)))
uint8x16_t __arm_vcx1qa_m(int, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_s16)))
int16x8_t __arm_vcx1qa(int, int16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_s32)))
int32x4_t __arm_vcx1qa(int, int32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_s64)))
int64x2_t __arm_vcx1qa(int, int64x2_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_s8)))
int8x16_t __arm_vcx1qa(int, int8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_u16)))
uint16x8_t __arm_vcx1qa(int, uint16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_u32)))
uint32x4_t __arm_vcx1qa(int, uint32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_u64)))
uint64x2_t __arm_vcx1qa(int, uint64x2_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_u8)))
uint8x16_t __arm_vcx1qa(int, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_s16)))
int16x8_t __arm_vcx2q_m_impl(int, int16x8_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_s32)))
int32x4_t __arm_vcx2q_m_impl(int, int32x4_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_s64)))
int64x2_t __arm_vcx2q_m_impl(int, int64x2_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_s8)))
int8x16_t __arm_vcx2q_m_impl(int, int8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_u16)))
uint16x8_t __arm_vcx2q_m_impl(int, uint16x8_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_u32)))
uint32x4_t __arm_vcx2q_m_impl(int, uint32x4_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_u64)))
uint64x2_t __arm_vcx2q_m_impl(int, uint64x2_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_u8)))
uint8x16_t __arm_vcx2q_m_impl(int, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_s16)))
int16x8_t __arm_vcx2q(int, int16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_s32)))
int32x4_t __arm_vcx2q(int, int32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_s64)))
int64x2_t __arm_vcx2q(int, int64x2_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_s8)))
int8x16_t __arm_vcx2q(int, int8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u16)))
uint16x8_t __arm_vcx2q(int, uint16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u32)))
uint32x4_t __arm_vcx2q(int, uint32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u64)))
uint64x2_t __arm_vcx2q(int, uint64x2_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8)))
uint8x16_t __arm_vcx2q(int, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_s16)))
uint8x16_t __arm_vcx2q_u8(int, int16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_s32)))
uint8x16_t __arm_vcx2q_u8(int, int32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_s64)))
uint8x16_t __arm_vcx2q_u8(int, int64x2_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_s8)))
uint8x16_t __arm_vcx2q_u8(int, int8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_u16)))
uint8x16_t __arm_vcx2q_u8(int, uint16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_u32)))
uint8x16_t __arm_vcx2q_u8(int, uint32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_u64)))
uint8x16_t __arm_vcx2q_u8(int, uint64x2_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_u8)))
uint8x16_t __arm_vcx2q_u8(int, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_s16)))
int16x8_t __arm_vcx2qa_impl(int, int16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_s32)))
int32x4_t __arm_vcx2qa_impl(int, int32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_s64)))
int64x2_t __arm_vcx2qa_impl(int, int64x2_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_s8)))
int8x16_t __arm_vcx2qa_impl(int, int8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_u16)))
uint16x8_t __arm_vcx2qa_impl(int, uint16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_u32)))
uint32x4_t __arm_vcx2qa_impl(int, uint32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_u64)))
uint64x2_t __arm_vcx2qa_impl(int, uint64x2_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_u8)))
uint8x16_t __arm_vcx2qa_impl(int, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_s16)))
int16x8_t __arm_vcx2qa_m_impl(int, int16x8_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_s32)))
int32x4_t __arm_vcx2qa_m_impl(int, int32x4_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_s64)))
int64x2_t __arm_vcx2qa_m_impl(int, int64x2_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_s8)))
int8x16_t __arm_vcx2qa_m_impl(int, int8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_u16)))
uint16x8_t __arm_vcx2qa_m_impl(int, uint16x8_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_u32)))
uint32x4_t __arm_vcx2qa_m_impl(int, uint32x4_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_u64)))
uint64x2_t __arm_vcx2qa_m_impl(int, uint64x2_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_u8)))
uint8x16_t __arm_vcx2qa_m_impl(int, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_s16)))
int16x8_t __arm_vcx3q_impl(int, int16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_s32)))
int32x4_t __arm_vcx3q_impl(int, int32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_s64)))
int64x2_t __arm_vcx3q_impl(int, int64x2_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_s8)))
int8x16_t __arm_vcx3q_impl(int, int8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_u16)))
uint16x8_t __arm_vcx3q_impl(int, uint16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_u32)))
uint32x4_t __arm_vcx3q_impl(int, uint32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_u64)))
uint64x2_t __arm_vcx3q_impl(int, uint64x2_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_u8)))
uint8x16_t __arm_vcx3q_impl(int, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_s16)))
int16x8_t __arm_vcx3q_m_impl(int, int16x8_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_s32)))
int32x4_t __arm_vcx3q_m_impl(int, int32x4_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_s64)))
int64x2_t __arm_vcx3q_m_impl(int, int64x2_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_s8)))
int8x16_t __arm_vcx3q_m_impl(int, int8x16_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_u16)))
uint16x8_t __arm_vcx3q_m_impl(int, uint16x8_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_u32)))
uint32x4_t __arm_vcx3q_m_impl(int, uint32x4_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_u64)))
uint64x2_t __arm_vcx3q_m_impl(int, uint64x2_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_u8)))
uint8x16_t __arm_vcx3q_m_impl(int, uint8x16_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_s16)))
uint8x16_t __arm_vcx3q_u8_impl(int, int16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_s32)))
uint8x16_t __arm_vcx3q_u8_impl(int, int32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_s64)))
uint8x16_t __arm_vcx3q_u8_impl(int, int64x2_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_s8)))
uint8x16_t __arm_vcx3q_u8_impl(int, int8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_u16)))
uint8x16_t __arm_vcx3q_u8_impl(int, uint16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_u32)))
uint8x16_t __arm_vcx3q_u8_impl(int, uint32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_u64)))
uint8x16_t __arm_vcx3q_u8_impl(int, uint64x2_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_u8)))
uint8x16_t __arm_vcx3q_u8_impl(int, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_s16)))
int16x8_t __arm_vcx3qa_impl(int, int16x8_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_s32)))
int32x4_t __arm_vcx3qa_impl(int, int32x4_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_s64)))
int64x2_t __arm_vcx3qa_impl(int, int64x2_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_s8)))
int8x16_t __arm_vcx3qa_impl(int, int8x16_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_u16)))
uint16x8_t __arm_vcx3qa_impl(int, uint16x8_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_u32)))
uint32x4_t __arm_vcx3qa_impl(int, uint32x4_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_u64)))
uint64x2_t __arm_vcx3qa_impl(int, uint64x2_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_u8)))
uint8x16_t __arm_vcx3qa_impl(int, uint8x16_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_s16)))
int16x8_t __arm_vcx3qa_m_impl(int, int16x8_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_s32)))
int32x4_t __arm_vcx3qa_m_impl(int, int32x4_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_s64)))
int64x2_t __arm_vcx3qa_m_impl(int, int64x2_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_s8)))
int8x16_t __arm_vcx3qa_m_impl(int, int8x16_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_u16)))
uint16x8_t __arm_vcx3qa_m_impl(int, uint16x8_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_u32)))
uint32x4_t __arm_vcx3qa_m_impl(int, uint32x4_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_u64)))
uint64x2_t __arm_vcx3qa_m_impl(int, uint64x2_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_u8)))
uint8x16_t __arm_vcx3qa_m_impl(int, uint8x16_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_s16_u8)))
int16x8_t __arm_vreinterpretq_s16_u8(uint8x16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_s32_u8)))
int32x4_t __arm_vreinterpretq_s32_u8(uint8x16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_s64_u8)))
int64x2_t __arm_vreinterpretq_s64_u8(uint8x16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_s8_u8)))
int8x16_t __arm_vreinterpretq_s8_u8(uint8x16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u16_u8)))
uint16x8_t __arm_vreinterpretq_u16_u8(uint8x16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u32_u8)))
uint32x4_t __arm_vreinterpretq_u32_u8(uint8x16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u64_u8)))
uint64x2_t __arm_vreinterpretq_u64_u8(uint8x16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_s16)))
uint8x16_t __arm_vreinterpretq_u8(int16x8_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_s32)))
uint8x16_t __arm_vreinterpretq_u8(int32x4_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_s64)))
uint8x16_t __arm_vreinterpretq_u8(int64x2_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_s8)))
uint8x16_t __arm_vreinterpretq_u8(int8x16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_u16)))
uint8x16_t __arm_vreinterpretq_u8(uint16x8_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_u32)))
uint8x16_t __arm_vreinterpretq_u8(uint32x4_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_u64)))
uint8x16_t __arm_vreinterpretq_u8(uint64x2_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vreinterpretq_u8_u8)))
uint8x16_t __arm_vreinterpretq_u8(uint8x16_t);
#define __arm_vcx2q_m(cp, inactive, n, imm, pred) __arm_vcx2q_m_impl((cp), (inactive), __arm_vreinterpretq_u8(n), (imm), (pred))
#define __arm_vcx2qa(cp, acc, n, imm) __arm_vcx2qa_impl((cp), (acc), __arm_vreinterpretq_u8(n), (imm))
#define __arm_vcx2qa_m(cp, acc, n, imm, pred) __arm_vcx2qa_m_impl((cp), (acc), __arm_vreinterpretq_u8(n), (imm), (pred))
#define __arm_vcx3q(cp, n, m, imm) __arm_vcx3q_impl((cp), (n), __arm_vreinterpretq_u8(m), (imm))
#define __arm_vcx3q_m(cp, inactive, n, m, imm, pred) __arm_vcx3q_m_impl((cp), (inactive), __arm_vreinterpretq_u8(n), __arm_vreinterpretq_u8(m), (imm), (pred))
#define __arm_vcx3q_u8(cp, n, m, imm) __arm_vcx3q_u8_impl((cp), (n), __arm_vreinterpretq_u8(m), (imm))
#define __arm_vcx3qa(cp, acc, n, m, imm) __arm_vcx3qa_impl((cp), (acc), __arm_vreinterpretq_u8(n), __arm_vreinterpretq_u8(m), (imm))
#define __arm_vcx3qa_m(cp, acc, n, m, imm, pred) __arm_vcx3qa_m_impl((cp), (acc), __arm_vreinterpretq_u8(n), __arm_vreinterpretq_u8(m), (imm), (pred))
#endif /* __ARM_FEATURE_MVE */
#if __ARM_FEATURE_MVE & 2
typedef __fp16 float16_t;
typedef float float32_t;
typedef __attribute__((__neon_vector_type__(8), __clang_arm_mve_strict_polymorphism)) float16_t float16x8_t;
typedef __attribute__((__neon_vector_type__(4), __clang_arm_mve_strict_polymorphism)) float32_t float32x4_t;
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_f16)))
float16x8_t __arm_vcx1q_m(int, float16x8_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1q_m_f32)))
float32x4_t __arm_vcx1q_m(int, float32x4_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_f16)))
float16x8_t __arm_vcx1qa(int, float16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_f32)))
float32x4_t __arm_vcx1qa(int, float32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_f16)))
float16x8_t __arm_vcx1qa_m(int, float16x8_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx1qa_m_f32)))
float32x4_t __arm_vcx1qa_m(int, float32x4_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_f16)))
float16x8_t __arm_vcx2q(int, float16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_f32)))
float32x4_t __arm_vcx2q(int, float32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_f16)))
float16x8_t __arm_vcx2q_m_impl(int, float16x8_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_m_impl_f32)))
float32x4_t __arm_vcx2q_m_impl(int, float32x4_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_f16)))
uint8x16_t __arm_vcx2q_u8(int, float16x8_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2q_u8_f32)))
uint8x16_t __arm_vcx2q_u8(int, float32x4_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_f16)))
float16x8_t __arm_vcx2qa_impl(int, float16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_impl_f32)))
float32x4_t __arm_vcx2qa_impl(int, float32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_f16)))
float16x8_t __arm_vcx2qa_m_impl(int, float16x8_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx2qa_m_impl_f32)))
float32x4_t __arm_vcx2qa_m_impl(int, float32x4_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_f16)))
float16x8_t __arm_vcx3q_impl(int, float16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_impl_f32)))
float32x4_t __arm_vcx3q_impl(int, float32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_f16)))
float16x8_t __arm_vcx3q_m_impl(int, float16x8_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_m_impl_f32)))
float32x4_t __arm_vcx3q_m_impl(int, float32x4_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_f16)))
uint8x16_t __arm_vcx3q_u8_impl(int, float16x8_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3q_u8_impl_f32)))
uint8x16_t __arm_vcx3q_u8_impl(int, float32x4_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_f16)))
float16x8_t __arm_vcx3qa_impl(int, float16x8_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_impl_f32)))
float32x4_t __arm_vcx3qa_impl(int, float32x4_t, uint8x16_t, uint8x16_t, uint32_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_f16)))
float16x8_t __arm_vcx3qa_m_impl(int, float16x8_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_cde_vcx3qa_m_impl_f32)))
float32x4_t __arm_vcx3qa_m_impl(int, float32x4_t, uint8x16_t, uint8x16_t, uint32_t, mve_pred16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_f16_u8)))
float16x8_t __arm_vreinterpretq_f16_u8(uint8x16_t);
static __inline__ __attribute__((__clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_f32_u8)))
float32x4_t __arm_vreinterpretq_f32_u8(uint8x16_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_f16)))
uint8x16_t __arm_vreinterpretq_u8(float16x8_t);
static __inline__ __attribute__((__overloadable__, __clang_arm_builtin_alias(__builtin_arm_mve_vreinterpretq_u8_f32)))
uint8x16_t __arm_vreinterpretq_u8(float32x4_t);
#endif /* __ARM_FEATURE_MVE & 2 */
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* __ARM_CDE_H */

View File

@ -1,217 +0,0 @@
//===---- arm_cmse.h - Arm CMSE support -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef __ARM_CMSE_H
#define __ARM_CMSE_H
#if (__ARM_FEATURE_CMSE & 0x1)
#include <stddef.h>
#include <stdint.h>
#define __ARM_CMSE_SECURE_MODE (__ARM_FEATURE_CMSE & 0x2)
#define CMSE_MPU_READWRITE 1 /* checks if readwrite_ok field is set */
#define CMSE_AU_NONSECURE 2 /* checks if permissions have secure field unset */
#define CMSE_MPU_UNPRIV 4 /* sets T flag on TT insrtuction */
#define CMSE_MPU_READ 8 /* checks if read_ok field is set */
#define CMSE_MPU_NONSECURE 16 /* sets A flag, checks if secure field unset */
#define CMSE_NONSECURE (CMSE_AU_NONSECURE | CMSE_MPU_NONSECURE)
#define cmse_check_pointed_object(p, f) \
cmse_check_address_range((p), sizeof(*(p)), (f))
#if defined(__cplusplus)
extern "C" {
#endif
typedef union {
struct cmse_address_info {
#ifdef __ARM_BIG_ENDIAN
/* __ARM_BIG_ENDIAN */
#if (__ARM_CMSE_SECURE_MODE)
unsigned idau_region : 8;
unsigned idau_region_valid : 1;
unsigned secure : 1;
unsigned nonsecure_readwrite_ok : 1;
unsigned nonsecure_read_ok : 1;
#else
unsigned : 12;
#endif
unsigned readwrite_ok : 1;
unsigned read_ok : 1;
#if (__ARM_CMSE_SECURE_MODE)
unsigned sau_region_valid : 1;
#else
unsigned : 1;
#endif
unsigned mpu_region_valid : 1;
#if (__ARM_CMSE_SECURE_MODE)
unsigned sau_region : 8;
#else
unsigned : 8;
#endif
unsigned mpu_region : 8;
#else /* __ARM_LITTLE_ENDIAN */
unsigned mpu_region : 8;
#if (__ARM_CMSE_SECURE_MODE)
unsigned sau_region : 8;
#else
unsigned : 8;
#endif
unsigned mpu_region_valid : 1;
#if (__ARM_CMSE_SECURE_MODE)
unsigned sau_region_valid : 1;
#else
unsigned : 1;
#endif
unsigned read_ok : 1;
unsigned readwrite_ok : 1;
#if (__ARM_CMSE_SECURE_MODE)
unsigned nonsecure_read_ok : 1;
unsigned nonsecure_readwrite_ok : 1;
unsigned secure : 1;
unsigned idau_region_valid : 1;
unsigned idau_region : 8;
#else
unsigned : 12;
#endif
#endif /*__ARM_LITTLE_ENDIAN */
} flags;
unsigned value;
} cmse_address_info_t;
static cmse_address_info_t __attribute__((__always_inline__, __nodebug__))
cmse_TT(void *__p) {
cmse_address_info_t __u;
__u.value = __builtin_arm_cmse_TT(__p);
return __u;
}
static cmse_address_info_t __attribute__((__always_inline__, __nodebug__))
cmse_TTT(void *__p) {
cmse_address_info_t __u;
__u.value = __builtin_arm_cmse_TTT(__p);
return __u;
}
#if __ARM_CMSE_SECURE_MODE
static cmse_address_info_t __attribute__((__always_inline__, __nodebug__))
cmse_TTA(void *__p) {
cmse_address_info_t __u;
__u.value = __builtin_arm_cmse_TTA(__p);
return __u;
}
static cmse_address_info_t __attribute__((__always_inline__, __nodebug__))
cmse_TTAT(void *__p) {
cmse_address_info_t __u;
__u.value = __builtin_arm_cmse_TTAT(__p);
return __u;
}
#endif
#define cmse_TT_fptr(p) cmse_TT(__builtin_bit_cast(void *, (p)))
#define cmse_TTT_fptr(p) cmse_TTT(__builtin_bit_cast(void *, (p)))
#if __ARM_CMSE_SECURE_MODE
#define cmse_TTA_fptr(p) cmse_TTA(__builtin_bit_cast(void *, (p)))
#define cmse_TTAT_fptr(p) cmse_TTAT(__builtin_bit_cast(void *, (p)))
#endif
static void *__attribute__((__always_inline__))
cmse_check_address_range(void *__pb, size_t __s, int __flags) {
uintptr_t __begin = (uintptr_t)__pb;
uintptr_t __end = __begin + __s - 1;
if (__end < __begin)
return NULL; /* wrap around check */
/* Check whether the range crosses a 32-bytes aligned address */
const int __single_check = (__begin ^ __end) < 0x20u;
/* execute the right variant of the TT instructions */
void *__pe = (void *)__end;
cmse_address_info_t __permb, __perme;
switch (__flags & (CMSE_MPU_UNPRIV | CMSE_MPU_NONSECURE)) {
case 0:
__permb = cmse_TT(__pb);
__perme = __single_check ? __permb : cmse_TT(__pe);
break;
case CMSE_MPU_UNPRIV:
__permb = cmse_TTT(__pb);
__perme = __single_check ? __permb : cmse_TTT(__pe);
break;
#if __ARM_CMSE_SECURE_MODE
case CMSE_MPU_NONSECURE:
__permb = cmse_TTA(__pb);
__perme = __single_check ? __permb : cmse_TTA(__pe);
break;
case CMSE_MPU_UNPRIV | CMSE_MPU_NONSECURE:
__permb = cmse_TTAT(__pb);
__perme = __single_check ? __permb : cmse_TTAT(__pe);
break;
#endif
/* if CMSE_NONSECURE is specified w/o __ARM_CMSE_SECURE_MODE */
default:
return NULL;
}
/* check that the range does not cross MPU, SAU, or IDAU region boundaries */
if (__permb.value != __perme.value)
return NULL;
#if !(__ARM_CMSE_SECURE_MODE)
/* CMSE_AU_NONSECURE is only supported when __ARM_FEATURE_CMSE & 0x2 */
if (__flags & CMSE_AU_NONSECURE)
return NULL;
#endif
/* check the permission on the range */
switch (__flags & ~(CMSE_MPU_UNPRIV | CMSE_MPU_NONSECURE)) {
#if (__ARM_CMSE_SECURE_MODE)
case CMSE_MPU_READ | CMSE_MPU_READWRITE | CMSE_AU_NONSECURE:
case CMSE_MPU_READWRITE | CMSE_AU_NONSECURE:
return __permb.flags.nonsecure_readwrite_ok ? __pb : NULL;
case CMSE_MPU_READ | CMSE_AU_NONSECURE:
return __permb.flags.nonsecure_read_ok ? __pb : NULL;
case CMSE_AU_NONSECURE:
return __permb.flags.secure ? NULL : __pb;
#endif
case CMSE_MPU_READ | CMSE_MPU_READWRITE:
case CMSE_MPU_READWRITE:
return __permb.flags.readwrite_ok ? __pb : NULL;
case CMSE_MPU_READ:
return __permb.flags.read_ok ? __pb : NULL;
default:
return NULL;
}
}
#if __ARM_CMSE_SECURE_MODE
static int __attribute__((__always_inline__, __nodebug__))
cmse_nonsecure_caller(void) {
return !((uintptr_t)__builtin_return_address(0) & 1);
}
#define cmse_nsfptr_create(p) \
__builtin_bit_cast(__typeof__(p), \
(__builtin_bit_cast(uintptr_t, p) & ~(uintptr_t)1))
#define cmse_is_nsfptr(p) ((__builtin_bit_cast(uintptr_t, p) & 1) == 0)
#endif /* __ARM_CMSE_SECURE_MODE */
void __attribute__((__noreturn__)) cmse_abort(void);
#if defined(__cplusplus)
}
#endif
#endif /* (__ARM_FEATURE_CMSE & 0x1) */
#endif /* __ARM_CMSE_H */

View File

@ -1,596 +0,0 @@
/*===---- arm_fp16.h - ARM FP16 intrinsics ---------------------------------===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __ARM_FP16_H
#define __ARM_FP16_H
#include <stdint.h>
typedef __fp16 float16_t;
#define __ai static __inline__ __attribute__((__always_inline__, __nodebug__))
#if defined(__aarch64__)
#define vabdh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vabdh_f16(__s0, __s1); \
__ret; \
})
#define vabsh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vabsh_f16(__s0); \
__ret; \
})
#define vaddh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vaddh_f16(__s0, __s1); \
__ret; \
})
#define vcageh_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vcageh_f16(__s0, __s1); \
__ret; \
})
#define vcagth_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vcagth_f16(__s0, __s1); \
__ret; \
})
#define vcaleh_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vcaleh_f16(__s0, __s1); \
__ret; \
})
#define vcalth_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vcalth_f16(__s0, __s1); \
__ret; \
})
#define vceqh_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vceqh_f16(__s0, __s1); \
__ret; \
})
#define vceqzh_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vceqzh_f16(__s0); \
__ret; \
})
#define vcgeh_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vcgeh_f16(__s0, __s1); \
__ret; \
})
#define vcgezh_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcgezh_f16(__s0); \
__ret; \
})
#define vcgth_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vcgth_f16(__s0, __s1); \
__ret; \
})
#define vcgtzh_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcgtzh_f16(__s0); \
__ret; \
})
#define vcleh_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vcleh_f16(__s0, __s1); \
__ret; \
})
#define vclezh_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vclezh_f16(__s0); \
__ret; \
})
#define vclth_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (uint16_t) __builtin_neon_vclth_f16(__s0, __s1); \
__ret; \
})
#define vcltzh_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcltzh_f16(__s0); \
__ret; \
})
#define vcvth_n_s16_f16(__p0, __p1) __extension__ ({ \
int16_t __ret; \
float16_t __s0 = __p0; \
__ret = (int16_t) __builtin_neon_vcvth_n_s16_f16(__s0, __p1); \
__ret; \
})
#define vcvth_n_s32_f16(__p0, __p1) __extension__ ({ \
int32_t __ret; \
float16_t __s0 = __p0; \
__ret = (int32_t) __builtin_neon_vcvth_n_s32_f16(__s0, __p1); \
__ret; \
})
#define vcvth_n_s64_f16(__p0, __p1) __extension__ ({ \
int64_t __ret; \
float16_t __s0 = __p0; \
__ret = (int64_t) __builtin_neon_vcvth_n_s64_f16(__s0, __p1); \
__ret; \
})
#define vcvth_n_u16_f16(__p0, __p1) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcvth_n_u16_f16(__s0, __p1); \
__ret; \
})
#define vcvth_n_u32_f16(__p0, __p1) __extension__ ({ \
uint32_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint32_t) __builtin_neon_vcvth_n_u32_f16(__s0, __p1); \
__ret; \
})
#define vcvth_n_u64_f16(__p0, __p1) __extension__ ({ \
uint64_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint64_t) __builtin_neon_vcvth_n_u64_f16(__s0, __p1); \
__ret; \
})
#define vcvth_s16_f16(__p0) __extension__ ({ \
int16_t __ret; \
float16_t __s0 = __p0; \
__ret = (int16_t) __builtin_neon_vcvth_s16_f16(__s0); \
__ret; \
})
#define vcvth_s32_f16(__p0) __extension__ ({ \
int32_t __ret; \
float16_t __s0 = __p0; \
__ret = (int32_t) __builtin_neon_vcvth_s32_f16(__s0); \
__ret; \
})
#define vcvth_s64_f16(__p0) __extension__ ({ \
int64_t __ret; \
float16_t __s0 = __p0; \
__ret = (int64_t) __builtin_neon_vcvth_s64_f16(__s0); \
__ret; \
})
#define vcvth_u16_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcvth_u16_f16(__s0); \
__ret; \
})
#define vcvth_u32_f16(__p0) __extension__ ({ \
uint32_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint32_t) __builtin_neon_vcvth_u32_f16(__s0); \
__ret; \
})
#define vcvth_u64_f16(__p0) __extension__ ({ \
uint64_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint64_t) __builtin_neon_vcvth_u64_f16(__s0); \
__ret; \
})
#define vcvtah_s16_f16(__p0) __extension__ ({ \
int16_t __ret; \
float16_t __s0 = __p0; \
__ret = (int16_t) __builtin_neon_vcvtah_s16_f16(__s0); \
__ret; \
})
#define vcvtah_s32_f16(__p0) __extension__ ({ \
int32_t __ret; \
float16_t __s0 = __p0; \
__ret = (int32_t) __builtin_neon_vcvtah_s32_f16(__s0); \
__ret; \
})
#define vcvtah_s64_f16(__p0) __extension__ ({ \
int64_t __ret; \
float16_t __s0 = __p0; \
__ret = (int64_t) __builtin_neon_vcvtah_s64_f16(__s0); \
__ret; \
})
#define vcvtah_u16_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcvtah_u16_f16(__s0); \
__ret; \
})
#define vcvtah_u32_f16(__p0) __extension__ ({ \
uint32_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint32_t) __builtin_neon_vcvtah_u32_f16(__s0); \
__ret; \
})
#define vcvtah_u64_f16(__p0) __extension__ ({ \
uint64_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint64_t) __builtin_neon_vcvtah_u64_f16(__s0); \
__ret; \
})
#define vcvth_f16_u16(__p0) __extension__ ({ \
float16_t __ret; \
uint16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_f16_u16(__s0); \
__ret; \
})
#define vcvth_f16_s16(__p0) __extension__ ({ \
float16_t __ret; \
int16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_f16_s16(__s0); \
__ret; \
})
#define vcvth_f16_u32(__p0) __extension__ ({ \
float16_t __ret; \
uint32_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_f16_u32(__s0); \
__ret; \
})
#define vcvth_f16_s32(__p0) __extension__ ({ \
float16_t __ret; \
int32_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_f16_s32(__s0); \
__ret; \
})
#define vcvth_f16_u64(__p0) __extension__ ({ \
float16_t __ret; \
uint64_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_f16_u64(__s0); \
__ret; \
})
#define vcvth_f16_s64(__p0) __extension__ ({ \
float16_t __ret; \
int64_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_f16_s64(__s0); \
__ret; \
})
#define vcvth_n_f16_u32(__p0, __p1) __extension__ ({ \
float16_t __ret; \
uint32_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_n_f16_u32(__s0, __p1); \
__ret; \
})
#define vcvth_n_f16_s32(__p0, __p1) __extension__ ({ \
float16_t __ret; \
int32_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_n_f16_s32(__s0, __p1); \
__ret; \
})
#define vcvth_n_f16_u64(__p0, __p1) __extension__ ({ \
float16_t __ret; \
uint64_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_n_f16_u64(__s0, __p1); \
__ret; \
})
#define vcvth_n_f16_s64(__p0, __p1) __extension__ ({ \
float16_t __ret; \
int64_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_n_f16_s64(__s0, __p1); \
__ret; \
})
#define vcvth_n_f16_u16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
uint16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_n_f16_u16(__s0, __p1); \
__ret; \
})
#define vcvth_n_f16_s16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
int16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vcvth_n_f16_s16(__s0, __p1); \
__ret; \
})
#define vcvtmh_s16_f16(__p0) __extension__ ({ \
int16_t __ret; \
float16_t __s0 = __p0; \
__ret = (int16_t) __builtin_neon_vcvtmh_s16_f16(__s0); \
__ret; \
})
#define vcvtmh_s32_f16(__p0) __extension__ ({ \
int32_t __ret; \
float16_t __s0 = __p0; \
__ret = (int32_t) __builtin_neon_vcvtmh_s32_f16(__s0); \
__ret; \
})
#define vcvtmh_s64_f16(__p0) __extension__ ({ \
int64_t __ret; \
float16_t __s0 = __p0; \
__ret = (int64_t) __builtin_neon_vcvtmh_s64_f16(__s0); \
__ret; \
})
#define vcvtmh_u16_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcvtmh_u16_f16(__s0); \
__ret; \
})
#define vcvtmh_u32_f16(__p0) __extension__ ({ \
uint32_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint32_t) __builtin_neon_vcvtmh_u32_f16(__s0); \
__ret; \
})
#define vcvtmh_u64_f16(__p0) __extension__ ({ \
uint64_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint64_t) __builtin_neon_vcvtmh_u64_f16(__s0); \
__ret; \
})
#define vcvtnh_s16_f16(__p0) __extension__ ({ \
int16_t __ret; \
float16_t __s0 = __p0; \
__ret = (int16_t) __builtin_neon_vcvtnh_s16_f16(__s0); \
__ret; \
})
#define vcvtnh_s32_f16(__p0) __extension__ ({ \
int32_t __ret; \
float16_t __s0 = __p0; \
__ret = (int32_t) __builtin_neon_vcvtnh_s32_f16(__s0); \
__ret; \
})
#define vcvtnh_s64_f16(__p0) __extension__ ({ \
int64_t __ret; \
float16_t __s0 = __p0; \
__ret = (int64_t) __builtin_neon_vcvtnh_s64_f16(__s0); \
__ret; \
})
#define vcvtnh_u16_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcvtnh_u16_f16(__s0); \
__ret; \
})
#define vcvtnh_u32_f16(__p0) __extension__ ({ \
uint32_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint32_t) __builtin_neon_vcvtnh_u32_f16(__s0); \
__ret; \
})
#define vcvtnh_u64_f16(__p0) __extension__ ({ \
uint64_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint64_t) __builtin_neon_vcvtnh_u64_f16(__s0); \
__ret; \
})
#define vcvtph_s16_f16(__p0) __extension__ ({ \
int16_t __ret; \
float16_t __s0 = __p0; \
__ret = (int16_t) __builtin_neon_vcvtph_s16_f16(__s0); \
__ret; \
})
#define vcvtph_s32_f16(__p0) __extension__ ({ \
int32_t __ret; \
float16_t __s0 = __p0; \
__ret = (int32_t) __builtin_neon_vcvtph_s32_f16(__s0); \
__ret; \
})
#define vcvtph_s64_f16(__p0) __extension__ ({ \
int64_t __ret; \
float16_t __s0 = __p0; \
__ret = (int64_t) __builtin_neon_vcvtph_s64_f16(__s0); \
__ret; \
})
#define vcvtph_u16_f16(__p0) __extension__ ({ \
uint16_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint16_t) __builtin_neon_vcvtph_u16_f16(__s0); \
__ret; \
})
#define vcvtph_u32_f16(__p0) __extension__ ({ \
uint32_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint32_t) __builtin_neon_vcvtph_u32_f16(__s0); \
__ret; \
})
#define vcvtph_u64_f16(__p0) __extension__ ({ \
uint64_t __ret; \
float16_t __s0 = __p0; \
__ret = (uint64_t) __builtin_neon_vcvtph_u64_f16(__s0); \
__ret; \
})
#define vdivh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vdivh_f16(__s0, __s1); \
__ret; \
})
#define vfmah_f16(__p0, __p1, __p2) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
float16_t __s2 = __p2; \
__ret = (float16_t) __builtin_neon_vfmah_f16(__s0, __s1, __s2); \
__ret; \
})
#define vfmsh_f16(__p0, __p1, __p2) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
float16_t __s2 = __p2; \
__ret = (float16_t) __builtin_neon_vfmsh_f16(__s0, __s1, __s2); \
__ret; \
})
#define vmaxh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vmaxh_f16(__s0, __s1); \
__ret; \
})
#define vmaxnmh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vmaxnmh_f16(__s0, __s1); \
__ret; \
})
#define vminh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vminh_f16(__s0, __s1); \
__ret; \
})
#define vminnmh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vminnmh_f16(__s0, __s1); \
__ret; \
})
#define vmulh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vmulh_f16(__s0, __s1); \
__ret; \
})
#define vmulxh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vmulxh_f16(__s0, __s1); \
__ret; \
})
#define vnegh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vnegh_f16(__s0); \
__ret; \
})
#define vrecpeh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrecpeh_f16(__s0); \
__ret; \
})
#define vrecpsh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vrecpsh_f16(__s0, __s1); \
__ret; \
})
#define vrecpxh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrecpxh_f16(__s0); \
__ret; \
})
#define vrndh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrndh_f16(__s0); \
__ret; \
})
#define vrndah_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrndah_f16(__s0); \
__ret; \
})
#define vrndih_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrndih_f16(__s0); \
__ret; \
})
#define vrndmh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrndmh_f16(__s0); \
__ret; \
})
#define vrndnh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrndnh_f16(__s0); \
__ret; \
})
#define vrndph_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrndph_f16(__s0); \
__ret; \
})
#define vrndxh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrndxh_f16(__s0); \
__ret; \
})
#define vrsqrteh_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vrsqrteh_f16(__s0); \
__ret; \
})
#define vrsqrtsh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vrsqrtsh_f16(__s0, __s1); \
__ret; \
})
#define vsqrth_f16(__p0) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
__ret = (float16_t) __builtin_neon_vsqrth_f16(__s0); \
__ret; \
})
#define vsubh_f16(__p0, __p1) __extension__ ({ \
float16_t __ret; \
float16_t __s0 = __p0; \
float16_t __s1 = __p1; \
__ret = (float16_t) __builtin_neon_vsubh_f16(__s0, __s1); \
__ret; \
})
#endif
#undef __ai
#endif /* __ARM_FP16_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,182 +0,0 @@
/*===---- arm_neon_sve_bridge.h - ARM NEON SVE Bridge intrinsics -----------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __ARM_NEON_SVE_BRIDGE_H
#define __ARM_NEON_SVE_BRIDGE_H
#include <arm_neon.h>
#include <arm_sve.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Function attributes */
#define __ai static __inline__ __attribute__((__always_inline__, __nodebug__))
#define __aio \
static __inline__ \
__attribute__((__always_inline__, __nodebug__, __overloadable__))
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s8)))
svint8_t svset_neonq(svint8_t, int8x16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s16)))
svint16_t svset_neonq(svint16_t, int16x8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s32)))
svint32_t svset_neonq(svint32_t, int32x4_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s64)))
svint64_t svset_neonq(svint64_t, int64x2_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u8)))
svuint8_t svset_neonq(svuint8_t, uint8x16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u16)))
svuint16_t svset_neonq(svuint16_t, uint16x8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u32)))
svuint32_t svset_neonq(svuint32_t, uint32x4_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u64)))
svuint64_t svset_neonq(svuint64_t, uint64x2_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_f16)))
svfloat16_t svset_neonq(svfloat16_t, float16x8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_f32)))
svfloat32_t svset_neonq(svfloat32_t, float32x4_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_f64)))
svfloat64_t svset_neonq(svfloat64_t, float64x2_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s8)))
svint8_t svset_neonq_s8(svint8_t, int8x16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s16)))
svint16_t svset_neonq_s16(svint16_t, int16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s32)))
svint32_t svset_neonq_s32(svint32_t, int32x4_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_s64)))
svint64_t svset_neonq_s64(svint64_t, int64x2_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u8)))
svuint8_t svset_neonq_u8(svuint8_t, uint8x16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u16)))
svuint16_t svset_neonq_u16(svuint16_t, uint16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u32)))
svuint32_t svset_neonq_u32(svuint32_t, uint32x4_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_u64)))
svuint64_t svset_neonq_u64(svuint64_t, uint64x2_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_f16)))
svfloat16_t svset_neonq_f16(svfloat16_t, float16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_f32)))
svfloat32_t svset_neonq_f32(svfloat32_t, float32x4_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_f64)))
svfloat64_t svset_neonq_f64(svfloat64_t, float64x2_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s8)))
int8x16_t svget_neonq(svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s16)))
int16x8_t svget_neonq(svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s32)))
int32x4_t svget_neonq(svint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s64)))
int64x2_t svget_neonq(svint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u8)))
uint8x16_t svget_neonq(svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u16)))
uint16x8_t svget_neonq(svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u32)))
uint32x4_t svget_neonq(svuint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u64)))
uint64x2_t svget_neonq(svuint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_f16)))
float16x8_t svget_neonq(svfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_f32)))
float32x4_t svget_neonq(svfloat32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_f64)))
float64x2_t svget_neonq(svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s8)))
int8x16_t svget_neonq_s8(svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s16)))
int16x8_t svget_neonq_s16(svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s32)))
int32x4_t svget_neonq_s32(svint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_s64)))
int64x2_t svget_neonq_s64(svint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u8)))
uint8x16_t svget_neonq_u8(svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u16)))
uint16x8_t svget_neonq_u16(svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u32)))
uint32x4_t svget_neonq_u32(svuint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_u64)))
uint64x2_t svget_neonq_u64(svuint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_f16)))
float16x8_t svget_neonq_f16(svfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_f32)))
float32x4_t svget_neonq_f32(svfloat32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_f64)))
float64x2_t svget_neonq_f64(svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s8)))
svint8_t svdup_neonq(int8x16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s16)))
svint16_t svdup_neonq(int16x8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s32)))
svint32_t svdup_neonq(int32x4_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s64)))
svint64_t svdup_neonq(int64x2_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u8)))
svuint8_t svdup_neonq(uint8x16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u16)))
svuint16_t svdup_neonq(uint16x8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u32)))
svuint32_t svdup_neonq(uint32x4_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u64)))
svuint64_t svdup_neonq(uint64x2_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_f16)))
svfloat16_t svdup_neonq(float16x8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_f32)))
svfloat32_t svdup_neonq(float32x4_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_f64)))
svfloat64_t svdup_neonq(float64x2_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s8)))
svint8_t svdup_neonq_s8(int8x16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s16)))
svint16_t svdup_neonq_s16(int16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s32)))
svint32_t svdup_neonq_s32(int32x4_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_s64)))
svint64_t svdup_neonq_s64(int64x2_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u8)))
svuint8_t svdup_neonq_u8(uint8x16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u16)))
svuint16_t svdup_neonq_u16(uint16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u32)))
svuint32_t svdup_neonq_u32(uint32x4_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_u64)))
svuint64_t svdup_neonq_u64(uint64x2_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_f16)))
svfloat16_t svdup_neonq_f16(float16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_f32)))
svfloat32_t svdup_neonq_f32(float32x4_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_f64)))
svfloat64_t svdup_neonq_f64(float64x2_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_bf16)))
svbfloat16_t svset_neonq(svbfloat16_t, bfloat16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svset_neonq_bf16)))
svbfloat16_t svset_neonq_bf16(svbfloat16_t, bfloat16x8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_bf16)))
bfloat16x8_t svget_neonq(svbfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svget_neonq_bf16)))
bfloat16x8_t svget_neonq_bf16(svbfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_bf16)))
svbfloat16_t svdup_neonq(bfloat16x8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sve_svdup_neonq_bf16)))
svbfloat16_t svdup_neonq_bf16(bfloat16x8_t);
#undef __ai
#undef __aio
#ifdef __cplusplus
} // extern "C"
#endif
#endif //__ARM_NEON_SVE_BRIDGE_H

View File

@ -1,642 +0,0 @@
/*===---- arm_sme_draft_spec_subject_to_change.h - ARM SME intrinsics ------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __ARM_SME_H
#define __ARM_SME_H
#if !defined(__LITTLE_ENDIAN__)
#error "Big endian is currently not supported for arm_sme_draft_spec_subject_to_change.h"
#endif
#include <arm_sve.h>
/* Function attributes */
#define __ai static __inline__ __attribute__((__always_inline__, __nodebug__))
#define __aio static __inline__ __attribute__((__always_inline__, __nodebug__, __overloadable__))
#ifdef __cplusplus
extern "C" {
#endif
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za32_u32_m), arm_streaming, arm_shared_za))
void svaddha_za32_u32_m(uint64_t, svbool_t, svbool_t, svuint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za32_s32_m), arm_streaming, arm_shared_za))
void svaddha_za32_s32_m(uint64_t, svbool_t, svbool_t, svint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za32_u32_m), arm_streaming, arm_shared_za))
void svaddva_za32_u32_m(uint64_t, svbool_t, svbool_t, svuint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za32_s32_m), arm_streaming, arm_shared_za))
void svaddva_za32_s32_m(uint64_t, svbool_t, svbool_t, svint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svcntsb), arm_streaming_compatible, arm_preserves_za))
uint64_t svcntsb(void);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svcntsd), arm_streaming_compatible, arm_preserves_za))
uint64_t svcntsd(void);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svcntsh), arm_streaming_compatible, arm_preserves_za))
uint64_t svcntsh(void);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svcntsw), arm_streaming_compatible, arm_preserves_za))
uint64_t svcntsw(void);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_vnum_za128), arm_streaming, arm_shared_za))
void svld1_hor_vnum_za128(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_vnum_za16), arm_streaming, arm_shared_za))
void svld1_hor_vnum_za16(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_vnum_za32), arm_streaming, arm_shared_za))
void svld1_hor_vnum_za32(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_vnum_za64), arm_streaming, arm_shared_za))
void svld1_hor_vnum_za64(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_vnum_za8), arm_streaming, arm_shared_za))
void svld1_hor_vnum_za8(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_za128), arm_streaming, arm_shared_za))
void svld1_hor_za128(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_za16), arm_streaming, arm_shared_za))
void svld1_hor_za16(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_za32), arm_streaming, arm_shared_za))
void svld1_hor_za32(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_za64), arm_streaming, arm_shared_za))
void svld1_hor_za64(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_hor_za8), arm_streaming, arm_shared_za))
void svld1_hor_za8(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_vnum_za128), arm_streaming, arm_shared_za))
void svld1_ver_vnum_za128(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_vnum_za16), arm_streaming, arm_shared_za))
void svld1_ver_vnum_za16(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_vnum_za32), arm_streaming, arm_shared_za))
void svld1_ver_vnum_za32(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_vnum_za64), arm_streaming, arm_shared_za))
void svld1_ver_vnum_za64(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_vnum_za8), arm_streaming, arm_shared_za))
void svld1_ver_vnum_za8(uint64_t, uint32_t, uint64_t, svbool_t, void const *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_za128), arm_streaming, arm_shared_za))
void svld1_ver_za128(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_za16), arm_streaming, arm_shared_za))
void svld1_ver_za16(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_za32), arm_streaming, arm_shared_za))
void svld1_ver_za32(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_za64), arm_streaming, arm_shared_za))
void svld1_ver_za64(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svld1_ver_za8), arm_streaming, arm_shared_za))
void svld1_ver_za8(uint64_t, uint32_t, uint64_t, svbool_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_f16_m), arm_streaming, arm_shared_za))
void svmopa_za32_f16_m(uint64_t, svbool_t, svbool_t, svfloat16_t, svfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_bf16_m), arm_streaming, arm_shared_za))
void svmopa_za32_bf16_m(uint64_t, svbool_t, svbool_t, svbfloat16_t, svbfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_f32_m), arm_streaming, arm_shared_za))
void svmopa_za32_f32_m(uint64_t, svbool_t, svbool_t, svfloat32_t, svfloat32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_s8_m), arm_streaming, arm_shared_za))
void svmopa_za32_s8_m(uint64_t, svbool_t, svbool_t, svint8_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_u8_m), arm_streaming, arm_shared_za))
void svmopa_za32_u8_m(uint64_t, svbool_t, svbool_t, svuint8_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_f16_m), arm_streaming, arm_shared_za))
void svmops_za32_f16_m(uint64_t, svbool_t, svbool_t, svfloat16_t, svfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_bf16_m), arm_streaming, arm_shared_za))
void svmops_za32_bf16_m(uint64_t, svbool_t, svbool_t, svbfloat16_t, svbfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_f32_m), arm_streaming, arm_shared_za))
void svmops_za32_f32_m(uint64_t, svbool_t, svbool_t, svfloat32_t, svfloat32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_s8_m), arm_streaming, arm_shared_za))
void svmops_za32_s8_m(uint64_t, svbool_t, svbool_t, svint8_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_u8_m), arm_streaming, arm_shared_za))
void svmops_za32_u8_m(uint64_t, svbool_t, svbool_t, svuint8_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_hor_za128_u8_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_hor_za128_u32_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_hor_za128_u64_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_hor_za128_u16_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_hor_za128_bf16_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_hor_za128_s8_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_hor_za128_f64_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_hor_za128_f32_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_hor_za128_f16_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_hor_za128_s32_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_hor_za128_s64_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_hor_za128_s16_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_hor_za16_u16_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_hor_za16_bf16_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_hor_za16_f16_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_hor_za16_s16_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za32_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_hor_za32_u32_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za32_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_hor_za32_f32_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za32_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_hor_za32_s32_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za64_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_hor_za64_u64_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za64_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_hor_za64_f64_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za64_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_hor_za64_s64_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za8_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_hor_za8_u8_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za8_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_hor_za8_s8_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_ver_za128_u8_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_ver_za128_u32_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_ver_za128_u64_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_ver_za128_u16_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_ver_za128_bf16_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_ver_za128_s8_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_ver_za128_f64_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_ver_za128_f32_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_ver_za128_f16_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_ver_za128_s32_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_ver_za128_s64_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_ver_za128_s16_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_ver_za16_u16_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_ver_za16_bf16_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_ver_za16_f16_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_ver_za16_s16_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za32_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_ver_za32_u32_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za32_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_ver_za32_f32_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za32_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_ver_za32_s32_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za64_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_ver_za64_u64_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za64_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_ver_za64_f64_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za64_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_ver_za64_s64_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za8_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_ver_za8_u8_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za8_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_ver_za8_s8_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_vnum_za128), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_vnum_za128(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_vnum_za16), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_vnum_za16(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_vnum_za32), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_vnum_za32(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_vnum_za64), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_vnum_za64(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_vnum_za8), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_vnum_za8(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_za128), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_za128(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_za16), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_za16(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_za32), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_za32(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_za64), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_za64(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_hor_za8), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_hor_za8(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_vnum_za128), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_vnum_za128(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_vnum_za16), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_vnum_za16(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_vnum_za32), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_vnum_za32(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_vnum_za64), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_vnum_za64(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_vnum_za8), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_vnum_za8(uint64_t, uint32_t, uint64_t, svbool_t, void *, int64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_za128), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_za128(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_za16), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_za16(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_za32), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_za32(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_za64), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_za64(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svst1_ver_za8), arm_streaming, arm_shared_za, arm_preserves_za))
void svst1_ver_za8(uint64_t, uint32_t, uint64_t, svbool_t, void *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumopa_za32_s8_m), arm_streaming, arm_shared_za))
void svsumopa_za32_s8_m(uint64_t, svbool_t, svbool_t, svint8_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumops_za32_s8_m), arm_streaming, arm_shared_za))
void svsumops_za32_s8_m(uint64_t, svbool_t, svbool_t, svint8_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmopa_za32_u8_m), arm_streaming, arm_shared_za))
void svusmopa_za32_u8_m(uint64_t, svbool_t, svbool_t, svuint8_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmops_za32_u8_m), arm_streaming, arm_shared_za))
void svusmops_za32_u8_m(uint64_t, svbool_t, svbool_t, svuint8_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_u8_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_u32_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_u64_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_u16_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_bf16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_bf16_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_s8_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_f64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_f64_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_f32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_f32_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_f16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_f16_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_s32_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_s64_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_s16_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_u16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_u16_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_bf16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_bf16_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_f16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_f16_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_s16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_s16_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za32_u32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za32_u32_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za32_f32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za32_f32_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za32_s32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za32_s32_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za64_u64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za64_u64_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za64_f64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za64_f64_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za64_s64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za64_s64_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za8_u8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za8_u8_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za8_s8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za8_s8_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_u8_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_u32_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_u64_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_u16_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_bf16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_bf16_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_s8_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_f64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_f64_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_f32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_f32_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_f16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_f16_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_s32_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_s64_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_s16_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_u16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_u16_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_bf16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_bf16_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_f16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_f16_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_s16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_s16_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za32_u32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za32_u32_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za32_f32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za32_f32_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za32_s32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za32_s32_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za64_u64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za64_u64_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za64_f64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za64_f64_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za64_s64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za64_s64_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za8_u8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za8_u8_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za8_s8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za8_s8_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svzero_mask_za), arm_streaming_compatible, arm_shared_za))
void svzero_mask_za(uint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svzero_za), arm_streaming_compatible, arm_shared_za))
void svzero_za();
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za32_u32_m), arm_streaming, arm_shared_za))
void svaddha_za32_m(uint64_t, svbool_t, svbool_t, svuint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za32_s32_m), arm_streaming, arm_shared_za))
void svaddha_za32_m(uint64_t, svbool_t, svbool_t, svint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za32_u32_m), arm_streaming, arm_shared_za))
void svaddva_za32_m(uint64_t, svbool_t, svbool_t, svuint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za32_s32_m), arm_streaming, arm_shared_za))
void svaddva_za32_m(uint64_t, svbool_t, svbool_t, svint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_f16_m), arm_streaming, arm_shared_za))
void svmopa_za32_m(uint64_t, svbool_t, svbool_t, svfloat16_t, svfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_bf16_m), arm_streaming, arm_shared_za))
void svmopa_za32_m(uint64_t, svbool_t, svbool_t, svbfloat16_t, svbfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_f32_m), arm_streaming, arm_shared_za))
void svmopa_za32_m(uint64_t, svbool_t, svbool_t, svfloat32_t, svfloat32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_s8_m), arm_streaming, arm_shared_za))
void svmopa_za32_m(uint64_t, svbool_t, svbool_t, svint8_t, svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za32_u8_m), arm_streaming, arm_shared_za))
void svmopa_za32_m(uint64_t, svbool_t, svbool_t, svuint8_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_f16_m), arm_streaming, arm_shared_za))
void svmops_za32_m(uint64_t, svbool_t, svbool_t, svfloat16_t, svfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_bf16_m), arm_streaming, arm_shared_za))
void svmops_za32_m(uint64_t, svbool_t, svbool_t, svbfloat16_t, svbfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_f32_m), arm_streaming, arm_shared_za))
void svmops_za32_m(uint64_t, svbool_t, svbool_t, svfloat32_t, svfloat32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_s8_m), arm_streaming, arm_shared_za))
void svmops_za32_m(uint64_t, svbool_t, svbool_t, svint8_t, svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za32_u8_m), arm_streaming, arm_shared_za))
void svmops_za32_m(uint64_t, svbool_t, svbool_t, svuint8_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_hor_za128_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_hor_za128_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_hor_za128_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_hor_za128_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_hor_za128_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_hor_za128_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_hor_za128_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_hor_za128_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_hor_za128_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_hor_za128_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_hor_za128_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za128_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_hor_za128_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_hor_za16_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_hor_za16_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_hor_za16_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za16_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_hor_za16_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za32_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_hor_za32_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za32_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_hor_za32_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za32_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_hor_za32_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za64_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_hor_za64_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za64_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_hor_za64_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za64_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_hor_za64_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za8_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_hor_za8_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_hor_za8_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_hor_za8_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_ver_za128_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_ver_za128_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_ver_za128_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_ver_za128_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_ver_za128_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_ver_za128_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_ver_za128_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_ver_za128_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_ver_za128_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_ver_za128_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_ver_za128_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za128_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_ver_za128_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_u16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint16_t svread_ver_za16_m(svuint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_bf16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svbfloat16_t svread_ver_za16_m(svbfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_f16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat16_t svread_ver_za16_m(svfloat16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za16_s16_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint16_t svread_ver_za16_m(svint16_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za32_u32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint32_t svread_ver_za32_m(svuint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za32_f32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat32_t svread_ver_za32_m(svfloat32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za32_s32_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint32_t svread_ver_za32_m(svint32_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za64_u64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint64_t svread_ver_za64_m(svuint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za64_f64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svfloat64_t svread_ver_za64_m(svfloat64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za64_s64_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint64_t svread_ver_za64_m(svint64_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za8_u8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svuint8_t svread_ver_za8_m(svuint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svread_ver_za8_s8_m), arm_streaming, arm_shared_za, arm_preserves_za))
svint8_t svread_ver_za8_m(svint8_t, svbool_t, uint64_t, uint32_t, uint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumopa_za32_s8_m), arm_streaming, arm_shared_za))
void svsumopa_za32_m(uint64_t, svbool_t, svbool_t, svint8_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumops_za32_s8_m), arm_streaming, arm_shared_za))
void svsumops_za32_m(uint64_t, svbool_t, svbool_t, svint8_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmopa_za32_u8_m), arm_streaming, arm_shared_za))
void svusmopa_za32_m(uint64_t, svbool_t, svbool_t, svuint8_t, svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmops_za32_u8_m), arm_streaming, arm_shared_za))
void svusmops_za32_m(uint64_t, svbool_t, svbool_t, svuint8_t, svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_u16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_bf16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_f64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_f32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_f16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za128_s16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_u16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_bf16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_f16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za16_s16_m), arm_streaming, arm_shared_za))
void svwrite_hor_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za32_u32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za32_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za32_f32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za32_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za32_s32_m), arm_streaming, arm_shared_za))
void svwrite_hor_za32_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za64_u64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za64_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za64_f64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za64_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za64_s64_m), arm_streaming, arm_shared_za))
void svwrite_hor_za64_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za8_u8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za8_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_hor_za8_s8_m), arm_streaming, arm_shared_za))
void svwrite_hor_za8_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_u16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_bf16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_f64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_f32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_f16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za128_s16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za128_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_u16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_bf16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svbfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_f16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za16_s16_m), arm_streaming, arm_shared_za))
void svwrite_ver_za16_m(uint64_t, uint32_t, uint64_t, svbool_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za32_u32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za32_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za32_f32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za32_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za32_s32_m), arm_streaming, arm_shared_za))
void svwrite_ver_za32_m(uint64_t, uint32_t, uint64_t, svbool_t, svint32_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za64_u64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za64_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za64_f64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za64_m(uint64_t, uint32_t, uint64_t, svbool_t, svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za64_s64_m), arm_streaming, arm_shared_za))
void svwrite_ver_za64_m(uint64_t, uint32_t, uint64_t, svbool_t, svint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za8_u8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za8_m(uint64_t, uint32_t, uint64_t, svbool_t, svuint8_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svwrite_ver_za8_s8_m), arm_streaming, arm_shared_za))
void svwrite_ver_za8_m(uint64_t, uint32_t, uint64_t, svbool_t, svint8_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za64_f64_m), arm_streaming, arm_shared_za))
void svmopa_za64_f64_m(uint64_t, svbool_t, svbool_t, svfloat64_t, svfloat64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za64_f64_m), arm_streaming, arm_shared_za))
void svmops_za64_f64_m(uint64_t, svbool_t, svbool_t, svfloat64_t, svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za64_f64_m), arm_streaming, arm_shared_za))
void svmopa_za64_m(uint64_t, svbool_t, svbool_t, svfloat64_t, svfloat64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za64_f64_m), arm_streaming, arm_shared_za))
void svmops_za64_m(uint64_t, svbool_t, svbool_t, svfloat64_t, svfloat64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za64_u64_m), arm_streaming, arm_shared_za))
void svaddha_za64_u64_m(uint64_t, svbool_t, svbool_t, svuint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za64_s64_m), arm_streaming, arm_shared_za))
void svaddha_za64_s64_m(uint64_t, svbool_t, svbool_t, svint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za64_u64_m), arm_streaming, arm_shared_za))
void svaddva_za64_u64_m(uint64_t, svbool_t, svbool_t, svuint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za64_s64_m), arm_streaming, arm_shared_za))
void svaddva_za64_s64_m(uint64_t, svbool_t, svbool_t, svint64_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za64_s16_m), arm_streaming, arm_shared_za))
void svmopa_za64_s16_m(uint64_t, svbool_t, svbool_t, svint16_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za64_u16_m), arm_streaming, arm_shared_za))
void svmopa_za64_u16_m(uint64_t, svbool_t, svbool_t, svuint16_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za64_s16_m), arm_streaming, arm_shared_za))
void svmops_za64_s16_m(uint64_t, svbool_t, svbool_t, svint16_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za64_u16_m), arm_streaming, arm_shared_za))
void svmops_za64_u16_m(uint64_t, svbool_t, svbool_t, svuint16_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumopa_za64_s16_m), arm_streaming, arm_shared_za))
void svsumopa_za64_s16_m(uint64_t, svbool_t, svbool_t, svint16_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumops_za64_s16_m), arm_streaming, arm_shared_za))
void svsumops_za64_s16_m(uint64_t, svbool_t, svbool_t, svint16_t, svuint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmopa_za64_u16_m), arm_streaming, arm_shared_za))
void svusmopa_za64_u16_m(uint64_t, svbool_t, svbool_t, svuint16_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmops_za64_u16_m), arm_streaming, arm_shared_za))
void svusmops_za64_u16_m(uint64_t, svbool_t, svbool_t, svuint16_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za64_u64_m), arm_streaming, arm_shared_za))
void svaddha_za64_m(uint64_t, svbool_t, svbool_t, svuint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddha_za64_s64_m), arm_streaming, arm_shared_za))
void svaddha_za64_m(uint64_t, svbool_t, svbool_t, svint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za64_u64_m), arm_streaming, arm_shared_za))
void svaddva_za64_m(uint64_t, svbool_t, svbool_t, svuint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svaddva_za64_s64_m), arm_streaming, arm_shared_za))
void svaddva_za64_m(uint64_t, svbool_t, svbool_t, svint64_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za64_s16_m), arm_streaming, arm_shared_za))
void svmopa_za64_m(uint64_t, svbool_t, svbool_t, svint16_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmopa_za64_u16_m), arm_streaming, arm_shared_za))
void svmopa_za64_m(uint64_t, svbool_t, svbool_t, svuint16_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za64_s16_m), arm_streaming, arm_shared_za))
void svmops_za64_m(uint64_t, svbool_t, svbool_t, svint16_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svmops_za64_u16_m), arm_streaming, arm_shared_za))
void svmops_za64_m(uint64_t, svbool_t, svbool_t, svuint16_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumopa_za64_s16_m), arm_streaming, arm_shared_za))
void svsumopa_za64_m(uint64_t, svbool_t, svbool_t, svint16_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svsumops_za64_s16_m), arm_streaming, arm_shared_za))
void svsumops_za64_m(uint64_t, svbool_t, svbool_t, svint16_t, svuint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmopa_za64_u16_m), arm_streaming, arm_shared_za))
void svusmopa_za64_m(uint64_t, svbool_t, svbool_t, svuint16_t, svint16_t);
__aio __attribute__((__clang_arm_builtin_alias(__builtin_sme_svusmops_za64_u16_m), arm_streaming, arm_shared_za))
void svusmops_za64_m(uint64_t, svbool_t, svbool_t, svuint16_t, svint16_t);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svldr_vnum_za), arm_streaming_compatible, arm_shared_za))
void svldr_vnum_za(uint32_t, uint64_t, void const *);
__ai __attribute__((__clang_arm_builtin_alias(__builtin_sme_svstr_vnum_za), arm_streaming_compatible, arm_shared_za, arm_preserves_za))
void svstr_vnum_za(uint32_t, uint64_t, void *);
#ifdef __cplusplus
} // extern "C"
#endif
#undef __ai
#endif /* __ARM_SME_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,31 +0,0 @@
/*===---- armintr.h - ARM Windows intrinsics -------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
/* Only include this if we're compiling for the windows platform. */
#ifndef _MSC_VER
#include_next <armintr.h>
#else
#ifndef __ARMINTR_H
#define __ARMINTR_H
typedef enum
{
_ARM_BARRIER_SY = 0xF,
_ARM_BARRIER_ST = 0xE,
_ARM_BARRIER_ISH = 0xB,
_ARM_BARRIER_ISHST = 0xA,
_ARM_BARRIER_NSH = 0x7,
_ARM_BARRIER_NSHST = 0x6,
_ARM_BARRIER_OSH = 0x3,
_ARM_BARRIER_OSHST = 0x2
} _ARMINTR_BARRIER_TYPE;
#endif /* __ARMINTR_H */
#endif /* _MSC_VER */

File diff suppressed because it is too large Load Diff

View File

@ -1,282 +0,0 @@
/*===------------ avx512bf16intrin.h - AVX512_BF16 intrinsics --------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512bf16intrin.h> directly; include <immintrin.h> instead."
#endif
#ifdef __SSE2__
#ifndef __AVX512BF16INTRIN_H
#define __AVX512BF16INTRIN_H
typedef __bf16 __v32bf __attribute__((__vector_size__(64), __aligned__(64)));
typedef __bf16 __m512bh __attribute__((__vector_size__(64), __aligned__(64)));
typedef __bf16 __bfloat16 __attribute__((deprecated("use __bf16 instead")));
#define __DEFAULT_FN_ATTRS512 \
__attribute__((__always_inline__, __nodebug__, __target__("avx512bf16"), \
__min_vector_width__(512)))
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("avx512bf16")))
/// Convert One BF16 Data to One Single Float Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic does not correspond to a specific instruction.
///
/// \param __A
/// A bfloat data.
/// \returns A float data whose sign field and exponent field keep unchanged,
/// and fraction field is extended to 23 bits.
static __inline__ float __DEFAULT_FN_ATTRS _mm_cvtsbh_ss(__bf16 __A) {
return __builtin_ia32_cvtsbf162ss_32(__A);
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 512-bit vector of [16 x float].
/// \param __B
/// A 512-bit vector of [16 x float].
/// \returns A 512-bit vector of [32 x bfloat] whose lower 256 bits come from
/// conversion of __B, and higher 256 bits come from conversion of __A.
static __inline__ __m512bh __DEFAULT_FN_ATTRS512
_mm512_cvtne2ps_pbh(__m512 __A, __m512 __B) {
return (__m512bh)__builtin_ia32_cvtne2ps2bf16_512((__v16sf) __A,
(__v16sf) __B);
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 512-bit vector of [16 x float].
/// \param __B
/// A 512-bit vector of [16 x float].
/// \param __W
/// A 512-bit vector of [32 x bfloat].
/// \param __U
/// A 32-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A or __B. A 0 means element from __W.
/// \returns A 512-bit vector of [32 x bfloat] whose lower 256 bits come from
/// conversion of __B, and higher 256 bits come from conversion of __A.
static __inline__ __m512bh __DEFAULT_FN_ATTRS512
_mm512_mask_cvtne2ps_pbh(__m512bh __W, __mmask32 __U, __m512 __A, __m512 __B) {
return (__m512bh)__builtin_ia32_selectpbf_512((__mmask32)__U,
(__v32bf)_mm512_cvtne2ps_pbh(__A, __B),
(__v32bf)__W);
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 512-bit vector of [16 x float].
/// \param __B
/// A 512-bit vector of [16 x float].
/// \param __U
/// A 32-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A or __B. A 0 means element is zero.
/// \returns A 512-bit vector of [32 x bfloat] whose lower 256 bits come from
/// conversion of __B, and higher 256 bits come from conversion of __A.
static __inline__ __m512bh __DEFAULT_FN_ATTRS512
_mm512_maskz_cvtne2ps_pbh(__mmask32 __U, __m512 __A, __m512 __B) {
return (__m512bh)__builtin_ia32_selectpbf_512((__mmask32)__U,
(__v32bf)_mm512_cvtne2ps_pbh(__A, __B),
(__v32bf)_mm512_setzero_si512());
}
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 512-bit vector of [16 x float].
/// \returns A 256-bit vector of [16 x bfloat] come from conversion of __A.
static __inline__ __m256bh __DEFAULT_FN_ATTRS512
_mm512_cvtneps_pbh(__m512 __A) {
return (__m256bh)__builtin_ia32_cvtneps2bf16_512_mask((__v16sf)__A,
(__v16bf)_mm256_undefined_si256(),
(__mmask16)-1);
}
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 512-bit vector of [16 x float].
/// \param __W
/// A 256-bit vector of [16 x bfloat].
/// \param __U
/// A 16-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A. A 0 means element from __W.
/// \returns A 256-bit vector of [16 x bfloat] come from conversion of __A.
static __inline__ __m256bh __DEFAULT_FN_ATTRS512
_mm512_mask_cvtneps_pbh(__m256bh __W, __mmask16 __U, __m512 __A) {
return (__m256bh)__builtin_ia32_cvtneps2bf16_512_mask((__v16sf)__A,
(__v16bf)__W,
(__mmask16)__U);
}
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 512-bit vector of [16 x float].
/// \param __U
/// A 16-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A. A 0 means element is zero.
/// \returns A 256-bit vector of [16 x bfloat] come from conversion of __A.
static __inline__ __m256bh __DEFAULT_FN_ATTRS512
_mm512_maskz_cvtneps_pbh(__mmask16 __U, __m512 __A) {
return (__m256bh)__builtin_ia32_cvtneps2bf16_512_mask((__v16sf)__A,
(__v16bf)_mm256_setzero_si256(),
(__mmask16)__U);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 512-bit vector of [32 x bfloat].
/// \param __B
/// A 512-bit vector of [32 x bfloat].
/// \param __D
/// A 512-bit vector of [16 x float].
/// \returns A 512-bit vector of [16 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m512 __DEFAULT_FN_ATTRS512
_mm512_dpbf16_ps(__m512 __D, __m512bh __A, __m512bh __B) {
return (__m512)__builtin_ia32_dpbf16ps_512((__v16sf) __D,
(__v32bf) __A,
(__v32bf) __B);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 512-bit vector of [32 x bfloat].
/// \param __B
/// A 512-bit vector of [32 x bfloat].
/// \param __D
/// A 512-bit vector of [16 x float].
/// \param __U
/// A 16-bit mask value specifying what is chosen for each element.
/// A 1 means __A and __B's dot product accumulated with __D. A 0 means __D.
/// \returns A 512-bit vector of [16 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m512 __DEFAULT_FN_ATTRS512
_mm512_mask_dpbf16_ps(__m512 __D, __mmask16 __U, __m512bh __A, __m512bh __B) {
return (__m512)__builtin_ia32_selectps_512((__mmask16)__U,
(__v16sf)_mm512_dpbf16_ps(__D, __A, __B),
(__v16sf)__D);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 512-bit vector of [32 x bfloat].
/// \param __B
/// A 512-bit vector of [32 x bfloat].
/// \param __D
/// A 512-bit vector of [16 x float].
/// \param __U
/// A 16-bit mask value specifying what is chosen for each element.
/// A 1 means __A and __B's dot product accumulated with __D. A 0 means 0.
/// \returns A 512-bit vector of [16 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m512 __DEFAULT_FN_ATTRS512
_mm512_maskz_dpbf16_ps(__mmask16 __U, __m512 __D, __m512bh __A, __m512bh __B) {
return (__m512)__builtin_ia32_selectps_512((__mmask16)__U,
(__v16sf)_mm512_dpbf16_ps(__D, __A, __B),
(__v16sf)_mm512_setzero_si512());
}
/// Convert Packed BF16 Data to Packed float Data.
///
/// \headerfile <x86intrin.h>
///
/// \param __A
/// A 256-bit vector of [16 x bfloat].
/// \returns A 512-bit vector of [16 x float] come from conversion of __A
static __inline__ __m512 __DEFAULT_FN_ATTRS512 _mm512_cvtpbh_ps(__m256bh __A) {
return _mm512_castsi512_ps((__m512i)_mm512_slli_epi32(
(__m512i)_mm512_cvtepi16_epi32((__m256i)__A), 16));
}
/// Convert Packed BF16 Data to Packed float Data using zeroing mask.
///
/// \headerfile <x86intrin.h>
///
/// \param __U
/// A 16-bit mask. Elements are zeroed out when the corresponding mask
/// bit is not set.
/// \param __A
/// A 256-bit vector of [16 x bfloat].
/// \returns A 512-bit vector of [16 x float] come from conversion of __A
static __inline__ __m512 __DEFAULT_FN_ATTRS512
_mm512_maskz_cvtpbh_ps(__mmask16 __U, __m256bh __A) {
return _mm512_castsi512_ps((__m512i)_mm512_slli_epi32(
(__m512i)_mm512_maskz_cvtepi16_epi32((__mmask16)__U, (__m256i)__A), 16));
}
/// Convert Packed BF16 Data to Packed float Data using merging mask.
///
/// \headerfile <x86intrin.h>
///
/// \param __S
/// A 512-bit vector of [16 x float]. Elements are copied from __S when
/// the corresponding mask bit is not set.
/// \param __U
/// A 16-bit mask.
/// \param __A
/// A 256-bit vector of [16 x bfloat].
/// \returns A 512-bit vector of [16 x float] come from conversion of __A
static __inline__ __m512 __DEFAULT_FN_ATTRS512
_mm512_mask_cvtpbh_ps(__m512 __S, __mmask16 __U, __m256bh __A) {
return _mm512_castsi512_ps((__m512i)_mm512_mask_slli_epi32(
(__m512i)__S, (__mmask16)__U,
(__m512i)_mm512_cvtepi16_epi32((__m256i)__A), 16));
}
#undef __DEFAULT_FN_ATTRS
#undef __DEFAULT_FN_ATTRS512
#endif
#endif

View File

@ -1,83 +0,0 @@
/*===------------- avx512bitalgintrin.h - BITALG intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512bitalgintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512BITALGINTRIN_H
#define __AVX512BITALGINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx512bitalg"), __min_vector_width__(512)))
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_popcnt_epi16(__m512i __A)
{
return (__m512i) __builtin_ia32_vpopcntw_512((__v32hi) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_popcnt_epi16(__m512i __A, __mmask32 __U, __m512i __B)
{
return (__m512i) __builtin_ia32_selectw_512((__mmask32) __U,
(__v32hi) _mm512_popcnt_epi16(__B),
(__v32hi) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_popcnt_epi16(__mmask32 __U, __m512i __B)
{
return _mm512_mask_popcnt_epi16((__m512i) _mm512_setzero_si512(),
__U,
__B);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_popcnt_epi8(__m512i __A)
{
return (__m512i) __builtin_ia32_vpopcntb_512((__v64qi) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_popcnt_epi8(__m512i __A, __mmask64 __U, __m512i __B)
{
return (__m512i) __builtin_ia32_selectb_512((__mmask64) __U,
(__v64qi) _mm512_popcnt_epi8(__B),
(__v64qi) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_popcnt_epi8(__mmask64 __U, __m512i __B)
{
return _mm512_mask_popcnt_epi8((__m512i) _mm512_setzero_si512(),
__U,
__B);
}
static __inline__ __mmask64 __DEFAULT_FN_ATTRS
_mm512_mask_bitshuffle_epi64_mask(__mmask64 __U, __m512i __A, __m512i __B)
{
return (__mmask64) __builtin_ia32_vpshufbitqmb512_mask((__v64qi) __A,
(__v64qi) __B,
__U);
}
static __inline__ __mmask64 __DEFAULT_FN_ATTRS
_mm512_bitshuffle_epi64_mask(__m512i __A, __m512i __B)
{
return _mm512_mask_bitshuffle_epi64_mask((__mmask64) -1,
__A,
__B);
}
#undef __DEFAULT_FN_ATTRS
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,123 +0,0 @@
/*===------------- avx512cdintrin.h - AVX512CD intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512cdintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512CDINTRIN_H
#define __AVX512CDINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx512cd"), __min_vector_width__(512)))
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_conflict_epi64 (__m512i __A)
{
return (__m512i) __builtin_ia32_vpconflictdi_512 ((__v8di) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_conflict_epi64 (__m512i __W, __mmask8 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectq_512((__mmask8)__U,
(__v8di)_mm512_conflict_epi64(__A),
(__v8di)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_conflict_epi64 (__mmask8 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectq_512((__mmask8)__U,
(__v8di)_mm512_conflict_epi64(__A),
(__v8di)_mm512_setzero_si512 ());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_conflict_epi32 (__m512i __A)
{
return (__m512i) __builtin_ia32_vpconflictsi_512 ((__v16si) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_conflict_epi32 (__m512i __W, __mmask16 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectd_512((__mmask16)__U,
(__v16si)_mm512_conflict_epi32(__A),
(__v16si)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_conflict_epi32 (__mmask16 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectd_512((__mmask16)__U,
(__v16si)_mm512_conflict_epi32(__A),
(__v16si)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_lzcnt_epi32 (__m512i __A)
{
return (__m512i) __builtin_ia32_vplzcntd_512 ((__v16si) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_lzcnt_epi32 (__m512i __W, __mmask16 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectd_512((__mmask16)__U,
(__v16si)_mm512_lzcnt_epi32(__A),
(__v16si)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_lzcnt_epi32 (__mmask16 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectd_512((__mmask16)__U,
(__v16si)_mm512_lzcnt_epi32(__A),
(__v16si)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_lzcnt_epi64 (__m512i __A)
{
return (__m512i) __builtin_ia32_vplzcntq_512 ((__v8di) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_lzcnt_epi64 (__m512i __W, __mmask8 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectq_512((__mmask8)__U,
(__v8di)_mm512_lzcnt_epi64(__A),
(__v8di)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_lzcnt_epi64 (__mmask8 __U, __m512i __A)
{
return (__m512i)__builtin_ia32_selectq_512((__mmask8)__U,
(__v8di)_mm512_lzcnt_epi64(__A),
(__v8di)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_broadcastmb_epi64 (__mmask8 __A)
{
return (__m512i) _mm512_set1_epi64((long long) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_broadcastmw_epi32 (__mmask16 __A)
{
return (__m512i) _mm512_set1_epi32((int) __A);
}
#undef __DEFAULT_FN_ATTRS
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,271 +0,0 @@
/*===---- avx512erintrin.h - AVX512ER intrinsics ---------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512erintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512ERINTRIN_H
#define __AVX512ERINTRIN_H
/* exp2a23 */
#define _mm512_exp2a23_round_pd(A, R) \
((__m512d)__builtin_ia32_exp2pd_mask((__v8df)(__m512d)(A), \
(__v8df)_mm512_setzero_pd(), \
(__mmask8)-1, (int)(R)))
#define _mm512_mask_exp2a23_round_pd(S, M, A, R) \
((__m512d)__builtin_ia32_exp2pd_mask((__v8df)(__m512d)(A), \
(__v8df)(__m512d)(S), (__mmask8)(M), \
(int)(R)))
#define _mm512_maskz_exp2a23_round_pd(M, A, R) \
((__m512d)__builtin_ia32_exp2pd_mask((__v8df)(__m512d)(A), \
(__v8df)_mm512_setzero_pd(), \
(__mmask8)(M), (int)(R)))
#define _mm512_exp2a23_pd(A) \
_mm512_exp2a23_round_pd((A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_mask_exp2a23_pd(S, M, A) \
_mm512_mask_exp2a23_round_pd((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_maskz_exp2a23_pd(M, A) \
_mm512_maskz_exp2a23_round_pd((M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_exp2a23_round_ps(A, R) \
((__m512)__builtin_ia32_exp2ps_mask((__v16sf)(__m512)(A), \
(__v16sf)_mm512_setzero_ps(), \
(__mmask16)-1, (int)(R)))
#define _mm512_mask_exp2a23_round_ps(S, M, A, R) \
((__m512)__builtin_ia32_exp2ps_mask((__v16sf)(__m512)(A), \
(__v16sf)(__m512)(S), (__mmask16)(M), \
(int)(R)))
#define _mm512_maskz_exp2a23_round_ps(M, A, R) \
((__m512)__builtin_ia32_exp2ps_mask((__v16sf)(__m512)(A), \
(__v16sf)_mm512_setzero_ps(), \
(__mmask16)(M), (int)(R)))
#define _mm512_exp2a23_ps(A) \
_mm512_exp2a23_round_ps((A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_mask_exp2a23_ps(S, M, A) \
_mm512_mask_exp2a23_round_ps((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_maskz_exp2a23_ps(M, A) \
_mm512_maskz_exp2a23_round_ps((M), (A), _MM_FROUND_CUR_DIRECTION)
/* rsqrt28 */
#define _mm512_rsqrt28_round_pd(A, R) \
((__m512d)__builtin_ia32_rsqrt28pd_mask((__v8df)(__m512d)(A), \
(__v8df)_mm512_setzero_pd(), \
(__mmask8)-1, (int)(R)))
#define _mm512_mask_rsqrt28_round_pd(S, M, A, R) \
((__m512d)__builtin_ia32_rsqrt28pd_mask((__v8df)(__m512d)(A), \
(__v8df)(__m512d)(S), (__mmask8)(M), \
(int)(R)))
#define _mm512_maskz_rsqrt28_round_pd(M, A, R) \
((__m512d)__builtin_ia32_rsqrt28pd_mask((__v8df)(__m512d)(A), \
(__v8df)_mm512_setzero_pd(), \
(__mmask8)(M), (int)(R)))
#define _mm512_rsqrt28_pd(A) \
_mm512_rsqrt28_round_pd((A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_mask_rsqrt28_pd(S, M, A) \
_mm512_mask_rsqrt28_round_pd((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_maskz_rsqrt28_pd(M, A) \
_mm512_maskz_rsqrt28_round_pd((M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_rsqrt28_round_ps(A, R) \
((__m512)__builtin_ia32_rsqrt28ps_mask((__v16sf)(__m512)(A), \
(__v16sf)_mm512_setzero_ps(), \
(__mmask16)-1, (int)(R)))
#define _mm512_mask_rsqrt28_round_ps(S, M, A, R) \
((__m512)__builtin_ia32_rsqrt28ps_mask((__v16sf)(__m512)(A), \
(__v16sf)(__m512)(S), (__mmask16)(M), \
(int)(R)))
#define _mm512_maskz_rsqrt28_round_ps(M, A, R) \
((__m512)__builtin_ia32_rsqrt28ps_mask((__v16sf)(__m512)(A), \
(__v16sf)_mm512_setzero_ps(), \
(__mmask16)(M), (int)(R)))
#define _mm512_rsqrt28_ps(A) \
_mm512_rsqrt28_round_ps((A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_mask_rsqrt28_ps(S, M, A) \
_mm512_mask_rsqrt28_round_ps((S), (M), A, _MM_FROUND_CUR_DIRECTION)
#define _mm512_maskz_rsqrt28_ps(M, A) \
_mm512_maskz_rsqrt28_round_ps((M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm_rsqrt28_round_ss(A, B, R) \
((__m128)__builtin_ia32_rsqrt28ss_round_mask((__v4sf)(__m128)(A), \
(__v4sf)(__m128)(B), \
(__v4sf)_mm_setzero_ps(), \
(__mmask8)-1, (int)(R)))
#define _mm_mask_rsqrt28_round_ss(S, M, A, B, R) \
((__m128)__builtin_ia32_rsqrt28ss_round_mask((__v4sf)(__m128)(A), \
(__v4sf)(__m128)(B), \
(__v4sf)(__m128)(S), \
(__mmask8)(M), (int)(R)))
#define _mm_maskz_rsqrt28_round_ss(M, A, B, R) \
((__m128)__builtin_ia32_rsqrt28ss_round_mask((__v4sf)(__m128)(A), \
(__v4sf)(__m128)(B), \
(__v4sf)_mm_setzero_ps(), \
(__mmask8)(M), (int)(R)))
#define _mm_rsqrt28_ss(A, B) \
_mm_rsqrt28_round_ss((A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_mask_rsqrt28_ss(S, M, A, B) \
_mm_mask_rsqrt28_round_ss((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_maskz_rsqrt28_ss(M, A, B) \
_mm_maskz_rsqrt28_round_ss((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_rsqrt28_round_sd(A, B, R) \
((__m128d)__builtin_ia32_rsqrt28sd_round_mask((__v2df)(__m128d)(A), \
(__v2df)(__m128d)(B), \
(__v2df)_mm_setzero_pd(), \
(__mmask8)-1, (int)(R)))
#define _mm_mask_rsqrt28_round_sd(S, M, A, B, R) \
((__m128d)__builtin_ia32_rsqrt28sd_round_mask((__v2df)(__m128d)(A), \
(__v2df)(__m128d)(B), \
(__v2df)(__m128d)(S), \
(__mmask8)(M), (int)(R)))
#define _mm_maskz_rsqrt28_round_sd(M, A, B, R) \
((__m128d)__builtin_ia32_rsqrt28sd_round_mask((__v2df)(__m128d)(A), \
(__v2df)(__m128d)(B), \
(__v2df)_mm_setzero_pd(), \
(__mmask8)(M), (int)(R)))
#define _mm_rsqrt28_sd(A, B) \
_mm_rsqrt28_round_sd((A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_mask_rsqrt28_sd(S, M, A, B) \
_mm_mask_rsqrt28_round_sd((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_maskz_rsqrt28_sd(M, A, B) \
_mm_maskz_rsqrt28_round_sd((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
/* rcp28 */
#define _mm512_rcp28_round_pd(A, R) \
((__m512d)__builtin_ia32_rcp28pd_mask((__v8df)(__m512d)(A), \
(__v8df)_mm512_setzero_pd(), \
(__mmask8)-1, (int)(R)))
#define _mm512_mask_rcp28_round_pd(S, M, A, R) \
((__m512d)__builtin_ia32_rcp28pd_mask((__v8df)(__m512d)(A), \
(__v8df)(__m512d)(S), (__mmask8)(M), \
(int)(R)))
#define _mm512_maskz_rcp28_round_pd(M, A, R) \
((__m512d)__builtin_ia32_rcp28pd_mask((__v8df)(__m512d)(A), \
(__v8df)_mm512_setzero_pd(), \
(__mmask8)(M), (int)(R)))
#define _mm512_rcp28_pd(A) \
_mm512_rcp28_round_pd((A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_mask_rcp28_pd(S, M, A) \
_mm512_mask_rcp28_round_pd((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_maskz_rcp28_pd(M, A) \
_mm512_maskz_rcp28_round_pd((M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_rcp28_round_ps(A, R) \
((__m512)__builtin_ia32_rcp28ps_mask((__v16sf)(__m512)(A), \
(__v16sf)_mm512_setzero_ps(), \
(__mmask16)-1, (int)(R)))
#define _mm512_mask_rcp28_round_ps(S, M, A, R) \
((__m512)__builtin_ia32_rcp28ps_mask((__v16sf)(__m512)(A), \
(__v16sf)(__m512)(S), (__mmask16)(M), \
(int)(R)))
#define _mm512_maskz_rcp28_round_ps(M, A, R) \
((__m512)__builtin_ia32_rcp28ps_mask((__v16sf)(__m512)(A), \
(__v16sf)_mm512_setzero_ps(), \
(__mmask16)(M), (int)(R)))
#define _mm512_rcp28_ps(A) \
_mm512_rcp28_round_ps((A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_mask_rcp28_ps(S, M, A) \
_mm512_mask_rcp28_round_ps((S), (M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm512_maskz_rcp28_ps(M, A) \
_mm512_maskz_rcp28_round_ps((M), (A), _MM_FROUND_CUR_DIRECTION)
#define _mm_rcp28_round_ss(A, B, R) \
((__m128)__builtin_ia32_rcp28ss_round_mask((__v4sf)(__m128)(A), \
(__v4sf)(__m128)(B), \
(__v4sf)_mm_setzero_ps(), \
(__mmask8)-1, (int)(R)))
#define _mm_mask_rcp28_round_ss(S, M, A, B, R) \
((__m128)__builtin_ia32_rcp28ss_round_mask((__v4sf)(__m128)(A), \
(__v4sf)(__m128)(B), \
(__v4sf)(__m128)(S), \
(__mmask8)(M), (int)(R)))
#define _mm_maskz_rcp28_round_ss(M, A, B, R) \
((__m128)__builtin_ia32_rcp28ss_round_mask((__v4sf)(__m128)(A), \
(__v4sf)(__m128)(B), \
(__v4sf)_mm_setzero_ps(), \
(__mmask8)(M), (int)(R)))
#define _mm_rcp28_ss(A, B) \
_mm_rcp28_round_ss((A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_mask_rcp28_ss(S, M, A, B) \
_mm_mask_rcp28_round_ss((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_maskz_rcp28_ss(M, A, B) \
_mm_maskz_rcp28_round_ss((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_rcp28_round_sd(A, B, R) \
((__m128d)__builtin_ia32_rcp28sd_round_mask((__v2df)(__m128d)(A), \
(__v2df)(__m128d)(B), \
(__v2df)_mm_setzero_pd(), \
(__mmask8)-1, (int)(R)))
#define _mm_mask_rcp28_round_sd(S, M, A, B, R) \
((__m128d)__builtin_ia32_rcp28sd_round_mask((__v2df)(__m128d)(A), \
(__v2df)(__m128d)(B), \
(__v2df)(__m128d)(S), \
(__mmask8)(M), (int)(R)))
#define _mm_maskz_rcp28_round_sd(M, A, B, R) \
((__m128d)__builtin_ia32_rcp28sd_round_mask((__v2df)(__m128d)(A), \
(__v2df)(__m128d)(B), \
(__v2df)_mm_setzero_pd(), \
(__mmask8)(M), (int)(R)))
#define _mm_rcp28_sd(A, B) \
_mm_rcp28_round_sd((A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_mask_rcp28_sd(S, M, A, B) \
_mm_mask_rcp28_round_sd((S), (M), (A), (B), _MM_FROUND_CUR_DIRECTION)
#define _mm_maskz_rcp28_sd(M, A, B) \
_mm_maskz_rcp28_round_sd((M), (A), (B), _MM_FROUND_CUR_DIRECTION)
#endif /* __AVX512ERINTRIN_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,68 +0,0 @@
/*===------------- avx512ifmaintrin.h - IFMA intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512ifmaintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __IFMAINTRIN_H
#define __IFMAINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx512ifma"), __min_vector_width__(512)))
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_madd52hi_epu64 (__m512i __X, __m512i __Y, __m512i __Z)
{
return (__m512i)__builtin_ia32_vpmadd52huq512((__v8di) __X, (__v8di) __Y,
(__v8di) __Z);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_madd52hi_epu64 (__m512i __W, __mmask8 __M, __m512i __X, __m512i __Y)
{
return (__m512i)__builtin_ia32_selectq_512(__M,
(__v8di)_mm512_madd52hi_epu64(__W, __X, __Y),
(__v8di)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_madd52hi_epu64 (__mmask8 __M, __m512i __X, __m512i __Y, __m512i __Z)
{
return (__m512i)__builtin_ia32_selectq_512(__M,
(__v8di)_mm512_madd52hi_epu64(__X, __Y, __Z),
(__v8di)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_madd52lo_epu64 (__m512i __X, __m512i __Y, __m512i __Z)
{
return (__m512i)__builtin_ia32_vpmadd52luq512((__v8di) __X, (__v8di) __Y,
(__v8di) __Z);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_madd52lo_epu64 (__m512i __W, __mmask8 __M, __m512i __X, __m512i __Y)
{
return (__m512i)__builtin_ia32_selectq_512(__M,
(__v8di)_mm512_madd52lo_epu64(__W, __X, __Y),
(__v8di)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_madd52lo_epu64 (__mmask8 __M, __m512i __X, __m512i __Y, __m512i __Z)
{
return (__m512i)__builtin_ia32_selectq_512(__M,
(__v8di)_mm512_madd52lo_epu64(__X, __Y, __Z),
(__v8di)_mm512_setzero_si512());
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,105 +0,0 @@
/*===------------- avx512ifmavlintrin.h - IFMA intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512ifmavlintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __IFMAVLINTRIN_H
#define __IFMAVLINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx512ifma,avx512vl"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avx512ifma,avx512vl"), __min_vector_width__(256)))
#define _mm_madd52hi_epu64(X, Y, Z) \
((__m128i)__builtin_ia32_vpmadd52huq128((__v2di)(X), (__v2di)(Y), \
(__v2di)(Z)))
#define _mm256_madd52hi_epu64(X, Y, Z) \
((__m256i)__builtin_ia32_vpmadd52huq256((__v4di)(X), (__v4di)(Y), \
(__v4di)(Z)))
#define _mm_madd52lo_epu64(X, Y, Z) \
((__m128i)__builtin_ia32_vpmadd52luq128((__v2di)(X), (__v2di)(Y), \
(__v2di)(Z)))
#define _mm256_madd52lo_epu64(X, Y, Z) \
((__m256i)__builtin_ia32_vpmadd52luq256((__v4di)(X), (__v4di)(Y), \
(__v4di)(Z)))
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_madd52hi_epu64 (__m128i __W, __mmask8 __M, __m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_selectq_128(__M,
(__v2di)_mm_madd52hi_epu64(__W, __X, __Y),
(__v2di)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_madd52hi_epu64 (__mmask8 __M, __m128i __X, __m128i __Y, __m128i __Z)
{
return (__m128i)__builtin_ia32_selectq_128(__M,
(__v2di)_mm_madd52hi_epu64(__X, __Y, __Z),
(__v2di)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_madd52hi_epu64 (__m256i __W, __mmask8 __M, __m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_selectq_256(__M,
(__v4di)_mm256_madd52hi_epu64(__W, __X, __Y),
(__v4di)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_madd52hi_epu64 (__mmask8 __M, __m256i __X, __m256i __Y, __m256i __Z)
{
return (__m256i)__builtin_ia32_selectq_256(__M,
(__v4di)_mm256_madd52hi_epu64(__X, __Y, __Z),
(__v4di)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_madd52lo_epu64 (__m128i __W, __mmask8 __M, __m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_selectq_128(__M,
(__v2di)_mm_madd52lo_epu64(__W, __X, __Y),
(__v2di)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_madd52lo_epu64 (__mmask8 __M, __m128i __X, __m128i __Y, __m128i __Z)
{
return (__m128i)__builtin_ia32_selectq_128(__M,
(__v2di)_mm_madd52lo_epu64(__X, __Y, __Z),
(__v2di)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_madd52lo_epu64 (__m256i __W, __mmask8 __M, __m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_selectq_256(__M,
(__v4di)_mm256_madd52lo_epu64(__W, __X, __Y),
(__v4di)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_madd52lo_epu64 (__mmask8 __M, __m256i __X, __m256i __Y, __m256i __Z)
{
return (__m256i)__builtin_ia32_selectq_256(__M,
(__v4di)_mm256_madd52lo_epu64(__X, __Y, __Z),
(__v4di)_mm256_setzero_si256());
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif

View File

@ -1,97 +0,0 @@
/*===------------- avx512pfintrin.h - PF intrinsics ------------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512pfintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512PFINTRIN_H
#define __AVX512PFINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx512pf")))
#define _mm512_mask_prefetch_i32gather_pd(index, mask, addr, scale, hint) \
__builtin_ia32_gatherpfdpd((__mmask8)(mask), (__v8si)(__m256i)(index), \
(void const *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_prefetch_i32gather_pd(index, addr, scale, hint) \
__builtin_ia32_gatherpfdpd((__mmask8) -1, (__v8si)(__m256i)(index), \
(void const *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_mask_prefetch_i32gather_ps(index, mask, addr, scale, hint) \
__builtin_ia32_gatherpfdps((__mmask16)(mask), \
(__v16si)(__m512i)(index), (void const *)(addr), \
(int)(scale), (int)(hint))
#define _mm512_prefetch_i32gather_ps(index, addr, scale, hint) \
__builtin_ia32_gatherpfdps((__mmask16) -1, \
(__v16si)(__m512i)(index), (void const *)(addr), \
(int)(scale), (int)(hint))
#define _mm512_mask_prefetch_i64gather_pd(index, mask, addr, scale, hint) \
__builtin_ia32_gatherpfqpd((__mmask8)(mask), (__v8di)(__m512i)(index), \
(void const *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_prefetch_i64gather_pd(index, addr, scale, hint) \
__builtin_ia32_gatherpfqpd((__mmask8) -1, (__v8di)(__m512i)(index), \
(void const *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_mask_prefetch_i64gather_ps(index, mask, addr, scale, hint) \
__builtin_ia32_gatherpfqps((__mmask8)(mask), (__v8di)(__m512i)(index), \
(void const *)(addr), (int)(scale), (int)(hint))
#define _mm512_prefetch_i64gather_ps(index, addr, scale, hint) \
__builtin_ia32_gatherpfqps((__mmask8) -1, (__v8di)(__m512i)(index), \
(void const *)(addr), (int)(scale), (int)(hint))
#define _mm512_prefetch_i32scatter_pd(addr, index, scale, hint) \
__builtin_ia32_scatterpfdpd((__mmask8)-1, (__v8si)(__m256i)(index), \
(void *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_mask_prefetch_i32scatter_pd(addr, mask, index, scale, hint) \
__builtin_ia32_scatterpfdpd((__mmask8)(mask), (__v8si)(__m256i)(index), \
(void *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_prefetch_i32scatter_ps(addr, index, scale, hint) \
__builtin_ia32_scatterpfdps((__mmask16)-1, (__v16si)(__m512i)(index), \
(void *)(addr), (int)(scale), (int)(hint))
#define _mm512_mask_prefetch_i32scatter_ps(addr, mask, index, scale, hint) \
__builtin_ia32_scatterpfdps((__mmask16)(mask), \
(__v16si)(__m512i)(index), (void *)(addr), \
(int)(scale), (int)(hint))
#define _mm512_prefetch_i64scatter_pd(addr, index, scale, hint) \
__builtin_ia32_scatterpfqpd((__mmask8)-1, (__v8di)(__m512i)(index), \
(void *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_mask_prefetch_i64scatter_pd(addr, mask, index, scale, hint) \
__builtin_ia32_scatterpfqpd((__mmask8)(mask), (__v8di)(__m512i)(index), \
(void *)(addr), (int)(scale), \
(int)(hint))
#define _mm512_prefetch_i64scatter_ps(addr, index, scale, hint) \
__builtin_ia32_scatterpfqps((__mmask8)-1, (__v8di)(__m512i)(index), \
(void *)(addr), (int)(scale), (int)(hint))
#define _mm512_mask_prefetch_i64scatter_ps(addr, mask, index, scale, hint) \
__builtin_ia32_scatterpfqps((__mmask8)(mask), (__v8di)(__m512i)(index), \
(void *)(addr), (int)(scale), (int)(hint))
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,357 +0,0 @@
/*===------------- avx512vbmi2intrin.h - VBMI2 intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vbmi2intrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VBMI2INTRIN_H
#define __AVX512VBMI2INTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx512vbmi2"), __min_vector_width__(512)))
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_compress_epi16(__m512i __S, __mmask32 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_compresshi512_mask ((__v32hi) __D,
(__v32hi) __S,
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_compress_epi16(__mmask32 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_compresshi512_mask ((__v32hi) __D,
(__v32hi) _mm512_setzero_si512(),
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_compress_epi8(__m512i __S, __mmask64 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_compressqi512_mask ((__v64qi) __D,
(__v64qi) __S,
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_compress_epi8(__mmask64 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_compressqi512_mask ((__v64qi) __D,
(__v64qi) _mm512_setzero_si512(),
__U);
}
static __inline__ void __DEFAULT_FN_ATTRS
_mm512_mask_compressstoreu_epi16(void *__P, __mmask32 __U, __m512i __D)
{
__builtin_ia32_compressstorehi512_mask ((__v32hi *) __P, (__v32hi) __D,
__U);
}
static __inline__ void __DEFAULT_FN_ATTRS
_mm512_mask_compressstoreu_epi8(void *__P, __mmask64 __U, __m512i __D)
{
__builtin_ia32_compressstoreqi512_mask ((__v64qi *) __P, (__v64qi) __D,
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_expand_epi16(__m512i __S, __mmask32 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_expandhi512_mask ((__v32hi) __D,
(__v32hi) __S,
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_expand_epi16(__mmask32 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_expandhi512_mask ((__v32hi) __D,
(__v32hi) _mm512_setzero_si512(),
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_expand_epi8(__m512i __S, __mmask64 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_expandqi512_mask ((__v64qi) __D,
(__v64qi) __S,
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_expand_epi8(__mmask64 __U, __m512i __D)
{
return (__m512i) __builtin_ia32_expandqi512_mask ((__v64qi) __D,
(__v64qi) _mm512_setzero_si512(),
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_expandloadu_epi16(__m512i __S, __mmask32 __U, void const *__P)
{
return (__m512i) __builtin_ia32_expandloadhi512_mask ((const __v32hi *)__P,
(__v32hi) __S,
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_expandloadu_epi16(__mmask32 __U, void const *__P)
{
return (__m512i) __builtin_ia32_expandloadhi512_mask ((const __v32hi *)__P,
(__v32hi) _mm512_setzero_si512(),
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_expandloadu_epi8(__m512i __S, __mmask64 __U, void const *__P)
{
return (__m512i) __builtin_ia32_expandloadqi512_mask ((const __v64qi *)__P,
(__v64qi) __S,
__U);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_expandloadu_epi8(__mmask64 __U, void const *__P)
{
return (__m512i) __builtin_ia32_expandloadqi512_mask ((const __v64qi *)__P,
(__v64qi) _mm512_setzero_si512(),
__U);
}
#define _mm512_shldi_epi64(A, B, I) \
((__m512i)__builtin_ia32_vpshldq512((__v8di)(__m512i)(A), \
(__v8di)(__m512i)(B), (int)(I)))
#define _mm512_mask_shldi_epi64(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectq_512((__mmask8)(U), \
(__v8di)_mm512_shldi_epi64((A), (B), (I)), \
(__v8di)(__m512i)(S)))
#define _mm512_maskz_shldi_epi64(U, A, B, I) \
((__m512i)__builtin_ia32_selectq_512((__mmask8)(U), \
(__v8di)_mm512_shldi_epi64((A), (B), (I)), \
(__v8di)_mm512_setzero_si512()))
#define _mm512_shldi_epi32(A, B, I) \
((__m512i)__builtin_ia32_vpshldd512((__v16si)(__m512i)(A), \
(__v16si)(__m512i)(B), (int)(I)))
#define _mm512_mask_shldi_epi32(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectd_512((__mmask16)(U), \
(__v16si)_mm512_shldi_epi32((A), (B), (I)), \
(__v16si)(__m512i)(S)))
#define _mm512_maskz_shldi_epi32(U, A, B, I) \
((__m512i)__builtin_ia32_selectd_512((__mmask16)(U), \
(__v16si)_mm512_shldi_epi32((A), (B), (I)), \
(__v16si)_mm512_setzero_si512()))
#define _mm512_shldi_epi16(A, B, I) \
((__m512i)__builtin_ia32_vpshldw512((__v32hi)(__m512i)(A), \
(__v32hi)(__m512i)(B), (int)(I)))
#define _mm512_mask_shldi_epi16(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectw_512((__mmask32)(U), \
(__v32hi)_mm512_shldi_epi16((A), (B), (I)), \
(__v32hi)(__m512i)(S)))
#define _mm512_maskz_shldi_epi16(U, A, B, I) \
((__m512i)__builtin_ia32_selectw_512((__mmask32)(U), \
(__v32hi)_mm512_shldi_epi16((A), (B), (I)), \
(__v32hi)_mm512_setzero_si512()))
#define _mm512_shrdi_epi64(A, B, I) \
((__m512i)__builtin_ia32_vpshrdq512((__v8di)(__m512i)(A), \
(__v8di)(__m512i)(B), (int)(I)))
#define _mm512_mask_shrdi_epi64(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectq_512((__mmask8)(U), \
(__v8di)_mm512_shrdi_epi64((A), (B), (I)), \
(__v8di)(__m512i)(S)))
#define _mm512_maskz_shrdi_epi64(U, A, B, I) \
((__m512i)__builtin_ia32_selectq_512((__mmask8)(U), \
(__v8di)_mm512_shrdi_epi64((A), (B), (I)), \
(__v8di)_mm512_setzero_si512()))
#define _mm512_shrdi_epi32(A, B, I) \
((__m512i)__builtin_ia32_vpshrdd512((__v16si)(__m512i)(A), \
(__v16si)(__m512i)(B), (int)(I)))
#define _mm512_mask_shrdi_epi32(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectd_512((__mmask16)(U), \
(__v16si)_mm512_shrdi_epi32((A), (B), (I)), \
(__v16si)(__m512i)(S)))
#define _mm512_maskz_shrdi_epi32(U, A, B, I) \
((__m512i)__builtin_ia32_selectd_512((__mmask16)(U), \
(__v16si)_mm512_shrdi_epi32((A), (B), (I)), \
(__v16si)_mm512_setzero_si512()))
#define _mm512_shrdi_epi16(A, B, I) \
((__m512i)__builtin_ia32_vpshrdw512((__v32hi)(__m512i)(A), \
(__v32hi)(__m512i)(B), (int)(I)))
#define _mm512_mask_shrdi_epi16(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectw_512((__mmask32)(U), \
(__v32hi)_mm512_shrdi_epi16((A), (B), (I)), \
(__v32hi)(__m512i)(S)))
#define _mm512_maskz_shrdi_epi16(U, A, B, I) \
((__m512i)__builtin_ia32_selectw_512((__mmask32)(U), \
(__v32hi)_mm512_shrdi_epi16((A), (B), (I)), \
(__v32hi)_mm512_setzero_si512()))
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_shldv_epi64(__m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_vpshldvq512((__v8di)__A, (__v8di)__B,
(__v8di)__C);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_shldv_epi64(__m512i __A, __mmask8 __U, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectq_512(__U,
(__v8di)_mm512_shldv_epi64(__A, __B, __C),
(__v8di)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_shldv_epi64(__mmask8 __U, __m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectq_512(__U,
(__v8di)_mm512_shldv_epi64(__A, __B, __C),
(__v8di)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_shldv_epi32(__m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_vpshldvd512((__v16si)__A, (__v16si)__B,
(__v16si)__C);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_shldv_epi32(__m512i __A, __mmask16 __U, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_shldv_epi32(__A, __B, __C),
(__v16si)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_shldv_epi32(__mmask16 __U, __m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_shldv_epi32(__A, __B, __C),
(__v16si)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_shldv_epi16(__m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_vpshldvw512((__v32hi)__A, (__v32hi)__B,
(__v32hi)__C);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_shldv_epi16(__m512i __A, __mmask32 __U, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectw_512(__U,
(__v32hi)_mm512_shldv_epi16(__A, __B, __C),
(__v32hi)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_shldv_epi16(__mmask32 __U, __m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectw_512(__U,
(__v32hi)_mm512_shldv_epi16(__A, __B, __C),
(__v32hi)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_shrdv_epi64(__m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_vpshrdvq512((__v8di)__A, (__v8di)__B,
(__v8di)__C);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_shrdv_epi64(__m512i __A, __mmask8 __U, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectq_512(__U,
(__v8di)_mm512_shrdv_epi64(__A, __B, __C),
(__v8di)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_shrdv_epi64(__mmask8 __U, __m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectq_512(__U,
(__v8di)_mm512_shrdv_epi64(__A, __B, __C),
(__v8di)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_shrdv_epi32(__m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_vpshrdvd512((__v16si)__A, (__v16si)__B,
(__v16si)__C);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_shrdv_epi32(__m512i __A, __mmask16 __U, __m512i __B, __m512i __C)
{
return (__m512i) __builtin_ia32_selectd_512(__U,
(__v16si)_mm512_shrdv_epi32(__A, __B, __C),
(__v16si)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_shrdv_epi32(__mmask16 __U, __m512i __A, __m512i __B, __m512i __C)
{
return (__m512i) __builtin_ia32_selectd_512(__U,
(__v16si)_mm512_shrdv_epi32(__A, __B, __C),
(__v16si)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_shrdv_epi16(__m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_vpshrdvw512((__v32hi)__A, (__v32hi)__B,
(__v32hi)__C);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_shrdv_epi16(__m512i __A, __mmask32 __U, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectw_512(__U,
(__v32hi)_mm512_shrdv_epi16(__A, __B, __C),
(__v32hi)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_shrdv_epi16(__mmask32 __U, __m512i __A, __m512i __B, __m512i __C)
{
return (__m512i)__builtin_ia32_selectw_512(__U,
(__v32hi)_mm512_shrdv_epi16(__A, __B, __C),
(__v32hi)_mm512_setzero_si512());
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,105 +0,0 @@
/*===------------- avx512vbmiintrin.h - VBMI intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vbmiintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __VBMIINTRIN_H
#define __VBMIINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx512vbmi"), __min_vector_width__(512)))
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_permutex2var_epi8(__m512i __A, __m512i __I, __m512i __B)
{
return (__m512i)__builtin_ia32_vpermi2varqi512((__v64qi)__A, (__v64qi)__I,
(__v64qi) __B);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_permutex2var_epi8(__m512i __A, __mmask64 __U, __m512i __I,
__m512i __B)
{
return (__m512i)__builtin_ia32_selectb_512(__U,
(__v64qi)_mm512_permutex2var_epi8(__A, __I, __B),
(__v64qi)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask2_permutex2var_epi8(__m512i __A, __m512i __I, __mmask64 __U,
__m512i __B)
{
return (__m512i)__builtin_ia32_selectb_512(__U,
(__v64qi)_mm512_permutex2var_epi8(__A, __I, __B),
(__v64qi)__I);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_permutex2var_epi8(__mmask64 __U, __m512i __A, __m512i __I,
__m512i __B)
{
return (__m512i)__builtin_ia32_selectb_512(__U,
(__v64qi)_mm512_permutex2var_epi8(__A, __I, __B),
(__v64qi)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_permutexvar_epi8 (__m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_permvarqi512((__v64qi) __B, (__v64qi) __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_permutexvar_epi8 (__mmask64 __M, __m512i __A,
__m512i __B)
{
return (__m512i)__builtin_ia32_selectb_512((__mmask64)__M,
(__v64qi)_mm512_permutexvar_epi8(__A, __B),
(__v64qi)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_permutexvar_epi8 (__m512i __W, __mmask64 __M, __m512i __A,
__m512i __B)
{
return (__m512i)__builtin_ia32_selectb_512((__mmask64)__M,
(__v64qi)_mm512_permutexvar_epi8(__A, __B),
(__v64qi)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_multishift_epi64_epi8(__m512i __X, __m512i __Y)
{
return (__m512i)__builtin_ia32_vpmultishiftqb512((__v64qi)__X, (__v64qi) __Y);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_multishift_epi64_epi8(__m512i __W, __mmask64 __M, __m512i __X,
__m512i __Y)
{
return (__m512i)__builtin_ia32_selectb_512((__mmask64)__M,
(__v64qi)_mm512_multishift_epi64_epi8(__X, __Y),
(__v64qi)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_multishift_epi64_epi8(__mmask64 __M, __m512i __X, __m512i __Y)
{
return (__m512i)__builtin_ia32_selectb_512((__mmask64)__M,
(__v64qi)_mm512_multishift_epi64_epi8(__X, __Y),
(__v64qi)_mm512_setzero_si512());
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,188 +0,0 @@
/*===------------- avx512vbmivlintrin.h - VBMI intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vbmivlintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __VBMIVLINTRIN_H
#define __VBMIVLINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx512vbmi,avx512vl"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avx512vbmi,avx512vl"), __min_vector_width__(256)))
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_permutex2var_epi8(__m128i __A, __m128i __I, __m128i __B)
{
return (__m128i)__builtin_ia32_vpermi2varqi128((__v16qi)__A,
(__v16qi)__I,
(__v16qi)__B);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_permutex2var_epi8(__m128i __A, __mmask16 __U, __m128i __I,
__m128i __B)
{
return (__m128i)__builtin_ia32_selectb_128(__U,
(__v16qi)_mm_permutex2var_epi8(__A, __I, __B),
(__v16qi)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask2_permutex2var_epi8(__m128i __A, __m128i __I, __mmask16 __U,
__m128i __B)
{
return (__m128i)__builtin_ia32_selectb_128(__U,
(__v16qi)_mm_permutex2var_epi8(__A, __I, __B),
(__v16qi)__I);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_permutex2var_epi8(__mmask16 __U, __m128i __A, __m128i __I,
__m128i __B)
{
return (__m128i)__builtin_ia32_selectb_128(__U,
(__v16qi)_mm_permutex2var_epi8(__A, __I, __B),
(__v16qi)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_permutex2var_epi8(__m256i __A, __m256i __I, __m256i __B)
{
return (__m256i)__builtin_ia32_vpermi2varqi256((__v32qi)__A, (__v32qi)__I,
(__v32qi)__B);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_permutex2var_epi8(__m256i __A, __mmask32 __U, __m256i __I,
__m256i __B)
{
return (__m256i)__builtin_ia32_selectb_256(__U,
(__v32qi)_mm256_permutex2var_epi8(__A, __I, __B),
(__v32qi)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask2_permutex2var_epi8(__m256i __A, __m256i __I, __mmask32 __U,
__m256i __B)
{
return (__m256i)__builtin_ia32_selectb_256(__U,
(__v32qi)_mm256_permutex2var_epi8(__A, __I, __B),
(__v32qi)__I);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_permutex2var_epi8(__mmask32 __U, __m256i __A, __m256i __I,
__m256i __B)
{
return (__m256i)__builtin_ia32_selectb_256(__U,
(__v32qi)_mm256_permutex2var_epi8(__A, __I, __B),
(__v32qi)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_permutexvar_epi8 (__m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_permvarqi128((__v16qi)__B, (__v16qi)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_permutexvar_epi8 (__mmask16 __M, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectb_128((__mmask16)__M,
(__v16qi)_mm_permutexvar_epi8(__A, __B),
(__v16qi)_mm_setzero_si128());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_permutexvar_epi8 (__m128i __W, __mmask16 __M, __m128i __A,
__m128i __B)
{
return (__m128i)__builtin_ia32_selectb_128((__mmask16)__M,
(__v16qi)_mm_permutexvar_epi8(__A, __B),
(__v16qi)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_permutexvar_epi8 (__m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_permvarqi256((__v32qi) __B, (__v32qi) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_permutexvar_epi8 (__mmask32 __M, __m256i __A,
__m256i __B)
{
return (__m256i)__builtin_ia32_selectb_256((__mmask32)__M,
(__v32qi)_mm256_permutexvar_epi8(__A, __B),
(__v32qi)_mm256_setzero_si256());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_permutexvar_epi8 (__m256i __W, __mmask32 __M, __m256i __A,
__m256i __B)
{
return (__m256i)__builtin_ia32_selectb_256((__mmask32)__M,
(__v32qi)_mm256_permutexvar_epi8(__A, __B),
(__v32qi)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_multishift_epi64_epi8(__m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_vpmultishiftqb128((__v16qi)__X, (__v16qi)__Y);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_multishift_epi64_epi8(__m128i __W, __mmask16 __M, __m128i __X,
__m128i __Y)
{
return (__m128i)__builtin_ia32_selectb_128((__mmask16)__M,
(__v16qi)_mm_multishift_epi64_epi8(__X, __Y),
(__v16qi)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_multishift_epi64_epi8(__mmask16 __M, __m128i __X, __m128i __Y)
{
return (__m128i)__builtin_ia32_selectb_128((__mmask16)__M,
(__v16qi)_mm_multishift_epi64_epi8(__X, __Y),
(__v16qi)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_multishift_epi64_epi8(__m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_vpmultishiftqb256((__v32qi)__X, (__v32qi)__Y);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_multishift_epi64_epi8(__m256i __W, __mmask32 __M, __m256i __X,
__m256i __Y)
{
return (__m256i)__builtin_ia32_selectb_256((__mmask32)__M,
(__v32qi)_mm256_multishift_epi64_epi8(__X, __Y),
(__v32qi)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_multishift_epi64_epi8(__mmask32 __M, __m256i __X, __m256i __Y)
{
return (__m256i)__builtin_ia32_selectb_256((__mmask32)__M,
(__v32qi)_mm256_multishift_epi64_epi8(__X, __Y),
(__v32qi)_mm256_setzero_si256());
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif

View File

@ -1,515 +0,0 @@
/*===--------- avx512vlbf16intrin.h - AVX512_BF16 intrinsics ---------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vlbf16intrin.h> directly; include <immintrin.h> instead."
#endif
#ifdef __SSE2__
#ifndef __AVX512VLBF16INTRIN_H
#define __AVX512VLBF16INTRIN_H
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, \
__target__("avx512vl, avx512bf16"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, \
__target__("avx512vl, avx512bf16"), __min_vector_width__(256)))
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 128-bit vector of [4 x float].
/// \param __B
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [8 x bfloat] whose lower 64 bits come from
/// conversion of __B, and higher 64 bits come from conversion of __A.
static __inline__ __m128bh __DEFAULT_FN_ATTRS128
_mm_cvtne2ps_pbh(__m128 __A, __m128 __B) {
return (__m128bh)__builtin_ia32_cvtne2ps2bf16_128((__v4sf) __A,
(__v4sf) __B);
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 128-bit vector of [4 x float].
/// \param __B
/// A 128-bit vector of [4 x float].
/// \param __W
/// A 128-bit vector of [8 x bfloat].
/// \param __U
/// A 8-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A or __B. A 0 means element from __W.
/// \returns A 128-bit vector of [8 x bfloat] whose lower 64 bits come from
/// conversion of __B, and higher 64 bits come from conversion of __A.
static __inline__ __m128bh __DEFAULT_FN_ATTRS128
_mm_mask_cvtne2ps_pbh(__m128bh __W, __mmask8 __U, __m128 __A, __m128 __B) {
return (__m128bh)__builtin_ia32_selectpbf_128((__mmask8)__U,
(__v8bf)_mm_cvtne2ps_pbh(__A, __B),
(__v8bf)__W);
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 128-bit vector of [4 x float].
/// \param __B
/// A 128-bit vector of [4 x float].
/// \param __U
/// A 8-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A or __B. A 0 means element is zero.
/// \returns A 128-bit vector of [8 x bfloat] whose lower 64 bits come from
/// conversion of __B, and higher 64 bits come from conversion of __A.
static __inline__ __m128bh __DEFAULT_FN_ATTRS128
_mm_maskz_cvtne2ps_pbh(__mmask8 __U, __m128 __A, __m128 __B) {
return (__m128bh)__builtin_ia32_selectpbf_128((__mmask8)__U,
(__v8bf)_mm_cvtne2ps_pbh(__A, __B),
(__v8bf)_mm_setzero_si128());
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 256-bit vector of [8 x float].
/// \param __B
/// A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [16 x bfloat] whose lower 128 bits come from
/// conversion of __B, and higher 128 bits come from conversion of __A.
static __inline__ __m256bh __DEFAULT_FN_ATTRS256
_mm256_cvtne2ps_pbh(__m256 __A, __m256 __B) {
return (__m256bh)__builtin_ia32_cvtne2ps2bf16_256((__v8sf) __A,
(__v8sf) __B);
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 256-bit vector of [8 x float].
/// \param __B
/// A 256-bit vector of [8 x float].
/// \param __W
/// A 256-bit vector of [16 x bfloat].
/// \param __U
/// A 16-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A or __B. A 0 means element from __W.
/// \returns A 256-bit vector of [16 x bfloat] whose lower 128 bits come from
/// conversion of __B, and higher 128 bits come from conversion of __A.
static __inline__ __m256bh __DEFAULT_FN_ATTRS256
_mm256_mask_cvtne2ps_pbh(__m256bh __W, __mmask16 __U, __m256 __A, __m256 __B) {
return (__m256bh)__builtin_ia32_selectpbf_256((__mmask16)__U,
(__v16bf)_mm256_cvtne2ps_pbh(__A, __B),
(__v16bf)__W);
}
/// Convert Two Packed Single Data to One Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNE2PS2BF16 </c> instructions.
///
/// \param __A
/// A 256-bit vector of [8 x float].
/// \param __B
/// A 256-bit vector of [8 x float].
/// \param __U
/// A 16-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A or __B. A 0 means element is zero.
/// \returns A 256-bit vector of [16 x bfloat] whose lower 128 bits come from
/// conversion of __B, and higher 128 bits come from conversion of __A.
static __inline__ __m256bh __DEFAULT_FN_ATTRS256
_mm256_maskz_cvtne2ps_pbh(__mmask16 __U, __m256 __A, __m256 __B) {
return (__m256bh)__builtin_ia32_selectpbf_256((__mmask16)__U,
(__v16bf)_mm256_cvtne2ps_pbh(__A, __B),
(__v16bf)_mm256_setzero_si256());
}
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [8 x bfloat] whose lower 64 bits come from
/// conversion of __A, and higher 64 bits are 0.
#define _mm_cvtneps_pbh(A) \
((__m128bh)__builtin_ia32_vcvtneps2bf16128((__v4sf)(A)))
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 128-bit vector of [4 x float].
/// \param __W
/// A 128-bit vector of [8 x bfloat].
/// \param __U
/// A 4-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A. A 0 means element from __W.
/// \returns A 128-bit vector of [8 x bfloat] whose lower 64 bits come from
/// conversion of __A, and higher 64 bits are 0.
static __inline__ __m128bh __DEFAULT_FN_ATTRS128
_mm_mask_cvtneps_pbh(__m128bh __W, __mmask8 __U, __m128 __A) {
return (__m128bh)__builtin_ia32_cvtneps2bf16_128_mask((__v4sf) __A,
(__v8bf)__W,
(__mmask8)__U);
}
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 128-bit vector of [4 x float].
/// \param __U
/// A 4-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A. A 0 means element is zero.
/// \returns A 128-bit vector of [8 x bfloat] whose lower 64 bits come from
/// conversion of __A, and higher 64 bits are 0.
static __inline__ __m128bh __DEFAULT_FN_ATTRS128
_mm_maskz_cvtneps_pbh(__mmask8 __U, __m128 __A) {
return (__m128bh)__builtin_ia32_cvtneps2bf16_128_mask((__v4sf) __A,
(__v8bf)_mm_setzero_si128(),
(__mmask8)__U);
}
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 256-bit vector of [8 x float].
/// \returns A 128-bit vector of [8 x bfloat] comes from conversion of __A.
#define _mm256_cvtneps_pbh(A) \
((__m128bh)__builtin_ia32_vcvtneps2bf16256((__v8sf)(A)))
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 256-bit vector of [8 x float].
/// \param __W
/// A 256-bit vector of [8 x bfloat].
/// \param __U
/// A 8-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A. A 0 means element from __W.
/// \returns A 128-bit vector of [8 x bfloat] comes from conversion of __A.
static __inline__ __m128bh __DEFAULT_FN_ATTRS256
_mm256_mask_cvtneps_pbh(__m128bh __W, __mmask8 __U, __m256 __A) {
return (__m128bh)__builtin_ia32_cvtneps2bf16_256_mask((__v8sf)__A,
(__v8bf)__W,
(__mmask8)__U);
}
/// Convert Packed Single Data to Packed BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A 256-bit vector of [8 x float].
/// \param __U
/// A 8-bit mask value specifying what is chosen for each element.
/// A 1 means conversion of __A. A 0 means element is zero.
/// \returns A 128-bit vector of [8 x bfloat] comes from conversion of __A.
static __inline__ __m128bh __DEFAULT_FN_ATTRS256
_mm256_maskz_cvtneps_pbh(__mmask8 __U, __m256 __A) {
return (__m128bh)__builtin_ia32_cvtneps2bf16_256_mask((__v8sf)__A,
(__v8bf)_mm_setzero_si128(),
(__mmask8)__U);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 128-bit vector of [8 x bfloat].
/// \param __B
/// A 128-bit vector of [8 x bfloat].
/// \param __D
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_dpbf16_ps(__m128 __D, __m128bh __A, __m128bh __B) {
return (__m128)__builtin_ia32_dpbf16ps_128((__v4sf)__D,
(__v8bf)__A,
(__v8bf)__B);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 128-bit vector of [8 x bfloat].
/// \param __B
/// A 128-bit vector of [8 x bfloat].
/// \param __D
/// A 128-bit vector of [4 x float].
/// \param __U
/// A 8-bit mask value specifying what is chosen for each element.
/// A 1 means __A and __B's dot product accumulated with __D. A 0 means __D.
/// \returns A 128-bit vector of [4 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_mask_dpbf16_ps(__m128 __D, __mmask8 __U, __m128bh __A, __m128bh __B) {
return (__m128)__builtin_ia32_selectps_128((__mmask8)__U,
(__v4sf)_mm_dpbf16_ps(__D, __A, __B),
(__v4sf)__D);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 128-bit vector of [8 x bfloat].
/// \param __B
/// A 128-bit vector of [8 x bfloat].
/// \param __D
/// A 128-bit vector of [4 x float].
/// \param __U
/// A 8-bit mask value specifying what is chosen for each element.
/// A 1 means __A and __B's dot product accumulated with __D. A 0 means 0.
/// \returns A 128-bit vector of [4 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_maskz_dpbf16_ps(__mmask8 __U, __m128 __D, __m128bh __A, __m128bh __B) {
return (__m128)__builtin_ia32_selectps_128((__mmask8)__U,
(__v4sf)_mm_dpbf16_ps(__D, __A, __B),
(__v4sf)_mm_setzero_si128());
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 256-bit vector of [16 x bfloat].
/// \param __B
/// A 256-bit vector of [16 x bfloat].
/// \param __D
/// A 256-bit vector of [8 x float].
/// \returns A 256-bit vector of [8 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_dpbf16_ps(__m256 __D, __m256bh __A, __m256bh __B) {
return (__m256)__builtin_ia32_dpbf16ps_256((__v8sf)__D,
(__v16bf)__A,
(__v16bf)__B);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 256-bit vector of [16 x bfloat].
/// \param __B
/// A 256-bit vector of [16 x bfloat].
/// \param __D
/// A 256-bit vector of [8 x float].
/// \param __U
/// A 16-bit mask value specifying what is chosen for each element.
/// A 1 means __A and __B's dot product accumulated with __D. A 0 means __D.
/// \returns A 256-bit vector of [8 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_mask_dpbf16_ps(__m256 __D, __mmask8 __U, __m256bh __A, __m256bh __B) {
return (__m256)__builtin_ia32_selectps_256((__mmask8)__U,
(__v8sf)_mm256_dpbf16_ps(__D, __A, __B),
(__v8sf)__D);
}
/// Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDPBF16PS </c> instructions.
///
/// \param __A
/// A 256-bit vector of [16 x bfloat].
/// \param __B
/// A 256-bit vector of [16 x bfloat].
/// \param __D
/// A 256-bit vector of [8 x float].
/// \param __U
/// A 8-bit mask value specifying what is chosen for each element.
/// A 1 means __A and __B's dot product accumulated with __D. A 0 means 0.
/// \returns A 256-bit vector of [8 x float] comes from Dot Product of
/// __A, __B and __D
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_maskz_dpbf16_ps(__mmask8 __U, __m256 __D, __m256bh __A, __m256bh __B) {
return (__m256)__builtin_ia32_selectps_256((__mmask8)__U,
(__v8sf)_mm256_dpbf16_ps(__D, __A, __B),
(__v8sf)_mm256_setzero_si256());
}
/// Convert One Single float Data to One BF16 Data.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTNEPS2BF16 </c> instructions.
///
/// \param __A
/// A float data.
/// \returns A bf16 data whose sign field and exponent field keep unchanged,
/// and fraction field is truncated to 7 bits.
static __inline__ __bf16 __DEFAULT_FN_ATTRS128 _mm_cvtness_sbh(float __A) {
__v4sf __V = {__A, 0, 0, 0};
__v8bf __R = __builtin_ia32_cvtneps2bf16_128_mask(
(__v4sf)__V, (__v8bf)_mm_undefined_si128(), (__mmask8)-1);
return (__bf16)__R[0];
}
/// Convert Packed BF16 Data to Packed float Data.
///
/// \headerfile <x86intrin.h>
///
/// \param __A
/// A 128-bit vector of [4 x bfloat].
/// \returns A 128-bit vector of [4 x float] come from conversion of __A
static __inline__ __m128 __DEFAULT_FN_ATTRS128 _mm_cvtpbh_ps(__m128bh __A) {
return _mm_castsi128_ps(
(__m128i)_mm_slli_epi32((__m128i)_mm_cvtepi16_epi32((__m128i)__A), 16));
}
/// Convert Packed BF16 Data to Packed float Data.
///
/// \headerfile <x86intrin.h>
///
/// \param __A
/// A 128-bit vector of [8 x bfloat].
/// \returns A 256-bit vector of [8 x float] come from conversion of __A
static __inline__ __m256 __DEFAULT_FN_ATTRS256 _mm256_cvtpbh_ps(__m128bh __A) {
return _mm256_castsi256_ps((__m256i)_mm256_slli_epi32(
(__m256i)_mm256_cvtepi16_epi32((__m128i)__A), 16));
}
/// Convert Packed BF16 Data to Packed float Data using zeroing mask.
///
/// \headerfile <x86intrin.h>
///
/// \param __U
/// A 4-bit mask. Elements are zeroed out when the corresponding mask
/// bit is not set.
/// \param __A
/// A 128-bit vector of [4 x bfloat].
/// \returns A 128-bit vector of [4 x float] come from conversion of __A
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_maskz_cvtpbh_ps(__mmask8 __U, __m128bh __A) {
return _mm_castsi128_ps((__m128i)_mm_slli_epi32(
(__m128i)_mm_maskz_cvtepi16_epi32((__mmask8)__U, (__m128i)__A), 16));
}
/// Convert Packed BF16 Data to Packed float Data using zeroing mask.
///
/// \headerfile <x86intrin.h>
///
/// \param __U
/// A 8-bit mask. Elements are zeroed out when the corresponding mask
/// bit is not set.
/// \param __A
/// A 128-bit vector of [8 x bfloat].
/// \returns A 256-bit vector of [8 x float] come from conversion of __A
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_maskz_cvtpbh_ps(__mmask8 __U, __m128bh __A) {
return _mm256_castsi256_ps((__m256i)_mm256_slli_epi32(
(__m256i)_mm256_maskz_cvtepi16_epi32((__mmask8)__U, (__m128i)__A), 16));
}
/// Convert Packed BF16 Data to Packed float Data using merging mask.
///
/// \headerfile <x86intrin.h>
///
/// \param __S
/// A 128-bit vector of [4 x float]. Elements are copied from __S when
/// the corresponding mask bit is not set.
/// \param __U
/// A 4-bit mask. Elements are zeroed out when the corresponding mask
/// bit is not set.
/// \param __A
/// A 128-bit vector of [4 x bfloat].
/// \returns A 128-bit vector of [4 x float] come from conversion of __A
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_mask_cvtpbh_ps(__m128 __S, __mmask8 __U, __m128bh __A) {
return _mm_castsi128_ps((__m128i)_mm_mask_slli_epi32(
(__m128i)__S, (__mmask8)__U, (__m128i)_mm_cvtepi16_epi32((__m128i)__A),
16));
}
/// Convert Packed BF16 Data to Packed float Data using merging mask.
///
/// \headerfile <x86intrin.h>
///
/// \param __S
/// A 256-bit vector of [8 x float]. Elements are copied from __S when
/// the corresponding mask bit is not set.
/// \param __U
/// A 8-bit mask. Elements are zeroed out when the corresponding mask
/// bit is not set.
/// \param __A
/// A 128-bit vector of [8 x bfloat].
/// \returns A 256-bit vector of [8 x float] come from conversion of __A
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_mask_cvtpbh_ps(__m256 __S, __mmask8 __U, __m128bh __A) {
return _mm256_castsi256_ps((__m256i)_mm256_mask_slli_epi32(
(__m256i)__S, (__mmask8)__U, (__m256i)_mm256_cvtepi16_epi32((__m128i)__A),
16));
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif
#endif

View File

@ -1,145 +0,0 @@
/*===---- avx512vlbitalgintrin.h - BITALG intrinsics -----------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vlbitalgintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VLBITALGINTRIN_H
#define __AVX512VLBITALGINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512bitalg"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512bitalg"), __min_vector_width__(256)))
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_popcnt_epi16(__m256i __A)
{
return (__m256i) __builtin_ia32_vpopcntw_256((__v16hi) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_popcnt_epi16(__m256i __A, __mmask16 __U, __m256i __B)
{
return (__m256i) __builtin_ia32_selectw_256((__mmask16) __U,
(__v16hi) _mm256_popcnt_epi16(__B),
(__v16hi) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_popcnt_epi16(__mmask16 __U, __m256i __B)
{
return _mm256_mask_popcnt_epi16((__m256i) _mm256_setzero_si256(),
__U,
__B);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_popcnt_epi16(__m128i __A)
{
return (__m128i) __builtin_ia32_vpopcntw_128((__v8hi) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_popcnt_epi16(__m128i __A, __mmask8 __U, __m128i __B)
{
return (__m128i) __builtin_ia32_selectw_128((__mmask8) __U,
(__v8hi) _mm_popcnt_epi16(__B),
(__v8hi) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_popcnt_epi16(__mmask8 __U, __m128i __B)
{
return _mm_mask_popcnt_epi16((__m128i) _mm_setzero_si128(),
__U,
__B);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_popcnt_epi8(__m256i __A)
{
return (__m256i) __builtin_ia32_vpopcntb_256((__v32qi) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_popcnt_epi8(__m256i __A, __mmask32 __U, __m256i __B)
{
return (__m256i) __builtin_ia32_selectb_256((__mmask32) __U,
(__v32qi) _mm256_popcnt_epi8(__B),
(__v32qi) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_popcnt_epi8(__mmask32 __U, __m256i __B)
{
return _mm256_mask_popcnt_epi8((__m256i) _mm256_setzero_si256(),
__U,
__B);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_popcnt_epi8(__m128i __A)
{
return (__m128i) __builtin_ia32_vpopcntb_128((__v16qi) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_popcnt_epi8(__m128i __A, __mmask16 __U, __m128i __B)
{
return (__m128i) __builtin_ia32_selectb_128((__mmask16) __U,
(__v16qi) _mm_popcnt_epi8(__B),
(__v16qi) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_popcnt_epi8(__mmask16 __U, __m128i __B)
{
return _mm_mask_popcnt_epi8((__m128i) _mm_setzero_si128(),
__U,
__B);
}
static __inline__ __mmask32 __DEFAULT_FN_ATTRS256
_mm256_mask_bitshuffle_epi64_mask(__mmask32 __U, __m256i __A, __m256i __B)
{
return (__mmask32) __builtin_ia32_vpshufbitqmb256_mask((__v32qi) __A,
(__v32qi) __B,
__U);
}
static __inline__ __mmask32 __DEFAULT_FN_ATTRS256
_mm256_bitshuffle_epi64_mask(__m256i __A, __m256i __B)
{
return _mm256_mask_bitshuffle_epi64_mask((__mmask32) -1,
__A,
__B);
}
static __inline__ __mmask16 __DEFAULT_FN_ATTRS128
_mm_mask_bitshuffle_epi64_mask(__mmask16 __U, __m128i __A, __m128i __B)
{
return (__mmask16) __builtin_ia32_vpshufbitqmb128_mask((__v16qi) __A,
(__v16qi) __B,
__U);
}
static __inline__ __mmask16 __DEFAULT_FN_ATTRS128
_mm_bitshuffle_epi64_mask(__m128i __A, __m128i __B)
{
return _mm_mask_bitshuffle_epi64_mask((__mmask16) -1,
__A,
__B);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,225 +0,0 @@
/*===---- avx512vlcdintrin.h - AVX512VL and AVX512CD intrinsics ------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vlcdintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VLCDINTRIN_H
#define __AVX512VLCDINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512cd"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512cd"), __min_vector_width__(256)))
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_broadcastmb_epi64 (__mmask8 __A)
{
return (__m128i) _mm_set1_epi64x((long long) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_broadcastmb_epi64 (__mmask8 __A)
{
return (__m256i) _mm256_set1_epi64x((long long)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_broadcastmw_epi32 (__mmask16 __A)
{
return (__m128i) _mm_set1_epi32((int)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_broadcastmw_epi32 (__mmask16 __A)
{
return (__m256i) _mm256_set1_epi32((int)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_conflict_epi64 (__m128i __A)
{
return (__m128i) __builtin_ia32_vpconflictdi_128 ((__v2di) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_conflict_epi64 (__m128i __W, __mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectq_128((__mmask8)__U,
(__v2di)_mm_conflict_epi64(__A),
(__v2di)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_conflict_epi64 (__mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectq_128((__mmask8)__U,
(__v2di)_mm_conflict_epi64(__A),
(__v2di)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_conflict_epi64 (__m256i __A)
{
return (__m256i) __builtin_ia32_vpconflictdi_256 ((__v4di) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_conflict_epi64 (__m256i __W, __mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectq_256((__mmask8)__U,
(__v4di)_mm256_conflict_epi64(__A),
(__v4di)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_conflict_epi64 (__mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectq_256((__mmask8)__U,
(__v4di)_mm256_conflict_epi64(__A),
(__v4di)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_conflict_epi32 (__m128i __A)
{
return (__m128i) __builtin_ia32_vpconflictsi_128 ((__v4si) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_conflict_epi32 (__m128i __W, __mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectd_128((__mmask8)__U,
(__v4si)_mm_conflict_epi32(__A),
(__v4si)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_conflict_epi32 (__mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectd_128((__mmask8)__U,
(__v4si)_mm_conflict_epi32(__A),
(__v4si)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_conflict_epi32 (__m256i __A)
{
return (__m256i) __builtin_ia32_vpconflictsi_256 ((__v8si) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_conflict_epi32 (__m256i __W, __mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectd_256((__mmask8)__U,
(__v8si)_mm256_conflict_epi32(__A),
(__v8si)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_conflict_epi32 (__mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectd_256((__mmask8)__U,
(__v8si)_mm256_conflict_epi32(__A),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_lzcnt_epi32 (__m128i __A)
{
return (__m128i) __builtin_ia32_vplzcntd_128 ((__v4si) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_lzcnt_epi32 (__m128i __W, __mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectd_128((__mmask8)__U,
(__v4si)_mm_lzcnt_epi32(__A),
(__v4si)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_lzcnt_epi32 (__mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectd_128((__mmask8)__U,
(__v4si)_mm_lzcnt_epi32(__A),
(__v4si)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_lzcnt_epi32 (__m256i __A)
{
return (__m256i) __builtin_ia32_vplzcntd_256 ((__v8si) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_lzcnt_epi32 (__m256i __W, __mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectd_256((__mmask8)__U,
(__v8si)_mm256_lzcnt_epi32(__A),
(__v8si)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_lzcnt_epi32 (__mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectd_256((__mmask8)__U,
(__v8si)_mm256_lzcnt_epi32(__A),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_lzcnt_epi64 (__m128i __A)
{
return (__m128i) __builtin_ia32_vplzcntq_128 ((__v2di) __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_lzcnt_epi64 (__m128i __W, __mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectq_128((__mmask8)__U,
(__v2di)_mm_lzcnt_epi64(__A),
(__v2di)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_lzcnt_epi64 (__mmask8 __U, __m128i __A)
{
return (__m128i)__builtin_ia32_selectq_128((__mmask8)__U,
(__v2di)_mm_lzcnt_epi64(__A),
(__v2di)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_lzcnt_epi64 (__m256i __A)
{
return (__m256i) __builtin_ia32_vplzcntq_256 ((__v4di) __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_lzcnt_epi64 (__m256i __W, __mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectq_256((__mmask8)__U,
(__v4di)_mm256_lzcnt_epi64(__A),
(__v4di)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_lzcnt_epi64 (__mmask8 __U, __m256i __A)
{
return (__m256i)__builtin_ia32_selectq_256((__mmask8)__U,
(__v4di)_mm256_lzcnt_epi64(__A),
(__v4di)_mm256_setzero_si256());
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif /* __AVX512VLCDINTRIN_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,689 +0,0 @@
/*===------------- avx512vlvbmi2intrin.h - VBMI2 intrinsics -----------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vlvbmi2intrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VLVBMI2INTRIN_H
#define __AVX512VLVBMI2INTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vbmi2"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vbmi2"), __min_vector_width__(256)))
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_compress_epi16(__m128i __S, __mmask8 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_compresshi128_mask ((__v8hi) __D,
(__v8hi) __S,
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_compress_epi16(__mmask8 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_compresshi128_mask ((__v8hi) __D,
(__v8hi) _mm_setzero_si128(),
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_compress_epi8(__m128i __S, __mmask16 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_compressqi128_mask ((__v16qi) __D,
(__v16qi) __S,
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_compress_epi8(__mmask16 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_compressqi128_mask ((__v16qi) __D,
(__v16qi) _mm_setzero_si128(),
__U);
}
static __inline__ void __DEFAULT_FN_ATTRS128
_mm_mask_compressstoreu_epi16(void *__P, __mmask8 __U, __m128i __D)
{
__builtin_ia32_compressstorehi128_mask ((__v8hi *) __P, (__v8hi) __D,
__U);
}
static __inline__ void __DEFAULT_FN_ATTRS128
_mm_mask_compressstoreu_epi8(void *__P, __mmask16 __U, __m128i __D)
{
__builtin_ia32_compressstoreqi128_mask ((__v16qi *) __P, (__v16qi) __D,
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_expand_epi16(__m128i __S, __mmask8 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_expandhi128_mask ((__v8hi) __D,
(__v8hi) __S,
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_expand_epi16(__mmask8 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_expandhi128_mask ((__v8hi) __D,
(__v8hi) _mm_setzero_si128(),
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_expand_epi8(__m128i __S, __mmask16 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_expandqi128_mask ((__v16qi) __D,
(__v16qi) __S,
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_expand_epi8(__mmask16 __U, __m128i __D)
{
return (__m128i) __builtin_ia32_expandqi128_mask ((__v16qi) __D,
(__v16qi) _mm_setzero_si128(),
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_expandloadu_epi16(__m128i __S, __mmask8 __U, void const *__P)
{
return (__m128i) __builtin_ia32_expandloadhi128_mask ((const __v8hi *)__P,
(__v8hi) __S,
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_expandloadu_epi16(__mmask8 __U, void const *__P)
{
return (__m128i) __builtin_ia32_expandloadhi128_mask ((const __v8hi *)__P,
(__v8hi) _mm_setzero_si128(),
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_expandloadu_epi8(__m128i __S, __mmask16 __U, void const *__P)
{
return (__m128i) __builtin_ia32_expandloadqi128_mask ((const __v16qi *)__P,
(__v16qi) __S,
__U);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_expandloadu_epi8(__mmask16 __U, void const *__P)
{
return (__m128i) __builtin_ia32_expandloadqi128_mask ((const __v16qi *)__P,
(__v16qi) _mm_setzero_si128(),
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_compress_epi16(__m256i __S, __mmask16 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_compresshi256_mask ((__v16hi) __D,
(__v16hi) __S,
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_compress_epi16(__mmask16 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_compresshi256_mask ((__v16hi) __D,
(__v16hi) _mm256_setzero_si256(),
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_compress_epi8(__m256i __S, __mmask32 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_compressqi256_mask ((__v32qi) __D,
(__v32qi) __S,
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_compress_epi8(__mmask32 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_compressqi256_mask ((__v32qi) __D,
(__v32qi) _mm256_setzero_si256(),
__U);
}
static __inline__ void __DEFAULT_FN_ATTRS256
_mm256_mask_compressstoreu_epi16(void *__P, __mmask16 __U, __m256i __D)
{
__builtin_ia32_compressstorehi256_mask ((__v16hi *) __P, (__v16hi) __D,
__U);
}
static __inline__ void __DEFAULT_FN_ATTRS256
_mm256_mask_compressstoreu_epi8(void *__P, __mmask32 __U, __m256i __D)
{
__builtin_ia32_compressstoreqi256_mask ((__v32qi *) __P, (__v32qi) __D,
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_expand_epi16(__m256i __S, __mmask16 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_expandhi256_mask ((__v16hi) __D,
(__v16hi) __S,
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_expand_epi16(__mmask16 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_expandhi256_mask ((__v16hi) __D,
(__v16hi) _mm256_setzero_si256(),
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_expand_epi8(__m256i __S, __mmask32 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_expandqi256_mask ((__v32qi) __D,
(__v32qi) __S,
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_expand_epi8(__mmask32 __U, __m256i __D)
{
return (__m256i) __builtin_ia32_expandqi256_mask ((__v32qi) __D,
(__v32qi) _mm256_setzero_si256(),
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_expandloadu_epi16(__m256i __S, __mmask16 __U, void const *__P)
{
return (__m256i) __builtin_ia32_expandloadhi256_mask ((const __v16hi *)__P,
(__v16hi) __S,
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_expandloadu_epi16(__mmask16 __U, void const *__P)
{
return (__m256i) __builtin_ia32_expandloadhi256_mask ((const __v16hi *)__P,
(__v16hi) _mm256_setzero_si256(),
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_expandloadu_epi8(__m256i __S, __mmask32 __U, void const *__P)
{
return (__m256i) __builtin_ia32_expandloadqi256_mask ((const __v32qi *)__P,
(__v32qi) __S,
__U);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_expandloadu_epi8(__mmask32 __U, void const *__P)
{
return (__m256i) __builtin_ia32_expandloadqi256_mask ((const __v32qi *)__P,
(__v32qi) _mm256_setzero_si256(),
__U);
}
#define _mm256_shldi_epi64(A, B, I) \
((__m256i)__builtin_ia32_vpshldq256((__v4di)(__m256i)(A), \
(__v4di)(__m256i)(B), (int)(I)))
#define _mm256_mask_shldi_epi64(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectq_256((__mmask8)(U), \
(__v4di)_mm256_shldi_epi64((A), (B), (I)), \
(__v4di)(__m256i)(S)))
#define _mm256_maskz_shldi_epi64(U, A, B, I) \
((__m256i)__builtin_ia32_selectq_256((__mmask8)(U), \
(__v4di)_mm256_shldi_epi64((A), (B), (I)), \
(__v4di)_mm256_setzero_si256()))
#define _mm_shldi_epi64(A, B, I) \
((__m128i)__builtin_ia32_vpshldq128((__v2di)(__m128i)(A), \
(__v2di)(__m128i)(B), (int)(I)))
#define _mm_mask_shldi_epi64(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectq_128((__mmask8)(U), \
(__v2di)_mm_shldi_epi64((A), (B), (I)), \
(__v2di)(__m128i)(S)))
#define _mm_maskz_shldi_epi64(U, A, B, I) \
((__m128i)__builtin_ia32_selectq_128((__mmask8)(U), \
(__v2di)_mm_shldi_epi64((A), (B), (I)), \
(__v2di)_mm_setzero_si128()))
#define _mm256_shldi_epi32(A, B, I) \
((__m256i)__builtin_ia32_vpshldd256((__v8si)(__m256i)(A), \
(__v8si)(__m256i)(B), (int)(I)))
#define _mm256_mask_shldi_epi32(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectd_256((__mmask8)(U), \
(__v8si)_mm256_shldi_epi32((A), (B), (I)), \
(__v8si)(__m256i)(S)))
#define _mm256_maskz_shldi_epi32(U, A, B, I) \
((__m256i)__builtin_ia32_selectd_256((__mmask8)(U), \
(__v8si)_mm256_shldi_epi32((A), (B), (I)), \
(__v8si)_mm256_setzero_si256()))
#define _mm_shldi_epi32(A, B, I) \
((__m128i)__builtin_ia32_vpshldd128((__v4si)(__m128i)(A), \
(__v4si)(__m128i)(B), (int)(I)))
#define _mm_mask_shldi_epi32(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectd_128((__mmask8)(U), \
(__v4si)_mm_shldi_epi32((A), (B), (I)), \
(__v4si)(__m128i)(S)))
#define _mm_maskz_shldi_epi32(U, A, B, I) \
((__m128i)__builtin_ia32_selectd_128((__mmask8)(U), \
(__v4si)_mm_shldi_epi32((A), (B), (I)), \
(__v4si)_mm_setzero_si128()))
#define _mm256_shldi_epi16(A, B, I) \
((__m256i)__builtin_ia32_vpshldw256((__v16hi)(__m256i)(A), \
(__v16hi)(__m256i)(B), (int)(I)))
#define _mm256_mask_shldi_epi16(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectw_256((__mmask16)(U), \
(__v16hi)_mm256_shldi_epi16((A), (B), (I)), \
(__v16hi)(__m256i)(S)))
#define _mm256_maskz_shldi_epi16(U, A, B, I) \
((__m256i)__builtin_ia32_selectw_256((__mmask16)(U), \
(__v16hi)_mm256_shldi_epi16((A), (B), (I)), \
(__v16hi)_mm256_setzero_si256()))
#define _mm_shldi_epi16(A, B, I) \
((__m128i)__builtin_ia32_vpshldw128((__v8hi)(__m128i)(A), \
(__v8hi)(__m128i)(B), (int)(I)))
#define _mm_mask_shldi_epi16(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectw_128((__mmask8)(U), \
(__v8hi)_mm_shldi_epi16((A), (B), (I)), \
(__v8hi)(__m128i)(S)))
#define _mm_maskz_shldi_epi16(U, A, B, I) \
((__m128i)__builtin_ia32_selectw_128((__mmask8)(U), \
(__v8hi)_mm_shldi_epi16((A), (B), (I)), \
(__v8hi)_mm_setzero_si128()))
#define _mm256_shrdi_epi64(A, B, I) \
((__m256i)__builtin_ia32_vpshrdq256((__v4di)(__m256i)(A), \
(__v4di)(__m256i)(B), (int)(I)))
#define _mm256_mask_shrdi_epi64(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectq_256((__mmask8)(U), \
(__v4di)_mm256_shrdi_epi64((A), (B), (I)), \
(__v4di)(__m256i)(S)))
#define _mm256_maskz_shrdi_epi64(U, A, B, I) \
((__m256i)__builtin_ia32_selectq_256((__mmask8)(U), \
(__v4di)_mm256_shrdi_epi64((A), (B), (I)), \
(__v4di)_mm256_setzero_si256()))
#define _mm_shrdi_epi64(A, B, I) \
((__m128i)__builtin_ia32_vpshrdq128((__v2di)(__m128i)(A), \
(__v2di)(__m128i)(B), (int)(I)))
#define _mm_mask_shrdi_epi64(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectq_128((__mmask8)(U), \
(__v2di)_mm_shrdi_epi64((A), (B), (I)), \
(__v2di)(__m128i)(S)))
#define _mm_maskz_shrdi_epi64(U, A, B, I) \
((__m128i)__builtin_ia32_selectq_128((__mmask8)(U), \
(__v2di)_mm_shrdi_epi64((A), (B), (I)), \
(__v2di)_mm_setzero_si128()))
#define _mm256_shrdi_epi32(A, B, I) \
((__m256i)__builtin_ia32_vpshrdd256((__v8si)(__m256i)(A), \
(__v8si)(__m256i)(B), (int)(I)))
#define _mm256_mask_shrdi_epi32(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectd_256((__mmask8)(U), \
(__v8si)_mm256_shrdi_epi32((A), (B), (I)), \
(__v8si)(__m256i)(S)))
#define _mm256_maskz_shrdi_epi32(U, A, B, I) \
((__m256i)__builtin_ia32_selectd_256((__mmask8)(U), \
(__v8si)_mm256_shrdi_epi32((A), (B), (I)), \
(__v8si)_mm256_setzero_si256()))
#define _mm_shrdi_epi32(A, B, I) \
((__m128i)__builtin_ia32_vpshrdd128((__v4si)(__m128i)(A), \
(__v4si)(__m128i)(B), (int)(I)))
#define _mm_mask_shrdi_epi32(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectd_128((__mmask8)(U), \
(__v4si)_mm_shrdi_epi32((A), (B), (I)), \
(__v4si)(__m128i)(S)))
#define _mm_maskz_shrdi_epi32(U, A, B, I) \
((__m128i)__builtin_ia32_selectd_128((__mmask8)(U), \
(__v4si)_mm_shrdi_epi32((A), (B), (I)), \
(__v4si)_mm_setzero_si128()))
#define _mm256_shrdi_epi16(A, B, I) \
((__m256i)__builtin_ia32_vpshrdw256((__v16hi)(__m256i)(A), \
(__v16hi)(__m256i)(B), (int)(I)))
#define _mm256_mask_shrdi_epi16(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectw_256((__mmask16)(U), \
(__v16hi)_mm256_shrdi_epi16((A), (B), (I)), \
(__v16hi)(__m256i)(S)))
#define _mm256_maskz_shrdi_epi16(U, A, B, I) \
((__m256i)__builtin_ia32_selectw_256((__mmask16)(U), \
(__v16hi)_mm256_shrdi_epi16((A), (B), (I)), \
(__v16hi)_mm256_setzero_si256()))
#define _mm_shrdi_epi16(A, B, I) \
((__m128i)__builtin_ia32_vpshrdw128((__v8hi)(__m128i)(A), \
(__v8hi)(__m128i)(B), (int)(I)))
#define _mm_mask_shrdi_epi16(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectw_128((__mmask8)(U), \
(__v8hi)_mm_shrdi_epi16((A), (B), (I)), \
(__v8hi)(__m128i)(S)))
#define _mm_maskz_shrdi_epi16(U, A, B, I) \
((__m128i)__builtin_ia32_selectw_128((__mmask8)(U), \
(__v8hi)_mm_shrdi_epi16((A), (B), (I)), \
(__v8hi)_mm_setzero_si128()))
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_shldv_epi64(__m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_vpshldvq256((__v4di)__A, (__v4di)__B,
(__v4di)__C);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_shldv_epi64(__m256i __A, __mmask8 __U, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectq_256(__U,
(__v4di)_mm256_shldv_epi64(__A, __B, __C),
(__v4di)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_shldv_epi64(__mmask8 __U, __m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectq_256(__U,
(__v4di)_mm256_shldv_epi64(__A, __B, __C),
(__v4di)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_shldv_epi64(__m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_vpshldvq128((__v2di)__A, (__v2di)__B,
(__v2di)__C);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_shldv_epi64(__m128i __A, __mmask8 __U, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectq_128(__U,
(__v2di)_mm_shldv_epi64(__A, __B, __C),
(__v2di)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_shldv_epi64(__mmask8 __U, __m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectq_128(__U,
(__v2di)_mm_shldv_epi64(__A, __B, __C),
(__v2di)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_shldv_epi32(__m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_vpshldvd256((__v8si)__A, (__v8si)__B,
(__v8si)__C);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_shldv_epi32(__m256i __A, __mmask8 __U, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_shldv_epi32(__A, __B, __C),
(__v8si)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_shldv_epi32(__mmask8 __U, __m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_shldv_epi32(__A, __B, __C),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_shldv_epi32(__m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_vpshldvd128((__v4si)__A, (__v4si)__B,
(__v4si)__C);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_shldv_epi32(__m128i __A, __mmask8 __U, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_shldv_epi32(__A, __B, __C),
(__v4si)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_shldv_epi32(__mmask8 __U, __m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_shldv_epi32(__A, __B, __C),
(__v4si)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_shldv_epi16(__m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_vpshldvw256((__v16hi)__A, (__v16hi)__B,
(__v16hi)__C);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_shldv_epi16(__m256i __A, __mmask16 __U, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectw_256(__U,
(__v16hi)_mm256_shldv_epi16(__A, __B, __C),
(__v16hi)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_shldv_epi16(__mmask16 __U, __m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectw_256(__U,
(__v16hi)_mm256_shldv_epi16(__A, __B, __C),
(__v16hi)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_shldv_epi16(__m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_vpshldvw128((__v8hi)__A, (__v8hi)__B,
(__v8hi)__C);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_shldv_epi16(__m128i __A, __mmask8 __U, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectw_128(__U,
(__v8hi)_mm_shldv_epi16(__A, __B, __C),
(__v8hi)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_shldv_epi16(__mmask8 __U, __m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectw_128(__U,
(__v8hi)_mm_shldv_epi16(__A, __B, __C),
(__v8hi)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_shrdv_epi64(__m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_vpshrdvq256((__v4di)__A, (__v4di)__B,
(__v4di)__C);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_shrdv_epi64(__m256i __A, __mmask8 __U, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectq_256(__U,
(__v4di)_mm256_shrdv_epi64(__A, __B, __C),
(__v4di)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_shrdv_epi64(__mmask8 __U, __m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectq_256(__U,
(__v4di)_mm256_shrdv_epi64(__A, __B, __C),
(__v4di)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_shrdv_epi64(__m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_vpshrdvq128((__v2di)__A, (__v2di)__B,
(__v2di)__C);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_shrdv_epi64(__m128i __A, __mmask8 __U, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectq_128(__U,
(__v2di)_mm_shrdv_epi64(__A, __B, __C),
(__v2di)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_shrdv_epi64(__mmask8 __U, __m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectq_128(__U,
(__v2di)_mm_shrdv_epi64(__A, __B, __C),
(__v2di)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_shrdv_epi32(__m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_vpshrdvd256((__v8si)__A, (__v8si)__B,
(__v8si)__C);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_shrdv_epi32(__m256i __A, __mmask8 __U, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_shrdv_epi32(__A, __B, __C),
(__v8si)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_shrdv_epi32(__mmask8 __U, __m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_shrdv_epi32(__A, __B, __C),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_shrdv_epi32(__m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_vpshrdvd128((__v4si)__A, (__v4si)__B,
(__v4si)__C);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_shrdv_epi32(__m128i __A, __mmask8 __U, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_shrdv_epi32(__A, __B, __C),
(__v4si)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_shrdv_epi32(__mmask8 __U, __m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_shrdv_epi32(__A, __B, __C),
(__v4si)_mm_setzero_si128());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_shrdv_epi16(__m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_vpshrdvw256((__v16hi)__A, (__v16hi)__B,
(__v16hi)__C);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_shrdv_epi16(__m256i __A, __mmask16 __U, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectw_256(__U,
(__v16hi)_mm256_shrdv_epi16(__A, __B, __C),
(__v16hi)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_shrdv_epi16(__mmask16 __U, __m256i __A, __m256i __B, __m256i __C)
{
return (__m256i)__builtin_ia32_selectw_256(__U,
(__v16hi)_mm256_shrdv_epi16(__A, __B, __C),
(__v16hi)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_shrdv_epi16(__m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_vpshrdvw128((__v8hi)__A, (__v8hi)__B,
(__v8hi)__C);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_shrdv_epi16(__m128i __A, __mmask8 __U, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectw_128(__U,
(__v8hi)_mm_shrdv_epi16(__A, __B, __C),
(__v8hi)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_shrdv_epi16(__mmask8 __U, __m128i __A, __m128i __B, __m128i __C)
{
return (__m128i)__builtin_ia32_selectw_128(__U,
(__v8hi)_mm_shrdv_epi16(__A, __B, __C),
(__v8hi)_mm_setzero_si128());
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif

View File

@ -1,304 +0,0 @@
/*===------------- avx512vlvnniintrin.h - VNNI intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vlvnniintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VLVNNIINTRIN_H
#define __AVX512VLVNNIINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vnni"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vnni"), __min_vector_width__(256)))
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a S, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
/// DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
#define _mm256_dpbusd_epi32(S, A, B) \
((__m256i)__builtin_ia32_vpdpbusd256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a S using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
/// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
#define _mm256_dpbusds_epi32(S, A, B) \
((__m256i)__builtin_ia32_vpdpbusds256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a S,
/// and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
/// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
/// DST.dword[j] := S.dword[j] + tmp1 + tmp2
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
#define _mm256_dpwssd_epi32(S, A, B) \
((__m256i)__builtin_ia32_vpdpwssd256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a S
/// using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
/// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
/// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
#define _mm256_dpwssds_epi32(S, A, B) \
((__m256i)__builtin_ia32_vpdpwssds256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a S, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
/// DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
#define _mm_dpbusd_epi32(S, A, B) \
((__m128i)__builtin_ia32_vpdpbusd128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a S using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
/// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
#define _mm_dpbusds_epi32(S, A, B) \
((__m128i)__builtin_ia32_vpdpbusds128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a S,
/// and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
/// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
/// DST.dword[j] := S.dword[j] + tmp1 + tmp2
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
#define _mm_dpwssd_epi32(S, A, B) \
((__m128i)__builtin_ia32_vpdpwssd128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a S
/// using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
/// tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
/// DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
#define _mm_dpwssds_epi32(S, A, B) \
((__m128i)__builtin_ia32_vpdpwssds128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_dpbusd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpbusd_epi32(__S, __A, __B),
(__v8si)__S);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_dpbusd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpbusd_epi32(__S, __A, __B),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_dpbusds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpbusds_epi32(__S, __A, __B),
(__v8si)__S);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_dpbusds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpbusds_epi32(__S, __A, __B),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_dpwssd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpwssd_epi32(__S, __A, __B),
(__v8si)__S);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_dpwssd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpwssd_epi32(__S, __A, __B),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_dpwssds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpwssds_epi32(__S, __A, __B),
(__v8si)__S);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_dpwssds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_selectd_256(__U,
(__v8si)_mm256_dpwssds_epi32(__S, __A, __B),
(__v8si)_mm256_setzero_si256());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_dpbusd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpbusd_epi32(__S, __A, __B),
(__v4si)__S);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_dpbusd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpbusd_epi32(__S, __A, __B),
(__v4si)_mm_setzero_si128());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_dpbusds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpbusds_epi32(__S, __A, __B),
(__v4si)__S);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_dpbusds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpbusds_epi32(__S, __A, __B),
(__v4si)_mm_setzero_si128());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_dpwssd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpwssd_epi32(__S, __A, __B),
(__v4si)__S);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_dpwssd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpwssd_epi32(__S, __A, __B),
(__v4si)_mm_setzero_si128());
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_dpwssds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpwssds_epi32(__S, __A, __B),
(__v4si)__S);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_dpwssds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_selectd_128(__U,
(__v4si)_mm_dpwssds_epi32(__S, __A, __B),
(__v4si)_mm_setzero_si128());
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif

View File

@ -1,121 +0,0 @@
/*===------ avx512vlvp2intersectintrin.h - VL VP2INTERSECT intrinsics ------===
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vlvp2intersectintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef _AVX512VLVP2INTERSECT_H
#define _AVX512VLVP2INTERSECT_H
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vp2intersect"), \
__min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avx512vl,avx512vp2intersect"), \
__min_vector_width__(256)))
/// Store, in an even/odd pair of mask registers, the indicators of the
/// locations of value matches between dwords in operands __a and __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VP2INTERSECTD </c> instruction.
///
/// \param __a
/// A 256-bit vector of [8 x i32].
/// \param __b
/// A 256-bit vector of [8 x i32]
/// \param __m0
/// A pointer point to 8-bit mask
/// \param __m1
/// A pointer point to 8-bit mask
static __inline__ void __DEFAULT_FN_ATTRS256
_mm256_2intersect_epi32(__m256i __a, __m256i __b, __mmask8 *__m0, __mmask8 *__m1) {
__builtin_ia32_vp2intersect_d_256((__v8si)__a, (__v8si)__b, __m0, __m1);
}
/// Store, in an even/odd pair of mask registers, the indicators of the
/// locations of value matches between quadwords in operands __a and __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VP2INTERSECTQ </c> instruction.
///
/// \param __a
/// A 256-bit vector of [4 x i64].
/// \param __b
/// A 256-bit vector of [4 x i64]
/// \param __m0
/// A pointer point to 8-bit mask
/// \param __m1
/// A pointer point to 8-bit mask
static __inline__ void __DEFAULT_FN_ATTRS256
_mm256_2intersect_epi64(__m256i __a, __m256i __b, __mmask8 *__m0, __mmask8 *__m1) {
__builtin_ia32_vp2intersect_q_256((__v4di)__a, (__v4di)__b, __m0, __m1);
}
/// Store, in an even/odd pair of mask registers, the indicators of the
/// locations of value matches between dwords in operands __a and __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VP2INTERSECTD </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x i32].
/// \param __b
/// A 128-bit vector of [4 x i32]
/// \param __m0
/// A pointer point to 8-bit mask
/// \param __m1
/// A pointer point to 8-bit mask
static __inline__ void __DEFAULT_FN_ATTRS128
_mm_2intersect_epi32(__m128i __a, __m128i __b, __mmask8 *__m0, __mmask8 *__m1) {
__builtin_ia32_vp2intersect_d_128((__v4si)__a, (__v4si)__b, __m0, __m1);
}
/// Store, in an even/odd pair of mask registers, the indicators of the
/// locations of value matches between quadwords in operands __a and __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VP2INTERSECTQ </c> instruction.
///
/// \param __a
/// A 128-bit vector of [2 x i64].
/// \param __b
/// A 128-bit vector of [2 x i64]
/// \param __m0
/// A pointer point to 8-bit mask
/// \param __m1
/// A pointer point to 8-bit mask
static __inline__ void __DEFAULT_FN_ATTRS128
_mm_2intersect_epi64(__m128i __a, __m128i __b, __mmask8 *__m0, __mmask8 *__m1) {
__builtin_ia32_vp2intersect_q_128((__v2di)__a, (__v2di)__b, __m0, __m1);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif

View File

@ -1,115 +0,0 @@
/*===------------- avx512vnniintrin.h - VNNI intrinsics ------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vnniintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VNNIINTRIN_H
#define __AVX512VNNIINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx512vnni"), __min_vector_width__(512)))
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_dpbusd_epi32(__m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_vpdpbusd512((__v16si)__S, (__v16si)__A,
(__v16si)__B);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_dpbusd_epi32(__m512i __S, __mmask16 __U, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpbusd_epi32(__S, __A, __B),
(__v16si)__S);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_dpbusd_epi32(__mmask16 __U, __m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpbusd_epi32(__S, __A, __B),
(__v16si)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_dpbusds_epi32(__m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_vpdpbusds512((__v16si)__S, (__v16si)__A,
(__v16si)__B);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_dpbusds_epi32(__m512i __S, __mmask16 __U, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpbusds_epi32(__S, __A, __B),
(__v16si)__S);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_dpbusds_epi32(__mmask16 __U, __m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpbusds_epi32(__S, __A, __B),
(__v16si)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_dpwssd_epi32(__m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_vpdpwssd512((__v16si)__S, (__v16si)__A,
(__v16si)__B);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_dpwssd_epi32(__m512i __S, __mmask16 __U, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpwssd_epi32(__S, __A, __B),
(__v16si)__S);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_dpwssd_epi32(__mmask16 __U, __m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpwssd_epi32(__S, __A, __B),
(__v16si)_mm512_setzero_si512());
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_dpwssds_epi32(__m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_vpdpwssds512((__v16si)__S, (__v16si)__A,
(__v16si)__B);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_dpwssds_epi32(__m512i __S, __mmask16 __U, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpwssds_epi32(__S, __A, __B),
(__v16si)__S);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_dpwssds_epi32(__mmask16 __U, __m512i __S, __m512i __A, __m512i __B)
{
return (__m512i)__builtin_ia32_selectd_512(__U,
(__v16si)_mm512_dpwssds_epi32(__S, __A, __B),
(__v16si)_mm512_setzero_si512());
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,77 +0,0 @@
/*===------- avx512vpintersectintrin.h - VP2INTERSECT intrinsics ------------===
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avx512vp2intersect.h> directly; include <immintrin.h> instead."
#endif
#ifndef _AVX512VP2INTERSECT_H
#define _AVX512VP2INTERSECT_H
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("avx512vp2intersect"), \
__min_vector_width__(512)))
/// Store, in an even/odd pair of mask registers, the indicators of the
/// locations of value matches between dwords in operands __a and __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VP2INTERSECTD </c> instruction.
///
/// \param __a
/// A 512-bit vector of [16 x i32].
/// \param __b
/// A 512-bit vector of [16 x i32]
/// \param __m0
/// A pointer point to 16-bit mask
/// \param __m1
/// A pointer point to 16-bit mask
static __inline__ void __DEFAULT_FN_ATTRS
_mm512_2intersect_epi32(__m512i __a, __m512i __b, __mmask16 *__m0, __mmask16 *__m1) {
__builtin_ia32_vp2intersect_d_512((__v16si)__a, (__v16si)__b, __m0, __m1);
}
/// Store, in an even/odd pair of mask registers, the indicators of the
/// locations of value matches between quadwords in operands __a and __b.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VP2INTERSECTQ </c> instruction.
///
/// \param __a
/// A 512-bit vector of [8 x i64].
/// \param __b
/// A 512-bit vector of [8 x i64]
/// \param __m0
/// A pointer point to 8-bit mask
/// \param __m1
/// A pointer point to 8-bit mask
static __inline__ void __DEFAULT_FN_ATTRS
_mm512_2intersect_epi64(__m512i __a, __m512i __b, __mmask8 *__m0, __mmask8 *__m1) {
__builtin_ia32_vp2intersect_q_512((__v8di)__a, (__v8di)__b, __m0, __m1);
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,54 +0,0 @@
/*===----- avx512vpopcntdqintrin.h - AVX512VPOPCNTDQ intrinsics-------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <avx512vpopcntdqintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VPOPCNTDQINTRIN_H
#define __AVX512VPOPCNTDQINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("avx512vpopcntdq"), __min_vector_width__(512)))
static __inline__ __m512i __DEFAULT_FN_ATTRS _mm512_popcnt_epi64(__m512i __A) {
return (__m512i)__builtin_ia32_vpopcntq_512((__v8di)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_popcnt_epi64(__m512i __W, __mmask8 __U, __m512i __A) {
return (__m512i)__builtin_ia32_selectq_512(
(__mmask8)__U, (__v8di)_mm512_popcnt_epi64(__A), (__v8di)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_popcnt_epi64(__mmask8 __U, __m512i __A) {
return _mm512_mask_popcnt_epi64((__m512i)_mm512_setzero_si512(), __U, __A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS _mm512_popcnt_epi32(__m512i __A) {
return (__m512i)__builtin_ia32_vpopcntd_512((__v16si)__A);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_mask_popcnt_epi32(__m512i __W, __mmask16 __U, __m512i __A) {
return (__m512i)__builtin_ia32_selectd_512(
(__mmask16)__U, (__v16si)_mm512_popcnt_epi32(__A), (__v16si)__W);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS
_mm512_maskz_popcnt_epi32(__mmask16 __U, __m512i __A) {
return _mm512_mask_popcnt_epi32((__m512i)_mm512_setzero_si512(), __U, __A);
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,91 +0,0 @@
/*===---- avx512vpopcntdqintrin.h - AVX512VPOPCNTDQ intrinsics -------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <avx512vpopcntdqvlintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVX512VPOPCNTDQVLINTRIN_H
#define __AVX512VPOPCNTDQVLINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avx512vpopcntdq,avx512vl"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avx512vpopcntdq,avx512vl"), __min_vector_width__(256)))
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_popcnt_epi64(__m128i __A) {
return (__m128i)__builtin_ia32_vpopcntq_128((__v2di)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_popcnt_epi64(__m128i __W, __mmask8 __U, __m128i __A) {
return (__m128i)__builtin_ia32_selectq_128(
(__mmask8)__U, (__v2di)_mm_popcnt_epi64(__A), (__v2di)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_popcnt_epi64(__mmask8 __U, __m128i __A) {
return _mm_mask_popcnt_epi64((__m128i)_mm_setzero_si128(), __U, __A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_popcnt_epi32(__m128i __A) {
return (__m128i)__builtin_ia32_vpopcntd_128((__v4si)__A);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_mask_popcnt_epi32(__m128i __W, __mmask8 __U, __m128i __A) {
return (__m128i)__builtin_ia32_selectd_128(
(__mmask8)__U, (__v4si)_mm_popcnt_epi32(__A), (__v4si)__W);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_maskz_popcnt_epi32(__mmask8 __U, __m128i __A) {
return _mm_mask_popcnt_epi32((__m128i)_mm_setzero_si128(), __U, __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_popcnt_epi64(__m256i __A) {
return (__m256i)__builtin_ia32_vpopcntq_256((__v4di)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_popcnt_epi64(__m256i __W, __mmask8 __U, __m256i __A) {
return (__m256i)__builtin_ia32_selectq_256(
(__mmask8)__U, (__v4di)_mm256_popcnt_epi64(__A), (__v4di)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_popcnt_epi64(__mmask8 __U, __m256i __A) {
return _mm256_mask_popcnt_epi64((__m256i)_mm256_setzero_si256(), __U, __A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_popcnt_epi32(__m256i __A) {
return (__m256i)__builtin_ia32_vpopcntd_256((__v8si)__A);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_mask_popcnt_epi32(__m256i __W, __mmask8 __U, __m256i __A) {
return (__m256i)__builtin_ia32_selectd_256(
(__mmask8)__U, (__v8si)_mm256_popcnt_epi32(__A), (__v8si)__W);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_maskz_popcnt_epi32(__mmask8 __U, __m256i __A) {
return _mm256_mask_popcnt_epi32((__m256i)_mm256_setzero_si256(), __U, __A);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif

View File

@ -1,177 +0,0 @@
/*===----------------- avxifmaintrin.h - IFMA intrinsics -------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avxifmaintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVXIFMAINTRIN_H
#define __AVXIFMAINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avxifma"), \
__min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avxifma"), \
__min_vector_width__(256)))
// must vex-encoding
/// Multiply packed unsigned 52-bit integers in each 64-bit element of \a __Y
/// and \a __Z to form a 104-bit intermediate result. Add the high 52-bit
/// unsigned integer from the intermediate result with the corresponding
/// unsigned 64-bit integer in \a __X, and store the results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i
/// _mm_madd52hi_avx_epu64 (__m128i __X, __m128i __Y, __m128i __Z)
/// \endcode
///
/// This intrinsic corresponds to the \c VPMADD52HUQ instruction.
///
/// \return
/// return __m128i dst.
/// \param __X
/// A 128-bit vector of [2 x i64]
/// \param __Y
/// A 128-bit vector of [2 x i64]
/// \param __Z
/// A 128-bit vector of [2 x i64]
///
/// \code{.operation}
/// FOR j := 0 to 1
/// i := j*64
/// tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i])
/// dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[103:52])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_madd52hi_avx_epu64(__m128i __X, __m128i __Y, __m128i __Z) {
return (__m128i)__builtin_ia32_vpmadd52huq128((__v2di)__X, (__v2di)__Y,
(__v2di)__Z);
}
/// Multiply packed unsigned 52-bit integers in each 64-bit element of \a __Y
/// and \a __Z to form a 104-bit intermediate result. Add the high 52-bit
/// unsigned integer from the intermediate result with the corresponding
/// unsigned 64-bit integer in \a __X, and store the results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i
/// _mm256_madd52hi_avx_epu64 (__m256i __X, __m256i __Y, __m256i __Z)
/// \endcode
///
/// This intrinsic corresponds to the \c VPMADD52HUQ instruction.
///
/// \return
/// return __m256i dst.
/// \param __X
/// A 256-bit vector of [4 x i64]
/// \param __Y
/// A 256-bit vector of [4 x i64]
/// \param __Z
/// A 256-bit vector of [4 x i64]
///
/// \code{.operation}
/// FOR j := 0 to 3
/// i := j*64
/// tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i])
/// dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[103:52])
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_madd52hi_avx_epu64(__m256i __X, __m256i __Y, __m256i __Z) {
return (__m256i)__builtin_ia32_vpmadd52huq256((__v4di)__X, (__v4di)__Y,
(__v4di)__Z);
}
/// Multiply packed unsigned 52-bit integers in each 64-bit element of \a __Y
/// and \a __Z to form a 104-bit intermediate result. Add the low 52-bit
/// unsigned integer from the intermediate result with the corresponding
/// unsigned 64-bit integer in \a __X, and store the results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i
/// _mm_madd52lo_avx_epu64 (__m128i __X, __m128i __Y, __m128i __Z)
/// \endcode
///
/// This intrinsic corresponds to the \c VPMADD52LUQ instruction.
///
/// \return
/// return __m128i dst.
/// \param __X
/// A 128-bit vector of [2 x i64]
/// \param __Y
/// A 128-bit vector of [2 x i64]
/// \param __Z
/// A 128-bit vector of [2 x i64]
///
/// \code{.operation}
/// FOR j := 0 to 1
/// i := j*64
/// tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i])
/// dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[51:0])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_madd52lo_avx_epu64(__m128i __X, __m128i __Y, __m128i __Z) {
return (__m128i)__builtin_ia32_vpmadd52luq128((__v2di)__X, (__v2di)__Y,
(__v2di)__Z);
}
/// Multiply packed unsigned 52-bit integers in each 64-bit element of \a __Y
/// and \a __Z to form a 104-bit intermediate result. Add the low 52-bit
/// unsigned integer from the intermediate result with the corresponding
/// unsigned 64-bit integer in \a __X, and store the results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i
/// _mm256_madd52lo_avx_epu64 (__m256i __X, __m256i __Y, __m256i __Z)
/// \endcode
///
/// This intrinsic corresponds to the \c VPMADD52LUQ instruction.
///
/// \return
/// return __m256i dst.
/// \param __X
/// A 256-bit vector of [4 x i64]
/// \param __Y
/// A 256-bit vector of [4 x i64]
/// \param __Z
/// A 256-bit vector of [4 x i64]
///
/// \code{.operation}
/// FOR j := 0 to 3
/// i := j*64
/// tmp[127:0] := ZeroExtend64(__Y[i+51:i]) * ZeroExtend64(__Z[i+51:i])
/// dst[i+63:i] := __X[i+63:i] + ZeroExtend64(tmp[51:0])
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_madd52lo_avx_epu64(__m256i __X, __m256i __Y, __m256i __Z) {
return (__m256i)__builtin_ia32_vpmadd52luq256((__v4di)__X, (__v4di)__Y,
(__v4di)__Z);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif // __AVXIFMAINTRIN_H

File diff suppressed because it is too large Load Diff

View File

@ -1,484 +0,0 @@
/*===-------------- avxneconvertintrin.h - AVXNECONVERT --------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <avxneconvertintrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifdef __SSE2__
#ifndef __AVXNECONVERTINTRIN_H
#define __AVXNECONVERTINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avxneconvert"), \
__min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avxneconvert"), \
__min_vector_width__(256)))
/// Convert scalar BF16 (16-bit) floating-point element
/// stored at memory locations starting at location \a __A to a
/// single-precision (32-bit) floating-point, broadcast it to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_bcstnebf16_ps(const void *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VBCSTNEBF162PS instruction.
///
/// \param __A
/// A pointer to a 16-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \returns
/// A 128-bit vector of [4 x float].
///
/// \code{.operation}
/// b := Convert_BF16_To_FP32(MEM[__A+15:__A])
/// FOR j := 0 to 3
/// m := j*32
/// dst[m+31:m] := b
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_bcstnebf16_ps(const void *__A) {
return (__m128)__builtin_ia32_vbcstnebf162ps128((const __bf16 *)__A);
}
/// Convert scalar BF16 (16-bit) floating-point element
/// stored at memory locations starting at location \a __A to a
/// single-precision (32-bit) floating-point, broadcast it to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_bcstnebf16_ps(const void *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VBCSTNEBF162PS instruction.
///
/// \param __A
/// A pointer to a 16-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \returns
/// A 256-bit vector of [8 x float].
///
/// \code{.operation}
/// b := Convert_BF16_To_FP32(MEM[__A+15:__A])
/// FOR j := 0 to 7
/// m := j*32
/// dst[m+31:m] := b
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_bcstnebf16_ps(const void *__A) {
return (__m256)__builtin_ia32_vbcstnebf162ps256((const __bf16 *)__A);
}
/// Convert scalar half-precision (16-bit) floating-point element
/// stored at memory locations starting at location \a __A to a
/// single-precision (32-bit) floating-point, broadcast it to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_bcstnesh_ps(const void *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VBCSTNESH2PS instruction.
///
/// \param __A
/// A pointer to a 16-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \returns
/// A 128-bit vector of [4 x float].
///
/// \code{.operation}
/// b := Convert_FP16_To_FP32(MEM[__A+15:__A])
/// FOR j := 0 to 3
/// m := j*32
/// dst[m+31:m] := b
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_bcstnesh_ps(const void *__A) {
return (__m128)__builtin_ia32_vbcstnesh2ps128((const _Float16 *)__A);
}
/// Convert scalar half-precision (16-bit) floating-point element
/// stored at memory locations starting at location \a __A to a
/// single-precision (32-bit) floating-point, broadcast it to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_bcstnesh_ps(const void *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VBCSTNESH2PS instruction.
///
/// \param __A
/// A pointer to a 16-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \returns
/// A 256-bit vector of [8 x float].
///
/// \code{.operation}
/// b := Convert_FP16_To_FP32(MEM[__A+15:__A])
/// FOR j := 0 to 7
/// m := j*32
/// dst[m+31:m] := b
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_bcstnesh_ps(const void *__A) {
return (__m256)__builtin_ia32_vbcstnesh2ps256((const _Float16 *)__A);
}
/// Convert packed BF16 (16-bit) floating-point even-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_cvtneebf16_ps(const __m128bh *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEEBF162PS instruction.
///
/// \param __A
/// A pointer to a 128-bit memory location containing 8 consecutive
/// BF16 (16-bit) floating-point values.
/// \returns
/// A 128-bit vector of [4 x float].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// k := j*2
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_cvtneebf16_ps(const __m128bh *__A) {
return (__m128)__builtin_ia32_vcvtneebf162ps128((const __v8bf *)__A);
}
/// Convert packed BF16 (16-bit) floating-point even-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_cvtneebf16_ps(const __m256bh *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEEBF162PS instruction.
///
/// \param __A
/// A pointer to a 256-bit memory location containing 16 consecutive
/// BF16 (16-bit) floating-point values.
/// \returns
/// A 256-bit vector of [8 x float].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// k := j*2
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_cvtneebf16_ps(const __m256bh *__A) {
return (__m256)__builtin_ia32_vcvtneebf162ps256((const __v16bf *)__A);
}
/// Convert packed half-precision (16-bit) floating-point even-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_cvtneeph_ps(const __m128h *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEEPH2PS instruction.
///
/// \param __A
/// A pointer to a 128-bit memory location containing 8 consecutive
/// half-precision (16-bit) floating-point values.
/// \returns
/// A 128-bit vector of [4 x float].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// k := j*2
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_cvtneeph_ps(const __m128h *__A) {
return (__m128)__builtin_ia32_vcvtneeph2ps128((const __v8hf *)__A);
}
/// Convert packed half-precision (16-bit) floating-point even-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_cvtneeph_ps(const __m256h *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEEPH2PS instruction.
///
/// \param __A
/// A pointer to a 256-bit memory location containing 16 consecutive
/// half-precision (16-bit) floating-point values.
/// \returns
/// A 256-bit vector of [8 x float].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// k := j*2
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_cvtneeph_ps(const __m256h *__A) {
return (__m256)__builtin_ia32_vcvtneeph2ps256((const __v16hf *)__A);
}
/// Convert packed BF16 (16-bit) floating-point odd-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_cvtneobf16_ps(const __m128bh *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEOBF162PS instruction.
///
/// \param __A
/// A pointer to a 128-bit memory location containing 8 consecutive
/// BF16 (16-bit) floating-point values.
/// \returns
/// A 128-bit vector of [4 x float].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// k := j*2+1
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_cvtneobf16_ps(const __m128bh *__A) {
return (__m128)__builtin_ia32_vcvtneobf162ps128((const __v8bf *)__A);
}
/// Convert packed BF16 (16-bit) floating-point odd-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_cvtneobf16_ps(const __m256bh *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEOBF162PS instruction.
///
/// \param __A
/// A pointer to a 256-bit memory location containing 16 consecutive
/// BF16 (16-bit) floating-point values.
/// \returns
/// A 256-bit vector of [8 x float].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// k := j*2+1
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_BF16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_cvtneobf16_ps(const __m256bh *__A) {
return (__m256)__builtin_ia32_vcvtneobf162ps256((const __v16bf *)__A);
}
/// Convert packed half-precision (16-bit) floating-point odd-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_cvtneoph_ps(const __m128h *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEOPH2PS instruction.
///
/// \param __A
/// A pointer to a 128-bit memory location containing 8 consecutive
/// half-precision (16-bit) floating-point values.
/// \returns
/// A 128-bit vector of [4 x float].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// k := j*2+1
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_cvtneoph_ps(const __m128h *__A) {
return (__m128)__builtin_ia32_vcvtneoph2ps128((const __v8hf *)__A);
}
/// Convert packed half-precision (16-bit) floating-point odd-indexed elements
/// stored at memory locations starting at location \a __A to packed
/// single-precision (32-bit) floating-point elements, and store the results in
/// \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_cvtneoph_ps(const __m256h *__A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEOPH2PS instruction.
///
/// \param __A
/// A pointer to a 256-bit memory location containing 16 consecutive
/// half-precision (16-bit) floating-point values.
/// \returns
/// A 256-bit vector of [8 x float].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// k := j*2+1
/// i := k*16
/// m := j*32
/// dst[m+31:m] := Convert_FP16_To_FP32(MEM[__A+i+15:__A+i])
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_cvtneoph_ps(const __m256h *__A) {
return (__m256)__builtin_ia32_vcvtneoph2ps256((const __v16hf *)__A);
}
/// Convert packed single-precision (32-bit) floating-point elements in \a __A
/// to packed BF16 (16-bit) floating-point elements, and store the results in \a
/// dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_cvtneps_avx_pbh(__m128 __A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEPS2BF16 instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float].
/// \returns
/// A 128-bit vector of [8 x bfloat].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// dst.word[j] := Convert_FP32_To_BF16(__A.fp32[j])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128bh __DEFAULT_FN_ATTRS128
_mm_cvtneps_avx_pbh(__m128 __A) {
return (__m128bh)__builtin_ia32_vcvtneps2bf16128((__v4sf)__A);
}
/// Convert packed single-precision (32-bit) floating-point elements in \a __A
/// to packed BF16 (16-bit) floating-point elements, and store the results in \a
/// dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_cvtneps_avx_pbh(__m256 __A);
/// \endcode
///
/// This intrinsic corresponds to the \c VCVTNEPS2BF16 instruction.
///
/// \param __A
/// A 256-bit vector of [8 x float].
/// \returns
/// A 128-bit vector of [8 x bfloat].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// dst.word[j] := Convert_FP32_To_BF16(a.fp32[j])
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128bh __DEFAULT_FN_ATTRS256
_mm256_cvtneps_avx_pbh(__m256 __A) {
return (__m128bh)__builtin_ia32_vcvtneps2bf16256((__v8sf)__A);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif // __AVXNECONVERTINTRIN_H
#endif // __SSE2__

View File

@ -1,473 +0,0 @@
/*===----------- avxvnniint16intrin.h - AVXVNNIINT16 intrinsics-------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <avxvnniint16intrin.h> directly; include <immintrin.h> instead."
#endif // __IMMINTRIN_H
#ifndef __AVXVNNIINT16INTRIN_H
#define __AVXVNNIINT16INTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint16"), \
__min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint16"), \
__min_vector_width__(256)))
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwsud_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUD instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwsud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwsud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwsud_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUD instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwsud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwsud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwsuds_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwsuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwsuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwsuds_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwsuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwsuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpbusd_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUSD instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwusd_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwusd128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwusd_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUSD instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwusd_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwusd256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwusds_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 128-bit vector of [4 x int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x short].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwusds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwusds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding signed 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwsuds_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 256-bit vector of [8 x int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x short].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwusds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwusds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwuud_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUUD instruction.
///
/// \param __W
/// A 128-bit vector of [4 x unsigned int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwuud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwuud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwuud_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWUUD instruction.
///
/// \param __W
/// A 256-bit vector of [8 x unsigned int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwuud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwuud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m128i _mm_dpwsuds_epi32(__m128i __W, __m128i __A, __m128i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 128-bit vector of [4 x unsigned int].
/// \param __A
/// A 128-bit vector of [8 x unsigned short].
/// \param __B
/// A 128-bit vector of [8 x unsigned short].
/// \returns
/// A 128-bit vector of [4 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpwuuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpwuuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of unsigned 16-bit integers in \a __A with
/// corresponding unsigned 16-bit integers in \a __B, producing 2 intermediate
/// signed 16-bit results. Sum these 2 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <immintrin.h>
///
/// \code
/// __m256i _mm256_dpwuuds_epi32(__m256i __W, __m256i __A, __m256i __B)
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPWSUDS instruction.
///
/// \param __W
/// A 256-bit vector of [8 x unsigned int].
/// \param __A
/// A 256-bit vector of [16 x unsigned short].
/// \param __B
/// A 256-bit vector of [16 x unsigned short].
/// \returns
/// A 256-bit vector of [8 x unsigned int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := ZeroExtend32(__A.word[2*j]) * ZeroExtend32(__B.word[2*j])
/// tmp2.dword := ZeroExtend32(__A.word[2*j+1]) * ZeroExtend32(__B.word[2*j+1])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwuuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpwuuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif // __AVXVNNIINT16INTRIN_H

View File

@ -1,471 +0,0 @@
/*===-------- avxvnniint8intrin.h - AVXVNNIINT8 intrinsics -----------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error \
"Never use <avxvnniint8intrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVXVNNIINT8INTRIN_H
#define __AVXVNNIINT8INTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint8"), \
__min_vector_width__(256)))
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("avxvnniint8"), \
__min_vector_width__(128)))
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbssd_epi32(__m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbssd_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbssd128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbssd_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbssd_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbssd256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbssds_epi32( __m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbssds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbssds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbssds_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j])
/// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1])
/// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2])
/// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3])
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbssds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbssds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbsud_epi32(__m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbsud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbsud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbsud_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbsud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbsud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbsuds_epi32( __m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbsuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbsuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbsuds_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]))
/// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbsuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbsuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbuud_epi32(__m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 128-bit vector of [16 x unsigned char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbuud_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbuud128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbuud_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBSSD instruction.
///
/// \param __A
/// A 256-bit vector of [32 x unsigned char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbuud_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbuud256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm_dpbuuds_epi32( __m128i __W, __m128i __A, __m128i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBUUDS instruction.
///
/// \param __A
/// A 128-bit vector of [16 x unsigned char].
/// \param __B
/// A 128-bit vector of [16 x unsigned char].
/// \returns
/// A 128-bit vector of [4 x int].
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbuuds_epi32(__m128i __W,
__m128i __A,
__m128i __B) {
return (__m128i)__builtin_ia32_vpdpbuuds128((__v4si)__W, (__v4si)__A,
(__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with
/// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate
/// signed 16-bit results. Sum these 4 results with the corresponding
/// 32-bit integer in \a __W with signed saturation, and store the packed
/// 32-bit results in \a dst.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// _mm256_dpbuuds_epi32(__m256i __W, __m256i __A, __m256i __B);
/// \endcode
///
/// This intrinsic corresponds to the \c VPDPBUUDS instruction.
///
/// \param __A
/// A 256-bit vector of [32 x unsigned char].
/// \param __B
/// A 256-bit vector of [32 x unsigned char].
/// \returns
/// A 256-bit vector of [8 x int].
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])
/// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])
/// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])
/// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])
/// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// dst[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbuuds_epi32(__m256i __W, __m256i __A, __m256i __B) {
return (__m256i)__builtin_ia32_vpdpbuuds256((__v8si)__W, (__v8si)__A,
(__v8si)__B);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif // __AVXVNNIINT8INTRIN_H

View File

@ -1,225 +0,0 @@
/*===--------------- avxvnniintrin.h - VNNI intrinsics --------------------===
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <avxvnniintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __AVXVNNIINTRIN_H
#define __AVXVNNIINTRIN_H
/* Below intrinsics defined in avx512vlvnniintrin.h can be used for AVXVNNI */
/// \fn __m256i _mm256_dpbusd_epi32(__m256i __S, __m256i __A, __m256i __B)
/// \fn __m256i _mm256_dpbusds_epi32(__m256i __S, __m256i __A, __m256i __B)
/// \fn __m256i _mm256_dpwssd_epi32(__m256i __S, __m256i __A, __m256i __B)
/// \fn __m256i _mm256_dpwssds_epi32(__m256i __S, __m256i __A, __m256i __B)
/// \fn __m128i _mm_dpbusd_epi32(__m128i __S, __m128i __A, __m128i __B)
/// \fn __m128i _mm_dpbusds_epi32(__m128i __S, __m128i __A, __m128i __B)
/// \fn __m128i _mm_dpwssd_epi32(__m128i __S, __m128i __A, __m128i __B)
/// \fn __m128i _mm_dpwssds_epi32(__m128i __S, __m128i __A, __m128i __B)
/* Intrinsics with _avx_ prefix are for compatibility with msvc. */
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("avxvnni"), __min_vector_width__(256)))
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avxvnni"), __min_vector_width__(128)))
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a __S, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(ZeroExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]))
/// DST.dword[j] := __S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbusd_avx_epi32(__m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_vpdpbusd256((__v8si)__S, (__v8si)__A, (__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a __S using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.word := Signed(ZeroExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]))
/// DST.dword[j] := Saturate32(__S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpbusds_avx_epi32(__m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_vpdpbusds256((__v8si)__S, (__v8si)__A, (__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding 16-bit integers in \a __B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a __S,
/// and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// DST.dword[j] := __S.dword[j] + tmp1 + tmp2
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwssd_avx_epi32(__m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_vpdpwssd256((__v8si)__S, (__v8si)__A, (__v8si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding 16-bit integers in \a __B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a __S
/// using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 7
/// tmp1.dword := SignExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// DST.dword[j] := Saturate32(__S.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// DST[MAX:256] := 0
/// \endcode
static __inline__ __m256i __DEFAULT_FN_ATTRS256
_mm256_dpwssds_avx_epi32(__m256i __S, __m256i __A, __m256i __B)
{
return (__m256i)__builtin_ia32_vpdpwssds256((__v8si)__S, (__v8si)__A, (__v8si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a __S, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(ZeroExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]))
/// DST.dword[j] := __S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_dpbusd_avx_epi32(__m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_vpdpbusd128((__v4si)__S, (__v4si)__A, (__v4si)__B);
}
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with
/// corresponding signed 8-bit integers in \a __B, producing 4 intermediate signed
/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in \a __S using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.word := Signed(ZeroExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]))
/// tmp2.word := Signed(ZeroExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]))
/// tmp3.word := Signed(ZeroExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]))
/// tmp4.word := Signed(ZeroExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]))
/// DST.dword[j] := Saturate32(__S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_dpbusds_avx_epi32(__m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_vpdpbusds128((__v4si)__S, (__v4si)__A, (__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding 16-bit integers in \a __B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a __S,
/// and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// DST.dword[j] := __S.dword[j] + tmp1 + tmp2
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_dpwssd_avx_epi32(__m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_vpdpwssd128((__v4si)__S, (__v4si)__A, (__v4si)__B);
}
/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a __A with
/// corresponding 16-bit integers in \a __B, producing 2 intermediate signed 32-bit
/// results. Sum these 2 results with the corresponding 32-bit integer in \a __S
/// using signed saturation, and store the packed 32-bit results in DST.
///
/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
///
/// \code{.operation}
/// FOR j := 0 to 3
/// tmp1.dword := SignExtend32(__A.word[2*j]) * SignExtend32(__B.word[2*j])
/// tmp2.dword := SignExtend32(__A.word[2*j+1]) * SignExtend32(__B.word[2*j+1])
/// DST.dword[j] := Saturate32(__S.dword[j] + tmp1 + tmp2)
/// ENDFOR
/// DST[MAX:128] := 0
/// \endcode
static __inline__ __m128i __DEFAULT_FN_ATTRS128
_mm_dpwssds_avx_epi32(__m128i __S, __m128i __A, __m128i __B)
{
return (__m128i)__builtin_ia32_vpdpwssds128((__v4si)__S, (__v4si)__A, (__v4si)__B);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif // __AVXVNNIINTRIN_H

View File

@ -1,255 +0,0 @@
/*===---- bmi2intrin.h - BMI2 intrinsics -----------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <bmi2intrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __BMI2INTRIN_H
#define __BMI2INTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("bmi2")))
/// Copies the unsigned 32-bit integer \a __X and zeroes the upper bits
/// starting at bit number \a __Y.
///
/// \code{.operation}
/// i := __Y[7:0]
/// result := __X
/// IF i < 32
/// result[31:i] := 0
/// FI
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c BZHI instruction.
///
/// \param __X
/// The 32-bit source value to copy.
/// \param __Y
/// The lower 8 bits specify the bit number of the lowest bit to zero.
/// \returns The partially zeroed 32-bit value.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_bzhi_u32(unsigned int __X, unsigned int __Y)
{
return __builtin_ia32_bzhi_si(__X, __Y);
}
/// Deposit (scatter) low-order bits from the unsigned 32-bit integer \a __X
/// into the 32-bit result, according to the mask in the unsigned 32-bit
/// integer \a __Y. All other bits of the result are zero.
///
/// \code{.operation}
/// i := 0
/// result := 0
/// FOR m := 0 TO 31
/// IF __Y[m] == 1
/// result[m] := __X[i]
/// i := i + 1
/// ENDIF
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c PDEP instruction.
///
/// \param __X
/// The 32-bit source value to copy.
/// \param __Y
/// The 32-bit mask specifying where to deposit source bits.
/// \returns The 32-bit result.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_pdep_u32(unsigned int __X, unsigned int __Y)
{
return __builtin_ia32_pdep_si(__X, __Y);
}
/// Extract (gather) bits from the unsigned 32-bit integer \a __X into the
/// low-order bits of the 32-bit result, according to the mask in the
/// unsigned 32-bit integer \a __Y. All other bits of the result are zero.
///
/// \code{.operation}
/// i := 0
/// result := 0
/// FOR m := 0 TO 31
/// IF __Y[m] == 1
/// result[i] := __X[m]
/// i := i + 1
/// ENDIF
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c PEXT instruction.
///
/// \param __X
/// The 32-bit source value to copy.
/// \param __Y
/// The 32-bit mask specifying which source bits to extract.
/// \returns The 32-bit result.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_pext_u32(unsigned int __X, unsigned int __Y)
{
return __builtin_ia32_pext_si(__X, __Y);
}
/// Multiplies the unsigned 32-bit integers \a __X and \a __Y to form a
/// 64-bit product. Stores the upper 32 bits of the product in the
/// memory at \a __P and returns the lower 32 bits.
///
/// \code{.operation}
/// Store32(__P, (__X * __Y)[63:32])
/// result := (__X * __Y)[31:0]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c MULX instruction.
///
/// \param __X
/// An unsigned 32-bit multiplicand.
/// \param __Y
/// An unsigned 32-bit multiplicand.
/// \param __P
/// A pointer to memory for storing the upper half of the product.
/// \returns The lower half of the product.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_mulx_u32(unsigned int __X, unsigned int __Y, unsigned int *__P)
{
unsigned long long __res = (unsigned long long) __X * __Y;
*__P = (unsigned int)(__res >> 32);
return (unsigned int)__res;
}
#ifdef __x86_64__
/// Copies the unsigned 64-bit integer \a __X and zeroes the upper bits
/// starting at bit number \a __Y.
///
/// \code{.operation}
/// i := __Y[7:0]
/// result := __X
/// IF i < 64
/// result[63:i] := 0
/// FI
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c BZHI instruction.
///
/// \param __X
/// The 64-bit source value to copy.
/// \param __Y
/// The lower 8 bits specify the bit number of the lowest bit to zero.
/// \returns The partially zeroed 64-bit value.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_bzhi_u64(unsigned long long __X, unsigned long long __Y)
{
return __builtin_ia32_bzhi_di(__X, __Y);
}
/// Deposit (scatter) low-order bits from the unsigned 64-bit integer \a __X
/// into the 64-bit result, according to the mask in the unsigned 64-bit
/// integer \a __Y. All other bits of the result are zero.
///
/// \code{.operation}
/// i := 0
/// result := 0
/// FOR m := 0 TO 63
/// IF __Y[m] == 1
/// result[m] := __X[i]
/// i := i + 1
/// ENDIF
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c PDEP instruction.
///
/// \param __X
/// The 64-bit source value to copy.
/// \param __Y
/// The 64-bit mask specifying where to deposit source bits.
/// \returns The 64-bit result.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_pdep_u64(unsigned long long __X, unsigned long long __Y)
{
return __builtin_ia32_pdep_di(__X, __Y);
}
/// Extract (gather) bits from the unsigned 64-bit integer \a __X into the
/// low-order bits of the 64-bit result, according to the mask in the
/// unsigned 64-bit integer \a __Y. All other bits of the result are zero.
///
/// \code{.operation}
/// i := 0
/// result := 0
/// FOR m := 0 TO 63
/// IF __Y[m] == 1
/// result[i] := __X[m]
/// i := i + 1
/// ENDIF
/// ENDFOR
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c PEXT instruction.
///
/// \param __X
/// The 64-bit source value to copy.
/// \param __Y
/// The 64-bit mask specifying which source bits to extract.
/// \returns The 64-bit result.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_pext_u64(unsigned long long __X, unsigned long long __Y)
{
return __builtin_ia32_pext_di(__X, __Y);
}
/// Multiplies the unsigned 64-bit integers \a __X and \a __Y to form a
/// 128-bit product. Stores the upper 64 bits of the product to the
/// memory addressed by \a __P and returns the lower 64 bits.
///
/// \code{.operation}
/// Store64(__P, (__X * __Y)[127:64])
/// result := (__X * __Y)[63:0]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c MULX instruction.
///
/// \param __X
/// An unsigned 64-bit multiplicand.
/// \param __Y
/// An unsigned 64-bit multiplicand.
/// \param __P
/// A pointer to memory for storing the upper half of the product.
/// \returns The lower half of the product.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_mulx_u64 (unsigned long long __X, unsigned long long __Y,
unsigned long long *__P)
{
unsigned __int128 __res = (unsigned __int128) __X * __Y;
*__P = (unsigned long long) (__res >> 64);
return (unsigned long long) __res;
}
#endif /* __x86_64__ */
#undef __DEFAULT_FN_ATTRS
#endif /* __BMI2INTRIN_H */

View File

@ -1,431 +0,0 @@
/*===---- bmiintrin.h - BMI intrinsics -------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#if !defined __X86INTRIN_H && !defined __IMMINTRIN_H
#error "Never use <bmiintrin.h> directly; include <x86intrin.h> instead."
#endif
#ifndef __BMIINTRIN_H
#define __BMIINTRIN_H
/* Allow using the tzcnt intrinsics even for non-BMI targets. Since the TZCNT
instruction behaves as BSF on non-BMI targets, there is code that expects
to use it as a potentially faster version of BSF. */
#define __RELAXED_FN_ATTRS __attribute__((__always_inline__, __nodebug__))
#define _tzcnt_u16(a) (__tzcnt_u16((a)))
/// Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> TZCNT </c> instruction.
///
/// \param __X
/// An unsigned 16-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 16-bit integer containing the number of trailing zero
/// bits in the operand.
static __inline__ unsigned short __RELAXED_FN_ATTRS
__tzcnt_u16(unsigned short __X)
{
return __builtin_ia32_tzcnt_u16(__X);
}
/// Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> TZCNT </c> instruction.
///
/// \param __X
/// An unsigned 32-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 32-bit integer containing the number of trailing zero
/// bits in the operand.
/// \see _mm_tzcnt_32
static __inline__ unsigned int __RELAXED_FN_ATTRS
__tzcnt_u32(unsigned int __X)
{
return __builtin_ia32_tzcnt_u32(__X);
}
/// Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> TZCNT </c> instruction.
///
/// \param __X
/// An unsigned 32-bit integer whose trailing zeros are to be counted.
/// \returns An 32-bit integer containing the number of trailing zero bits in
/// the operand.
/// \see __tzcnt_u32
static __inline__ int __RELAXED_FN_ATTRS
_mm_tzcnt_32(unsigned int __X)
{
return (int)__builtin_ia32_tzcnt_u32(__X);
}
#define _tzcnt_u32(a) (__tzcnt_u32((a)))
#ifdef __x86_64__
/// Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> TZCNT </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer whose trailing zeros are to be counted.
/// \returns An unsigned 64-bit integer containing the number of trailing zero
/// bits in the operand.
/// \see _mm_tzcnt_64
static __inline__ unsigned long long __RELAXED_FN_ATTRS
__tzcnt_u64(unsigned long long __X)
{
return __builtin_ia32_tzcnt_u64(__X);
}
/// Counts the number of trailing zero bits in the operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> TZCNT </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer whose trailing zeros are to be counted.
/// \returns An 64-bit integer containing the number of trailing zero bits in
/// the operand.
/// \see __tzcnt_u64
static __inline__ long long __RELAXED_FN_ATTRS
_mm_tzcnt_64(unsigned long long __X)
{
return (long long)__builtin_ia32_tzcnt_u64(__X);
}
#define _tzcnt_u64(a) (__tzcnt_u64((a)))
#endif /* __x86_64__ */
#undef __RELAXED_FN_ATTRS
#if !(defined(_MSC_VER) || defined(__SCE__)) || __has_feature(modules) || \
defined(__BMI__)
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("bmi")))
#define _andn_u32(a, b) (__andn_u32((a), (b)))
/* _bextr_u32 != __bextr_u32 */
#define _blsi_u32(a) (__blsi_u32((a)))
#define _blsmsk_u32(a) (__blsmsk_u32((a)))
#define _blsr_u32(a) (__blsr_u32((a)))
/// Performs a bitwise AND of the second operand with the one's
/// complement of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> ANDN </c> instruction.
///
/// \param __X
/// An unsigned integer containing one of the operands.
/// \param __Y
/// An unsigned integer containing one of the operands.
/// \returns An unsigned integer containing the bitwise AND of the second
/// operand with the one's complement of the first operand.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__andn_u32(unsigned int __X, unsigned int __Y)
{
return ~__X & __Y;
}
/* AMD-specified, double-leading-underscore version of BEXTR */
/// Extracts the specified bits from the first operand and returns them
/// in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BEXTR </c> instruction.
///
/// \param __X
/// An unsigned integer whose bits are to be extracted.
/// \param __Y
/// An unsigned integer used to specify which bits are extracted. Bits [7:0]
/// specify the index of the least significant bit. Bits [15:8] specify the
/// number of bits to be extracted.
/// \returns An unsigned integer whose least significant bits contain the
/// extracted bits.
/// \see _bextr_u32
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__bextr_u32(unsigned int __X, unsigned int __Y)
{
return __builtin_ia32_bextr_u32(__X, __Y);
}
/* Intel-specified, single-leading-underscore version of BEXTR */
/// Extracts the specified bits from the first operand and returns them
/// in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BEXTR </c> instruction.
///
/// \param __X
/// An unsigned integer whose bits are to be extracted.
/// \param __Y
/// An unsigned integer used to specify the index of the least significant
/// bit for the bits to be extracted. Bits [7:0] specify the index.
/// \param __Z
/// An unsigned integer used to specify the number of bits to be extracted.
/// Bits [7:0] specify the number of bits.
/// \returns An unsigned integer whose least significant bits contain the
/// extracted bits.
/// \see __bextr_u32
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_bextr_u32(unsigned int __X, unsigned int __Y, unsigned int __Z)
{
return __builtin_ia32_bextr_u32 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8)));
}
/* Intel-specified, single-leading-underscore version of BEXTR2 */
/// Extracts the specified bits from the first operand and returns them
/// in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BEXTR </c> instruction.
///
/// \param __X
/// An unsigned integer whose bits are to be extracted.
/// \param __Y
/// An unsigned integer used to specify which bits are extracted. Bits [7:0]
/// specify the index of the least significant bit. Bits [15:8] specify the
/// number of bits to be extracted.
/// \returns An unsigned integer whose least significant bits contain the
/// extracted bits.
/// \see __bextr_u32
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_bextr2_u32(unsigned int __X, unsigned int __Y) {
return __builtin_ia32_bextr_u32(__X, __Y);
}
/// Clears all bits in the source except for the least significant bit
/// containing a value of 1 and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BLSI </c> instruction.
///
/// \param __X
/// An unsigned integer whose bits are to be cleared.
/// \returns An unsigned integer containing the result of clearing the bits from
/// the source operand.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__blsi_u32(unsigned int __X)
{
return __X & -__X;
}
/// Creates a mask whose bits are set to 1, using bit 0 up to and
/// including the least significant bit that is set to 1 in the source
/// operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BLSMSK </c> instruction.
///
/// \param __X
/// An unsigned integer used to create the mask.
/// \returns An unsigned integer containing the newly created mask.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__blsmsk_u32(unsigned int __X)
{
return __X ^ (__X - 1);
}
/// Clears the least significant bit that is set to 1 in the source
/// operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BLSR </c> instruction.
///
/// \param __X
/// An unsigned integer containing the operand to be cleared.
/// \returns An unsigned integer containing the result of clearing the source
/// operand.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
__blsr_u32(unsigned int __X)
{
return __X & (__X - 1);
}
#ifdef __x86_64__
#define _andn_u64(a, b) (__andn_u64((a), (b)))
/* _bextr_u64 != __bextr_u64 */
#define _blsi_u64(a) (__blsi_u64((a)))
#define _blsmsk_u64(a) (__blsmsk_u64((a)))
#define _blsr_u64(a) (__blsr_u64((a)))
/// Performs a bitwise AND of the second operand with the one's
/// complement of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> ANDN </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer containing one of the operands.
/// \param __Y
/// An unsigned 64-bit integer containing one of the operands.
/// \returns An unsigned 64-bit integer containing the bitwise AND of the second
/// operand with the one's complement of the first operand.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__andn_u64 (unsigned long long __X, unsigned long long __Y)
{
return ~__X & __Y;
}
/* AMD-specified, double-leading-underscore version of BEXTR */
/// Extracts the specified bits from the first operand and returns them
/// in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BEXTR </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer whose bits are to be extracted.
/// \param __Y
/// An unsigned 64-bit integer used to specify which bits are extracted. Bits
/// [7:0] specify the index of the least significant bit. Bits [15:8] specify
/// the number of bits to be extracted.
/// \returns An unsigned 64-bit integer whose least significant bits contain the
/// extracted bits.
/// \see _bextr_u64
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__bextr_u64(unsigned long long __X, unsigned long long __Y)
{
return __builtin_ia32_bextr_u64(__X, __Y);
}
/* Intel-specified, single-leading-underscore version of BEXTR */
/// Extracts the specified bits from the first operand and returns them
/// in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BEXTR </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer whose bits are to be extracted.
/// \param __Y
/// An unsigned integer used to specify the index of the least significant
/// bit for the bits to be extracted. Bits [7:0] specify the index.
/// \param __Z
/// An unsigned integer used to specify the number of bits to be extracted.
/// Bits [7:0] specify the number of bits.
/// \returns An unsigned 64-bit integer whose least significant bits contain the
/// extracted bits.
/// \see __bextr_u64
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_bextr_u64(unsigned long long __X, unsigned int __Y, unsigned int __Z)
{
return __builtin_ia32_bextr_u64 (__X, ((__Y & 0xff) | ((__Z & 0xff) << 8)));
}
/* Intel-specified, single-leading-underscore version of BEXTR2 */
/// Extracts the specified bits from the first operand and returns them
/// in the least significant bits of the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BEXTR </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer whose bits are to be extracted.
/// \param __Y
/// An unsigned 64-bit integer used to specify which bits are extracted. Bits
/// [7:0] specify the index of the least significant bit. Bits [15:8] specify
/// the number of bits to be extracted.
/// \returns An unsigned 64-bit integer whose least significant bits contain the
/// extracted bits.
/// \see __bextr_u64
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_bextr2_u64(unsigned long long __X, unsigned long long __Y) {
return __builtin_ia32_bextr_u64(__X, __Y);
}
/// Clears all bits in the source except for the least significant bit
/// containing a value of 1 and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BLSI </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer whose bits are to be cleared.
/// \returns An unsigned 64-bit integer containing the result of clearing the
/// bits from the source operand.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__blsi_u64(unsigned long long __X)
{
return __X & -__X;
}
/// Creates a mask whose bits are set to 1, using bit 0 up to and
/// including the least significant bit that is set to 1 in the source
/// operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BLSMSK </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer used to create the mask.
/// \returns An unsigned 64-bit integer containing the newly created mask.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__blsmsk_u64(unsigned long long __X)
{
return __X ^ (__X - 1);
}
/// Clears the least significant bit that is set to 1 in the source
/// operand and returns the result.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> BLSR </c> instruction.
///
/// \param __X
/// An unsigned 64-bit integer containing the operand to be cleared.
/// \returns An unsigned 64-bit integer containing the result of clearing the
/// source operand.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
__blsr_u64(unsigned long long __X)
{
return __X & (__X - 1);
}
#endif /* __x86_64__ */
#undef __DEFAULT_FN_ATTRS
#endif /* !(defined(_MSC_VER) || defined(__SCE__)) || __has_feature(modules) \
|| defined(__BMI__) */
#endif /* __BMIINTRIN_H */

View File

@ -1,16 +0,0 @@
/*===---- builtins.h - Standard header for extra builtins -----------------===*\
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
\*===----------------------------------------------------------------------===*/
/// Some legacy compilers have builtin definitions in a file named builtins.h.
/// This header file has been added to allow compatibility with code that was
/// written for those compilers. Code may have an include line for this file
/// and to avoid an error an empty file with this name is provided.
#ifndef __BUILTINS_H
#define __BUILTINS_H
#endif /* __BUILTINS_H */

View File

@ -1,66 +0,0 @@
/*===------ cet.h -Control-flow Enforcement Technology feature ------------===
* Add x86 feature with IBT and/or SHSTK bits to ELF program property if they
* are enabled. Otherwise, contents in this header file are unused. This file
* is mainly design for assembly source code which want to enable CET.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CET_H
#define __CET_H
#ifdef __ASSEMBLER__
#ifndef __CET__
# define _CET_ENDBR
#endif
#ifdef __CET__
# ifdef __LP64__
# if __CET__ & 0x1
# define _CET_ENDBR endbr64
# else
# define _CET_ENDBR
# endif
# else
# if __CET__ & 0x1
# define _CET_ENDBR endbr32
# else
# define _CET_ENDBR
# endif
# endif
# ifdef __LP64__
# define __PROPERTY_ALIGN 3
# else
# define __PROPERTY_ALIGN 2
# endif
.pushsection ".note.gnu.property", "a"
.p2align __PROPERTY_ALIGN
.long 1f - 0f /* name length. */
.long 4f - 1f /* data length. */
/* NT_GNU_PROPERTY_TYPE_0. */
.long 5 /* note type. */
0:
.asciz "GNU" /* vendor name. */
1:
.p2align __PROPERTY_ALIGN
/* GNU_PROPERTY_X86_FEATURE_1_AND. */
.long 0xc0000002 /* pr_type. */
.long 3f - 2f /* pr_datasz. */
2:
/* GNU_PROPERTY_X86_FEATURE_1_XXX. */
.long __CET__
3:
.p2align __PROPERTY_ALIGN
4:
.popsection
#endif
#endif
#endif

View File

@ -1,115 +0,0 @@
/*===---- cetintrin.h - CET intrinsic --------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <cetintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __CETINTRIN_H
#define __CETINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("shstk")))
static __inline__ void __DEFAULT_FN_ATTRS _incsspd(int __a) {
__builtin_ia32_incsspd((unsigned int)__a);
}
#ifdef __x86_64__
static __inline__ void __DEFAULT_FN_ATTRS _incsspq(unsigned long long __a) {
__builtin_ia32_incsspq(__a);
}
#endif /* __x86_64__ */
#ifdef __x86_64__
static __inline__ void __DEFAULT_FN_ATTRS _inc_ssp(unsigned int __a) {
__builtin_ia32_incsspq(__a);
}
#else /* __x86_64__ */
static __inline__ void __DEFAULT_FN_ATTRS _inc_ssp(unsigned int __a) {
__builtin_ia32_incsspd(__a);
}
#endif /* __x86_64__ */
static __inline__ unsigned int __DEFAULT_FN_ATTRS _rdsspd(unsigned int __a) {
return __builtin_ia32_rdsspd(__a);
}
static __inline__ unsigned int __DEFAULT_FN_ATTRS _rdsspd_i32(void) {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
unsigned int t;
return __builtin_ia32_rdsspd(t);
#pragma clang diagnostic pop
}
#ifdef __x86_64__
static __inline__ unsigned long long __DEFAULT_FN_ATTRS _rdsspq(unsigned long long __a) {
return __builtin_ia32_rdsspq(__a);
}
static __inline__ unsigned long long __DEFAULT_FN_ATTRS _rdsspq_i64(void) {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
unsigned long long t;
return __builtin_ia32_rdsspq(t);
#pragma clang diagnostic pop
}
#endif /* __x86_64__ */
#ifdef __x86_64__
static __inline__ unsigned long long __DEFAULT_FN_ATTRS _get_ssp(void) {
return __builtin_ia32_rdsspq(0);
}
#else /* __x86_64__ */
static __inline__ unsigned int __DEFAULT_FN_ATTRS _get_ssp(void) {
return __builtin_ia32_rdsspd(0);
}
#endif /* __x86_64__ */
static __inline__ void __DEFAULT_FN_ATTRS _saveprevssp(void) {
__builtin_ia32_saveprevssp();
}
static __inline__ void __DEFAULT_FN_ATTRS _rstorssp(void * __p) {
__builtin_ia32_rstorssp(__p);
}
static __inline__ void __DEFAULT_FN_ATTRS _wrssd(unsigned int __a, void * __p) {
__builtin_ia32_wrssd(__a, __p);
}
#ifdef __x86_64__
static __inline__ void __DEFAULT_FN_ATTRS _wrssq(unsigned long long __a, void * __p) {
__builtin_ia32_wrssq(__a, __p);
}
#endif /* __x86_64__ */
static __inline__ void __DEFAULT_FN_ATTRS _wrussd(unsigned int __a, void * __p) {
__builtin_ia32_wrussd(__a, __p);
}
#ifdef __x86_64__
static __inline__ void __DEFAULT_FN_ATTRS _wrussq(unsigned long long __a, void * __p) {
__builtin_ia32_wrussq(__a, __p);
}
#endif /* __x86_64__ */
static __inline__ void __DEFAULT_FN_ATTRS _setssbsy(void) {
__builtin_ia32_setssbsy();
}
static __inline__ void __DEFAULT_FN_ATTRS _clrssbsy(void * __p) {
__builtin_ia32_clrssbsy(__p);
}
#undef __DEFAULT_FN_ATTRS
#endif /* __CETINTRIN_H */

View File

@ -1,36 +0,0 @@
/*===---- cldemoteintrin.h - CLDEMOTE intrinsic ----------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#if !defined __X86INTRIN_H && !defined __IMMINTRIN_H
#error "Never use <cldemoteintrin.h> directly; include <x86intrin.h> instead."
#endif
#ifndef __CLDEMOTEINTRIN_H
#define __CLDEMOTEINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("cldemote")))
/// Hint to hardware that the cache line that contains \p __P should be demoted
/// from the cache closest to the processor core to a level more distant from
/// the processor core.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CLDEMOTE </c> instruction.
static __inline__ void __DEFAULT_FN_ATTRS
_cldemote(const void * __P) {
__builtin_ia32_cldemote(__P);
}
#define _mm_cldemote(p) _cldemote(p)
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,36 +0,0 @@
/*===---- clflushoptintrin.h - CLFLUSHOPT intrinsic ------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <clflushoptintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __CLFLUSHOPTINTRIN_H
#define __CLFLUSHOPTINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("clflushopt")))
/// Invalidates all levels of the cache hierarchy and flushes modified data to
/// memory for the cache line specified by the address \a __m.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c CLFLUSHOPT instruction.
///
/// \param __m
/// An address within the cache line to flush and invalidate.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_clflushopt(void const * __m) {
__builtin_ia32_clflushopt(__m);
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,38 +0,0 @@
/*===---- clwbintrin.h - CLWB intrinsic ------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <clwbintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __CLWBINTRIN_H
#define __CLWBINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("clwb")))
/// Writes back to memory the cache line (if modified) that contains the
/// linear address specified in \a __p from any level of the cache hierarchy in
/// the cache coherence domain
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> CLWB </c> instruction.
///
/// \param __p
/// A pointer to the memory location used to identify the cache line to be
/// written back.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_clwb(void const *__p) {
__builtin_ia32_clwb(__p);
}
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,38 +0,0 @@
/*===----------------------- clzerointrin.h - CLZERO ----------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __X86INTRIN_H
#error "Never use <clzerointrin.h> directly; include <x86intrin.h> instead."
#endif
#ifndef __CLZEROINTRIN_H
#define __CLZEROINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("clzero")))
/// Zeroes out the cache line for the address \a __line. This uses a
/// non-temporal store. Calling \c _mm_sfence() afterward might be needed
/// to enforce ordering.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the \c CLZERO instruction.
///
/// \param __line
/// An address within the cache line to zero out.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_clzero (void * __line)
{
__builtin_ia32_clzero ((void *)__line);
}
#undef __DEFAULT_FN_ATTRS
#endif /* __CLZEROINTRIN_H */

View File

@ -1,70 +0,0 @@
/*===--------------- cmpccxaddintrin.h - CMPCCXADD intrinsics--------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __X86GPRINTRIN_H
#error \
"Never use <cmpccxaddintrin.h> directly; include <x86gprintrin.h> instead."
#endif // __X86GPRINTRIN_H
#ifndef __CMPCCXADDINTRIN_H
#define __CMPCCXADDINTRIN_H
#ifdef __x86_64__
typedef enum {
_CMPCCX_O, /* Overflow. */
_CMPCCX_NO, /* No overflow. */
_CMPCCX_B, /* Below. */
_CMPCCX_NB, /* Not below. */
_CMPCCX_Z, /* Zero. */
_CMPCCX_NZ, /* Not zero. */
_CMPCCX_BE, /* Below or equal. */
_CMPCCX_NBE, /* Neither below nor equal. */
_CMPCCX_S, /* Sign. */
_CMPCCX_NS, /* No sign. */
_CMPCCX_P, /* Parity. */
_CMPCCX_NP, /* No parity. */
_CMPCCX_L, /* Less. */
_CMPCCX_NL, /* Not less. */
_CMPCCX_LE, /* Less or equal. */
_CMPCCX_NLE, /* Neither less nor equal. */
} _CMPCCX_ENUM;
/// Compares the value from the memory __A with the value of __B. If the
/// specified condition __D is met, then add the third operand __C to the
/// __A and write it into __A, else the value of __A is unchanged. The return
/// value is the original value of __A.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c CMPCCXADD instructions.
///
/// \param __A
/// __A pointer specifying the memory address.
///
/// \param __B
/// A integer operand.
///
/// \param __C
/// A integer operand.
///
/// \param __D
/// The specified condition.
///
/// \returns a integer which is the original value of first operand.
#define _cmpccxadd_epi32(__A, __B, __C, __D) \
((int)(__builtin_ia32_cmpccxadd32((void *)(__A), (int)(__B), (int)(__C), \
(int)(__D))))
#define _cmpccxadd_epi64(__A, __B, __C, __D) \
((long long)(__builtin_ia32_cmpccxadd64((void *)(__A), (long long)(__B), \
(long long)(__C), (int)(__D))))
#endif // __x86_64__
#endif // __CMPCCXADDINTRIN_H

View File

@ -1,331 +0,0 @@
/*===---- cpuid.h - X86 cpu model detection --------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CPUID_H
#define __CPUID_H
#if !(__x86_64__ || __i386__)
#error this header is for x86 only
#endif
/* Responses identification request with %eax 0 */
/* AMD: "AuthenticAMD" */
#define signature_AMD_ebx 0x68747541
#define signature_AMD_edx 0x69746e65
#define signature_AMD_ecx 0x444d4163
/* CENTAUR: "CentaurHauls" */
#define signature_CENTAUR_ebx 0x746e6543
#define signature_CENTAUR_edx 0x48727561
#define signature_CENTAUR_ecx 0x736c7561
/* CYRIX: "CyrixInstead" */
#define signature_CYRIX_ebx 0x69727943
#define signature_CYRIX_edx 0x736e4978
#define signature_CYRIX_ecx 0x64616574
/* HYGON: "HygonGenuine" */
#define signature_HYGON_ebx 0x6f677948
#define signature_HYGON_edx 0x6e65476e
#define signature_HYGON_ecx 0x656e6975
/* INTEL: "GenuineIntel" */
#define signature_INTEL_ebx 0x756e6547
#define signature_INTEL_edx 0x49656e69
#define signature_INTEL_ecx 0x6c65746e
/* TM1: "TransmetaCPU" */
#define signature_TM1_ebx 0x6e617254
#define signature_TM1_edx 0x74656d73
#define signature_TM1_ecx 0x55504361
/* TM2: "GenuineTMx86" */
#define signature_TM2_ebx 0x756e6547
#define signature_TM2_edx 0x54656e69
#define signature_TM2_ecx 0x3638784d
/* NSC: "Geode by NSC" */
#define signature_NSC_ebx 0x646f6547
#define signature_NSC_edx 0x79622065
#define signature_NSC_ecx 0x43534e20
/* NEXGEN: "NexGenDriven" */
#define signature_NEXGEN_ebx 0x4778654e
#define signature_NEXGEN_edx 0x72446e65
#define signature_NEXGEN_ecx 0x6e657669
/* RISE: "RiseRiseRise" */
#define signature_RISE_ebx 0x65736952
#define signature_RISE_edx 0x65736952
#define signature_RISE_ecx 0x65736952
/* SIS: "SiS SiS SiS " */
#define signature_SIS_ebx 0x20536953
#define signature_SIS_edx 0x20536953
#define signature_SIS_ecx 0x20536953
/* UMC: "UMC UMC UMC " */
#define signature_UMC_ebx 0x20434d55
#define signature_UMC_edx 0x20434d55
#define signature_UMC_ecx 0x20434d55
/* VIA: "VIA VIA VIA " */
#define signature_VIA_ebx 0x20414956
#define signature_VIA_edx 0x20414956
#define signature_VIA_ecx 0x20414956
/* VORTEX: "Vortex86 SoC" */
#define signature_VORTEX_ebx 0x74726f56
#define signature_VORTEX_edx 0x36387865
#define signature_VORTEX_ecx 0x436f5320
/* Features in %ecx for leaf 1 */
#define bit_SSE3 0x00000001
#define bit_PCLMULQDQ 0x00000002
#define bit_PCLMUL bit_PCLMULQDQ /* for gcc compat */
#define bit_DTES64 0x00000004
#define bit_MONITOR 0x00000008
#define bit_DSCPL 0x00000010
#define bit_VMX 0x00000020
#define bit_SMX 0x00000040
#define bit_EIST 0x00000080
#define bit_TM2 0x00000100
#define bit_SSSE3 0x00000200
#define bit_CNXTID 0x00000400
#define bit_FMA 0x00001000
#define bit_CMPXCHG16B 0x00002000
#define bit_xTPR 0x00004000
#define bit_PDCM 0x00008000
#define bit_PCID 0x00020000
#define bit_DCA 0x00040000
#define bit_SSE41 0x00080000
#define bit_SSE4_1 bit_SSE41 /* for gcc compat */
#define bit_SSE42 0x00100000
#define bit_SSE4_2 bit_SSE42 /* for gcc compat */
#define bit_x2APIC 0x00200000
#define bit_MOVBE 0x00400000
#define bit_POPCNT 0x00800000
#define bit_TSCDeadline 0x01000000
#define bit_AESNI 0x02000000
#define bit_AES bit_AESNI /* for gcc compat */
#define bit_XSAVE 0x04000000
#define bit_OSXSAVE 0x08000000
#define bit_AVX 0x10000000
#define bit_F16C 0x20000000
#define bit_RDRND 0x40000000
/* Features in %edx for leaf 1 */
#define bit_FPU 0x00000001
#define bit_VME 0x00000002
#define bit_DE 0x00000004
#define bit_PSE 0x00000008
#define bit_TSC 0x00000010
#define bit_MSR 0x00000020
#define bit_PAE 0x00000040
#define bit_MCE 0x00000080
#define bit_CX8 0x00000100
#define bit_CMPXCHG8B bit_CX8 /* for gcc compat */
#define bit_APIC 0x00000200
#define bit_SEP 0x00000800
#define bit_MTRR 0x00001000
#define bit_PGE 0x00002000
#define bit_MCA 0x00004000
#define bit_CMOV 0x00008000
#define bit_PAT 0x00010000
#define bit_PSE36 0x00020000
#define bit_PSN 0x00040000
#define bit_CLFSH 0x00080000
#define bit_DS 0x00200000
#define bit_ACPI 0x00400000
#define bit_MMX 0x00800000
#define bit_FXSR 0x01000000
#define bit_FXSAVE bit_FXSR /* for gcc compat */
#define bit_SSE 0x02000000
#define bit_SSE2 0x04000000
#define bit_SS 0x08000000
#define bit_HTT 0x10000000
#define bit_TM 0x20000000
#define bit_PBE 0x80000000
/* Features in %ebx for leaf 7 sub-leaf 0 */
#define bit_FSGSBASE 0x00000001
#define bit_SGX 0x00000004
#define bit_BMI 0x00000008
#define bit_HLE 0x00000010
#define bit_AVX2 0x00000020
#define bit_SMEP 0x00000080
#define bit_BMI2 0x00000100
#define bit_ENH_MOVSB 0x00000200
#define bit_INVPCID 0x00000400
#define bit_RTM 0x00000800
#define bit_MPX 0x00004000
#define bit_AVX512F 0x00010000
#define bit_AVX512DQ 0x00020000
#define bit_RDSEED 0x00040000
#define bit_ADX 0x00080000
#define bit_AVX512IFMA 0x00200000
#define bit_CLFLUSHOPT 0x00800000
#define bit_CLWB 0x01000000
#define bit_AVX512PF 0x04000000
#define bit_AVX512ER 0x08000000
#define bit_AVX512CD 0x10000000
#define bit_SHA 0x20000000
#define bit_AVX512BW 0x40000000
#define bit_AVX512VL 0x80000000
/* Features in %ecx for leaf 7 sub-leaf 0 */
#define bit_PREFTCHWT1 0x00000001
#define bit_AVX512VBMI 0x00000002
#define bit_PKU 0x00000004
#define bit_OSPKE 0x00000010
#define bit_WAITPKG 0x00000020
#define bit_AVX512VBMI2 0x00000040
#define bit_SHSTK 0x00000080
#define bit_GFNI 0x00000100
#define bit_VAES 0x00000200
#define bit_VPCLMULQDQ 0x00000400
#define bit_AVX512VNNI 0x00000800
#define bit_AVX512BITALG 0x00001000
#define bit_AVX512VPOPCNTDQ 0x00004000
#define bit_RDPID 0x00400000
#define bit_CLDEMOTE 0x02000000
#define bit_MOVDIRI 0x08000000
#define bit_MOVDIR64B 0x10000000
#define bit_ENQCMD 0x20000000
/* Features in %edx for leaf 7 sub-leaf 0 */
#define bit_AVX5124VNNIW 0x00000004
#define bit_AVX5124FMAPS 0x00000008
#define bit_UINTR 0x00000020
#define bit_SERIALIZE 0x00004000
#define bit_TSXLDTRK 0x00010000
#define bit_PCONFIG 0x00040000
#define bit_IBT 0x00100000
#define bit_AMXBF16 0x00400000
#define bit_AVX512FP16 0x00800000
#define bit_AMXTILE 0x01000000
#define bit_AMXINT8 0x02000000
/* Features in %eax for leaf 7 sub-leaf 1 */
#define bit_RAOINT 0x00000008
#define bit_AVXVNNI 0x00000010
#define bit_AVX512BF16 0x00000020
#define bit_CMPCCXADD 0x00000080
#define bit_AMXFP16 0x00200000
#define bit_HRESET 0x00400000
#define bit_AVXIFMA 0x00800000
/* Features in %edx for leaf 7 sub-leaf 1 */
#define bit_AVXVNNIINT8 0x00000010
#define bit_AVXNECONVERT 0x00000020
#define bit_PREFETCHI 0x00004000
/* Features in %eax for leaf 13 sub-leaf 1 */
#define bit_XSAVEOPT 0x00000001
#define bit_XSAVEC 0x00000002
#define bit_XSAVES 0x00000008
/* Features in %eax for leaf 0x14 sub-leaf 0 */
#define bit_PTWRITE 0x00000010
/* Features in %ecx for leaf 0x80000001 */
#define bit_LAHF_LM 0x00000001
#define bit_ABM 0x00000020
#define bit_LZCNT bit_ABM /* for gcc compat */
#define bit_SSE4a 0x00000040
#define bit_PRFCHW 0x00000100
#define bit_XOP 0x00000800
#define bit_LWP 0x00008000
#define bit_FMA4 0x00010000
#define bit_TBM 0x00200000
#define bit_MWAITX 0x20000000
/* Features in %edx for leaf 0x80000001 */
#define bit_MMXEXT 0x00400000
#define bit_LM 0x20000000
#define bit_3DNOWP 0x40000000
#define bit_3DNOW 0x80000000
/* Features in %ebx for leaf 0x80000008 */
#define bit_CLZERO 0x00000001
#define bit_RDPRU 0x00000010
#define bit_WBNOINVD 0x00000200
#if __i386__
#define __cpuid(__leaf, __eax, __ebx, __ecx, __edx) \
__asm("cpuid" : "=a"(__eax), "=b" (__ebx), "=c"(__ecx), "=d"(__edx) \
: "0"(__leaf))
#define __cpuid_count(__leaf, __count, __eax, __ebx, __ecx, __edx) \
__asm("cpuid" : "=a"(__eax), "=b" (__ebx), "=c"(__ecx), "=d"(__edx) \
: "0"(__leaf), "2"(__count))
#else
/* x86-64 uses %rbx as the base register, so preserve it. */
#define __cpuid(__leaf, __eax, __ebx, __ecx, __edx) \
__asm(" xchgq %%rbx,%q1\n" \
" cpuid\n" \
" xchgq %%rbx,%q1" \
: "=a"(__eax), "=r" (__ebx), "=c"(__ecx), "=d"(__edx) \
: "0"(__leaf))
#define __cpuid_count(__leaf, __count, __eax, __ebx, __ecx, __edx) \
__asm(" xchgq %%rbx,%q1\n" \
" cpuid\n" \
" xchgq %%rbx,%q1" \
: "=a"(__eax), "=r" (__ebx), "=c"(__ecx), "=d"(__edx) \
: "0"(__leaf), "2"(__count))
#endif
static __inline unsigned int __get_cpuid_max (unsigned int __leaf,
unsigned int *__sig)
{
unsigned int __eax, __ebx, __ecx, __edx;
#if __i386__
int __cpuid_supported;
__asm(" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x00200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" movl $0,%0\n"
" cmpl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
"1:"
: "=r" (__cpuid_supported) : : "eax", "ecx");
if (!__cpuid_supported)
return 0;
#endif
__cpuid(__leaf, __eax, __ebx, __ecx, __edx);
if (__sig)
*__sig = __ebx;
return __eax;
}
static __inline int __get_cpuid (unsigned int __leaf, unsigned int *__eax,
unsigned int *__ebx, unsigned int *__ecx,
unsigned int *__edx)
{
unsigned int __max_leaf = __get_cpuid_max(__leaf & 0x80000000, 0);
if (__max_leaf == 0 || __max_leaf < __leaf)
return 0;
__cpuid(__leaf, *__eax, *__ebx, *__ecx, *__edx);
return 1;
}
static __inline int __get_cpuid_count (unsigned int __leaf,
unsigned int __subleaf,
unsigned int *__eax, unsigned int *__ebx,
unsigned int *__ecx, unsigned int *__edx)
{
unsigned int __max_leaf = __get_cpuid_max(__leaf & 0x80000000, 0);
if (__max_leaf == 0 || __max_leaf < __leaf)
return 0;
__cpuid_count(__leaf, __subleaf, *__eax, *__ebx, *__ecx, *__edx);
return 1;
}
#endif /* __CPUID_H */

View File

@ -1,100 +0,0 @@
/*===---- crc32intrin.h - SSE4.2 Accumulate CRC32 intrinsics ---------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CRC32INTRIN_H
#define __CRC32INTRIN_H
#define __DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("crc32")))
/// Adds the unsigned integer operand to the CRC-32C checksum of the
/// unsigned char operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CRC32B </c> instruction.
///
/// \param __C
/// An unsigned integer operand to add to the CRC-32C checksum of operand
/// \a __D.
/// \param __D
/// An unsigned 8-bit integer operand used to compute the CRC-32C checksum.
/// \returns The result of adding operand \a __C to the CRC-32C checksum of
/// operand \a __D.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_mm_crc32_u8(unsigned int __C, unsigned char __D)
{
return __builtin_ia32_crc32qi(__C, __D);
}
/// Adds the unsigned integer operand to the CRC-32C checksum of the
/// unsigned short operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CRC32W </c> instruction.
///
/// \param __C
/// An unsigned integer operand to add to the CRC-32C checksum of operand
/// \a __D.
/// \param __D
/// An unsigned 16-bit integer operand used to compute the CRC-32C checksum.
/// \returns The result of adding operand \a __C to the CRC-32C checksum of
/// operand \a __D.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_mm_crc32_u16(unsigned int __C, unsigned short __D)
{
return __builtin_ia32_crc32hi(__C, __D);
}
/// Adds the first unsigned integer operand to the CRC-32C checksum of
/// the second unsigned integer operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CRC32L </c> instruction.
///
/// \param __C
/// An unsigned integer operand to add to the CRC-32C checksum of operand
/// \a __D.
/// \param __D
/// An unsigned 32-bit integer operand used to compute the CRC-32C checksum.
/// \returns The result of adding operand \a __C to the CRC-32C checksum of
/// operand \a __D.
static __inline__ unsigned int __DEFAULT_FN_ATTRS
_mm_crc32_u32(unsigned int __C, unsigned int __D)
{
return __builtin_ia32_crc32si(__C, __D);
}
#ifdef __x86_64__
/// Adds the unsigned integer operand to the CRC-32C checksum of the
/// unsigned 64-bit integer operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CRC32Q </c> instruction.
///
/// \param __C
/// An unsigned integer operand to add to the CRC-32C checksum of operand
/// \a __D.
/// \param __D
/// An unsigned 64-bit integer operand used to compute the CRC-32C checksum.
/// \returns The result of adding operand \a __C to the CRC-32C checksum of
/// operand \a __D.
static __inline__ unsigned long long __DEFAULT_FN_ATTRS
_mm_crc32_u64(unsigned long long __C, unsigned long long __D)
{
return __builtin_ia32_crc32di(__C, __D);
}
#endif /* __x86_64__ */
#undef __DEFAULT_FN_ATTRS
#endif /* __CRC32INTRIN_H */

View File

@ -1,116 +0,0 @@
/*===---- algorithm - CUDA wrapper for <algorithm> -------------------------===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_WRAPPERS_ALGORITHM
#define __CLANG_CUDA_WRAPPERS_ALGORITHM
// This header defines __device__ overloads of std::min/max.
//
// Ideally we'd declare these functions only if we're <= C++11. In C++14,
// these functions are constexpr, and so are implicitly __host__ __device__.
//
// However, the compiler being in C++14 mode does not imply that the standard
// library supports C++14. There is no macro we can test to check that the
// stdlib has constexpr std::min/max. Thus we have to unconditionally define
// our device overloads.
//
// A host+device function cannot be overloaded, and a constexpr function
// implicitly become host device if there's no explicitly host or device
// overload preceding it. So the simple thing to do would be to declare our
// device min/max overloads, and then #include_next <algorithm>. This way our
// device overloads would come first, and so if we have a C++14 stdlib, its
// min/max won't become host+device and conflict with our device overloads.
//
// But that also doesn't work. libstdc++ is evil and declares std::min/max in
// an internal header that is included *before* <algorithm>. Thus by the time
// we're inside of this file, std::min/max may already have been declared, and
// thus we can't prevent them from becoming host+device if they're constexpr.
//
// Therefore we perpetrate the following hack: We mark our __device__ overloads
// with __attribute__((enable_if(true, ""))). This causes the signature of the
// function to change without changing anything else about it. (Except that
// overload resolution will prefer it over the __host__ __device__ version
// rather than considering them equally good).
#include_next <algorithm>
// We need to define these overloads in exactly the namespace our standard
// library uses (including the right inline namespace), otherwise they won't be
// picked up by other functions in the standard library (e.g. functions in
// <complex>). Thus the ugliness below.
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
_LIBCPP_BEGIN_NAMESPACE_STD
#else
namespace std {
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#endif
#endif
#pragma push_macro("_CPP14_CONSTEXPR")
#if __cplusplus >= 201402L
#define _CPP14_CONSTEXPR constexpr
#else
#define _CPP14_CONSTEXPR
#endif
template <class __T, class __Cmp>
__attribute__((enable_if(true, "")))
inline _CPP14_CONSTEXPR __host__ __device__ const __T &
max(const __T &__a, const __T &__b, __Cmp __cmp) {
return __cmp(__a, __b) ? __b : __a;
}
template <class __T>
__attribute__((enable_if(true, "")))
inline _CPP14_CONSTEXPR __host__ __device__ const __T &
max(const __T &__a, const __T &__b) {
return __a < __b ? __b : __a;
}
template <class __T, class __Cmp>
__attribute__((enable_if(true, "")))
inline _CPP14_CONSTEXPR __host__ __device__ const __T &
min(const __T &__a, const __T &__b, __Cmp __cmp) {
return __cmp(__b, __a) ? __b : __a;
}
template <class __T>
__attribute__((enable_if(true, "")))
inline _CPP14_CONSTEXPR __host__ __device__ const __T &
min(const __T &__a, const __T &__b) {
return __a < __b ? __a : __b;
}
#pragma pop_macro("_CPP14_CONSTEXPR")
#ifdef _LIBCPP_END_NAMESPACE_STD
_LIBCPP_END_NAMESPACE_STD
#else
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_END_NAMESPACE_VERSION
#endif
} // namespace std
#endif
#endif // __CLANG_CUDA_WRAPPERS_ALGORITHM

View File

@ -1,9 +0,0 @@
// CUDA headers define __noinline__ which interferes with libstdc++'s use of
// `__attribute((__noinline__))`. In order to avoid compilation error,
// temporarily unset __noinline__ when we include affected libstdc++ header.
#pragma push_macro("__noinline__")
#undef __noinline__
#include_next "bits/shared_ptr_base.h"
#pragma pop_macro("__noinline__")

View File

@ -1,90 +0,0 @@
/*===---- cmath - CUDA wrapper for <cmath> ---------------------------------===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_WRAPPERS_CMATH
#define __CLANG_CUDA_WRAPPERS_CMATH
#include_next <cmath>
#if defined(_LIBCPP_STD_VER)
// libc++ will need long double variants of these functions, but CUDA does not
// provide them. We'll provide their declarations, which should allow the
// headers to parse, but would not allow accidental use of them on a GPU.
__attribute__((device)) long double logb(long double);
__attribute__((device)) long double scalbn(long double, int);
namespace std {
// For __constexpr_fmin/fmax we only need device-side overloads before c++14
// where they are not constexpr.
#if _LIBCPP_STD_VER < 14
__attribute__((device))
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 float __constexpr_fmax(float __x, float __y) _NOEXCEPT {
return __builtin_fmaxf(__x, __y);
}
__attribute__((device))
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 double __constexpr_fmax(double __x, double __y) _NOEXCEPT {
return __builtin_fmax(__x, __y);
}
__attribute__((device))
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 long double
__constexpr_fmax(long double __x, long double __y) _NOEXCEPT {
return __builtin_fmaxl(__x, __y);
}
template <class _Tp, class _Up, __enable_if_t<is_arithmetic<_Tp>::value && is_arithmetic<_Up>::value, int> = 0>
__attribute__((device))
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 typename __promote<_Tp, _Up>::type
__constexpr_fmax(_Tp __x, _Up __y) _NOEXCEPT {
using __result_type = typename __promote<_Tp, _Up>::type;
return std::__constexpr_fmax(static_cast<__result_type>(__x), static_cast<__result_type>(__y));
}
#endif // _LIBCPP_STD_VER < 14
// For logb/scalbn templates we must always provide device overloads because
// libc++ implementation uses __builtin_XXX which gets translated into a libcall
// which we can't handle on GPU. We need to forward those to CUDA-provided
// implementations.
template <class _Tp>
__attribute__((device))
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 _Tp __constexpr_logb(_Tp __x) {
return ::logb(__x);
}
template <class _Tp>
__attribute__((device))
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 _Tp __constexpr_scalbn(_Tp __x, int __exp) {
return ::scalbn(__x, __exp);
}
} // namespace std//
#endif // _LIBCPP_STD_VER
#endif // include guard

View File

@ -1,90 +0,0 @@
/*===---- complex - CUDA wrapper for <complex> ------------------------------===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_WRAPPERS_COMPLEX
#define __CLANG_CUDA_WRAPPERS_COMPLEX
// Wrapper around <complex> that forces its functions to be __host__
// __device__.
// First, include host-only headers we think are likely to be included by
// <complex>, so that the pragma below only applies to <complex> itself.
#if __cplusplus >= 201103L
#include <type_traits>
#endif
#include <stdexcept>
#include <cmath>
#include <sstream>
// Next, include our <algorithm> wrapper, to ensure that device overloads of
// std::min/max are available.
#include <algorithm>
#pragma clang force_cuda_host_device begin
// When compiling for device, ask libstdc++ to use its own implements of
// complex functions, rather than calling builtins (which resolve to library
// functions that don't exist when compiling CUDA device code).
//
// This is a little dicey, because it causes libstdc++ to define a different
// set of overloads on host and device.
//
// // Present only when compiling for host.
// __host__ __device__ void complex<float> sin(const complex<float>& x) {
// return __builtin_csinf(x);
// }
//
// // Present when compiling for host and for device.
// template <typename T>
// void __host__ __device__ complex<T> sin(const complex<T>& x) {
// return complex<T>(sin(x.real()) * cosh(x.imag()),
// cos(x.real()), sinh(x.imag()));
// }
//
// This is safe because when compiling for device, all function calls in
// __host__ code to sin() will still resolve to *something*, even if they don't
// resolve to the same function as they resolve to when compiling for host. We
// don't care that they don't resolve to the right function because we won't
// codegen this host code when compiling for device.
#pragma push_macro("_GLIBCXX_USE_C99_COMPLEX")
#pragma push_macro("_GLIBCXX_USE_C99_COMPLEX_TR1")
#define _GLIBCXX_USE_C99_COMPLEX 0
#define _GLIBCXX_USE_C99_COMPLEX_TR1 0
// Work around a compatibility issue with libstdc++ 11.1.0
// https://bugs.llvm.org/show_bug.cgi?id=50383
#pragma push_macro("__failed_assertion")
#if _GLIBCXX_RELEASE == 11
#define __failed_assertion __cuda_failed_assertion
#endif
#include_next <complex>
#pragma pop_macro("__failed_assertion")
#pragma pop_macro("_GLIBCXX_USE_C99_COMPLEX_TR1")
#pragma pop_macro("_GLIBCXX_USE_C99_COMPLEX")
#pragma clang force_cuda_host_device end
#endif // include guard

View File

@ -1,106 +0,0 @@
/*===---- new - CUDA wrapper for <new> -------------------------------------===
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_WRAPPERS_NEW
#define __CLANG_CUDA_WRAPPERS_NEW
#include_next <new>
#if !defined(__device__)
// The header has been included too early from the standard C++ library
// and CUDA-specific macros are not available yet.
// Undo the include guard and try again later.
#undef __CLANG_CUDA_WRAPPERS_NEW
#else
#pragma push_macro("CUDA_NOEXCEPT")
#if __cplusplus >= 201103L
#define CUDA_NOEXCEPT noexcept
#else
#define CUDA_NOEXCEPT
#endif
// Device overrides for non-placement new and delete.
__device__ inline void *operator new(__SIZE_TYPE__ size) {
if (size == 0) {
size = 1;
}
return ::malloc(size);
}
__device__ inline void *operator new(__SIZE_TYPE__ size,
const std::nothrow_t &) CUDA_NOEXCEPT {
return ::operator new(size);
}
__device__ inline void *operator new[](__SIZE_TYPE__ size) {
return ::operator new(size);
}
__device__ inline void *operator new[](__SIZE_TYPE__ size,
const std::nothrow_t &) {
return ::operator new(size);
}
__device__ inline void operator delete(void* ptr) CUDA_NOEXCEPT {
if (ptr) {
::free(ptr);
}
}
__device__ inline void operator delete(void *ptr,
const std::nothrow_t &) CUDA_NOEXCEPT {
::operator delete(ptr);
}
__device__ inline void operator delete[](void* ptr) CUDA_NOEXCEPT {
::operator delete(ptr);
}
__device__ inline void operator delete[](void *ptr,
const std::nothrow_t &) CUDA_NOEXCEPT {
::operator delete(ptr);
}
// Sized delete, C++14 only.
#if __cplusplus >= 201402L
__device__ inline void operator delete(void *ptr,
__SIZE_TYPE__ size) CUDA_NOEXCEPT {
::operator delete(ptr);
}
__device__ inline void operator delete[](void *ptr,
__SIZE_TYPE__ size) CUDA_NOEXCEPT {
::operator delete(ptr);
}
#endif
// Device overrides for placement new and delete.
__device__ inline void *operator new(__SIZE_TYPE__, void *__ptr) CUDA_NOEXCEPT {
return __ptr;
}
__device__ inline void *operator new[](__SIZE_TYPE__, void *__ptr) CUDA_NOEXCEPT {
return __ptr;
}
__device__ inline void operator delete(void *, void *) CUDA_NOEXCEPT {}
__device__ inline void operator delete[](void *, void *) CUDA_NOEXCEPT {}
#pragma pop_macro("CUDA_NOEXCEPT")
#endif // __device__
#endif // include guard

File diff suppressed because it is too large Load Diff

View File

@ -1,63 +0,0 @@
/*===------------------ enqcmdintrin.h - enqcmd intrinsics -----------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <enqcmdintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __ENQCMDINTRIN_H
#define __ENQCMDINTRIN_H
/* Define the default attributes for the functions in this file */
#define _DEFAULT_FN_ATTRS \
__attribute__((__always_inline__, __nodebug__, __target__("enqcmd")))
/// Reads 64-byte command pointed by \a __src, formats 64-byte enqueue store
/// data, and performs 64-byte enqueue store to memory pointed by \a __dst.
/// This intrinsics may only be used in User mode.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsics corresponds to the <c> ENQCMD </c> instruction.
///
/// \param __dst
/// Pointer to the destination of the enqueue store.
/// \param __src
/// Pointer to 64-byte command data.
/// \returns If the command data is successfully written to \a __dst then 0 is
/// returned. Otherwise 1 is returned.
static __inline__ int _DEFAULT_FN_ATTRS
_enqcmd (void *__dst, const void *__src)
{
return __builtin_ia32_enqcmd(__dst, __src);
}
/// Reads 64-byte command pointed by \a __src, formats 64-byte enqueue store
/// data, and performs 64-byte enqueue store to memory pointed by \a __dst
/// This intrinsic may only be used in Privileged mode.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsics corresponds to the <c> ENQCMDS </c> instruction.
///
/// \param __dst
/// Pointer to the destination of the enqueue store.
/// \param __src
/// Pointer to 64-byte command data.
/// \returns If the command data is successfully written to \a __dst then 0 is
/// returned. Otherwise 1 is returned.
static __inline__ int _DEFAULT_FN_ATTRS
_enqcmds (void *__dst, const void *__src)
{
return __builtin_ia32_enqcmds(__dst, __src);
}
#undef _DEFAULT_FN_ATTRS
#endif /* __ENQCMDINTRIN_H */

View File

@ -1,162 +0,0 @@
/*===---- f16cintrin.h - F16C intrinsics -----------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#if !defined __IMMINTRIN_H
#error "Never use <f16cintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __F16CINTRIN_H
#define __F16CINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 \
__attribute__((__always_inline__, __nodebug__, __target__("f16c"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 \
__attribute__((__always_inline__, __nodebug__, __target__("f16c"), __min_vector_width__(256)))
/* NOTE: Intel documents the 128-bit versions of these as being in emmintrin.h,
* but that's because icc can emulate these without f16c using a library call.
* Since we don't do that let's leave these in f16cintrin.h.
*/
/// Converts a 16-bit half-precision float value into a 32-bit float
/// value.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTPH2PS </c> instruction.
///
/// \param __a
/// A 16-bit half-precision float value.
/// \returns The converted 32-bit float value.
static __inline float __DEFAULT_FN_ATTRS128
_cvtsh_ss(unsigned short __a)
{
__v8hi __v = {(short)__a, 0, 0, 0, 0, 0, 0, 0};
__v4sf __r = __builtin_ia32_vcvtph2ps(__v);
return __r[0];
}
/// Converts a 32-bit single-precision float value to a 16-bit
/// half-precision float value.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// unsigned short _cvtss_sh(float a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the <c> VCVTPS2PH </c> instruction.
///
/// \param a
/// A 32-bit single-precision float value to be converted to a 16-bit
/// half-precision float value.
/// \param imm
/// An immediate value controlling rounding using bits [2:0]: \n
/// 000: Nearest \n
/// 001: Down \n
/// 010: Up \n
/// 011: Truncate \n
/// 1XX: Use MXCSR.RC for rounding
/// \returns The converted 16-bit half-precision float value.
#define _cvtss_sh(a, imm) __extension__ ({ \
(unsigned short)(((__v8hi)__builtin_ia32_vcvtps2ph((__v4sf){a, 0, 0, 0}, \
(imm)))[0]); })
/// Converts a 128-bit vector containing 32-bit float values into a
/// 128-bit vector containing 16-bit half-precision float values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm_cvtps_ph(__m128 a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the <c> VCVTPS2PH </c> instruction.
///
/// \param a
/// A 128-bit vector containing 32-bit float values.
/// \param imm
/// An immediate value controlling rounding using bits [2:0]: \n
/// 000: Nearest \n
/// 001: Down \n
/// 010: Up \n
/// 011: Truncate \n
/// 1XX: Use MXCSR.RC for rounding
/// \returns A 128-bit vector containing converted 16-bit half-precision float
/// values. The lower 64 bits are used to store the converted 16-bit
/// half-precision floating-point values.
#define _mm_cvtps_ph(a, imm) \
((__m128i)__builtin_ia32_vcvtps2ph((__v4sf)(__m128)(a), (imm)))
/// Converts a 128-bit vector containing 16-bit half-precision float
/// values into a 128-bit vector containing 32-bit float values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTPH2PS </c> instruction.
///
/// \param __a
/// A 128-bit vector containing 16-bit half-precision float values. The lower
/// 64 bits are used in the conversion.
/// \returns A 128-bit vector of [4 x float] containing converted float values.
static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_cvtph_ps(__m128i __a)
{
return (__m128)__builtin_ia32_vcvtph2ps((__v8hi)__a);
}
/// Converts a 256-bit vector of [8 x float] into a 128-bit vector
/// containing 16-bit half-precision float values.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128i _mm256_cvtps_ph(__m256 a, const int imm);
/// \endcode
///
/// This intrinsic corresponds to the <c> VCVTPS2PH </c> instruction.
///
/// \param a
/// A 256-bit vector containing 32-bit single-precision float values to be
/// converted to 16-bit half-precision float values.
/// \param imm
/// An immediate value controlling rounding using bits [2:0]: \n
/// 000: Nearest \n
/// 001: Down \n
/// 010: Up \n
/// 011: Truncate \n
/// 1XX: Use MXCSR.RC for rounding
/// \returns A 128-bit vector containing the converted 16-bit half-precision
/// float values.
#define _mm256_cvtps_ph(a, imm) \
((__m128i)__builtin_ia32_vcvtps2ph256((__v8sf)(__m256)(a), (imm)))
/// Converts a 128-bit vector containing 16-bit half-precision float
/// values into a 256-bit vector of [8 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTPH2PS </c> instruction.
///
/// \param __a
/// A 128-bit vector containing 16-bit half-precision float values to be
/// converted to 32-bit single-precision float values.
/// \returns A vector of [8 x float] containing the converted 32-bit
/// single-precision float values.
static __inline __m256 __DEFAULT_FN_ATTRS256
_mm256_cvtph_ps(__m128i __a)
{
return (__m256)__builtin_ia32_vcvtph2ps256((__v8hi)__a);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif /* __F16CINTRIN_H */

View File

@ -1,168 +0,0 @@
/*===---- float.h - Characteristics of floating point types ----------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_FLOAT_H
#define __CLANG_FLOAT_H
/* If we're on MinGW, fall back to the system's float.h, which might have
* additional definitions provided for Windows.
* For more details see http://msdn.microsoft.com/en-us/library/y0ybw9fy.aspx
*
* Also fall back on Darwin and AIX to allow additional definitions and
* implementation-defined values.
*/
#if (defined(__APPLE__) || defined(__MINGW32__) || defined(_MSC_VER) || \
defined(_AIX)) && \
__STDC_HOSTED__ && __has_include_next(<float.h>)
/* Prior to Apple's 10.7 SDK, float.h SDK header used to apply an extra level
* of #include_next<float.h> to keep Metrowerks compilers happy. Avoid this
* extra indirection.
*/
#ifdef __APPLE__
#define _FLOAT_H_
#endif
# include_next <float.h>
/* Undefine anything that we'll be redefining below. */
# undef FLT_EVAL_METHOD
# undef FLT_ROUNDS
# undef FLT_RADIX
# undef FLT_MANT_DIG
# undef DBL_MANT_DIG
# undef LDBL_MANT_DIG
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || \
!defined(__STRICT_ANSI__) || \
(defined(__cplusplus) && __cplusplus >= 201103L) || \
(__STDC_HOSTED__ && defined(_AIX) && defined(_ALL_SOURCE))
# undef DECIMAL_DIG
# endif
# undef FLT_DIG
# undef DBL_DIG
# undef LDBL_DIG
# undef FLT_MIN_EXP
# undef DBL_MIN_EXP
# undef LDBL_MIN_EXP
# undef FLT_MIN_10_EXP
# undef DBL_MIN_10_EXP
# undef LDBL_MIN_10_EXP
# undef FLT_MAX_EXP
# undef DBL_MAX_EXP
# undef LDBL_MAX_EXP
# undef FLT_MAX_10_EXP
# undef DBL_MAX_10_EXP
# undef LDBL_MAX_10_EXP
# undef FLT_MAX
# undef DBL_MAX
# undef LDBL_MAX
# undef FLT_EPSILON
# undef DBL_EPSILON
# undef LDBL_EPSILON
# undef FLT_MIN
# undef DBL_MIN
# undef LDBL_MIN
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || \
!defined(__STRICT_ANSI__) || \
(defined(__cplusplus) && __cplusplus >= 201703L) || \
(__STDC_HOSTED__ && defined(_AIX) && defined(_ALL_SOURCE))
# undef FLT_TRUE_MIN
# undef DBL_TRUE_MIN
# undef LDBL_TRUE_MIN
# undef FLT_DECIMAL_DIG
# undef DBL_DECIMAL_DIG
# undef LDBL_DECIMAL_DIG
# undef FLT_HAS_SUBNORM
# undef DBL_HAS_SUBNORM
# undef LDBL_HAS_SUBNORM
# endif
#endif
/* Characteristics of floating point types, C99 5.2.4.2.2 */
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || \
(defined(__cplusplus) && __cplusplus >= 201103L)
#define FLT_EVAL_METHOD __FLT_EVAL_METHOD__
#endif
#define FLT_ROUNDS (__builtin_flt_rounds())
#define FLT_RADIX __FLT_RADIX__
#define FLT_MANT_DIG __FLT_MANT_DIG__
#define DBL_MANT_DIG __DBL_MANT_DIG__
#define LDBL_MANT_DIG __LDBL_MANT_DIG__
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || \
!defined(__STRICT_ANSI__) || \
(defined(__cplusplus) && __cplusplus >= 201103L) || \
(__STDC_HOSTED__ && defined(_AIX) && defined(_ALL_SOURCE))
# define DECIMAL_DIG __DECIMAL_DIG__
#endif
#define FLT_DIG __FLT_DIG__
#define DBL_DIG __DBL_DIG__
#define LDBL_DIG __LDBL_DIG__
#define FLT_MIN_EXP __FLT_MIN_EXP__
#define DBL_MIN_EXP __DBL_MIN_EXP__
#define LDBL_MIN_EXP __LDBL_MIN_EXP__
#define FLT_MIN_10_EXP __FLT_MIN_10_EXP__
#define DBL_MIN_10_EXP __DBL_MIN_10_EXP__
#define LDBL_MIN_10_EXP __LDBL_MIN_10_EXP__
#define FLT_MAX_EXP __FLT_MAX_EXP__
#define DBL_MAX_EXP __DBL_MAX_EXP__
#define LDBL_MAX_EXP __LDBL_MAX_EXP__
#define FLT_MAX_10_EXP __FLT_MAX_10_EXP__
#define DBL_MAX_10_EXP __DBL_MAX_10_EXP__
#define LDBL_MAX_10_EXP __LDBL_MAX_10_EXP__
#define FLT_MAX __FLT_MAX__
#define DBL_MAX __DBL_MAX__
#define LDBL_MAX __LDBL_MAX__
#define FLT_EPSILON __FLT_EPSILON__
#define DBL_EPSILON __DBL_EPSILON__
#define LDBL_EPSILON __LDBL_EPSILON__
#define FLT_MIN __FLT_MIN__
#define DBL_MIN __DBL_MIN__
#define LDBL_MIN __LDBL_MIN__
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L) || \
!defined(__STRICT_ANSI__) || \
(defined(__cplusplus) && __cplusplus >= 201703L) || \
(__STDC_HOSTED__ && defined(_AIX) && defined(_ALL_SOURCE))
# define FLT_TRUE_MIN __FLT_DENORM_MIN__
# define DBL_TRUE_MIN __DBL_DENORM_MIN__
# define LDBL_TRUE_MIN __LDBL_DENORM_MIN__
# define FLT_DECIMAL_DIG __FLT_DECIMAL_DIG__
# define DBL_DECIMAL_DIG __DBL_DECIMAL_DIG__
# define LDBL_DECIMAL_DIG __LDBL_DECIMAL_DIG__
# define FLT_HAS_SUBNORM __FLT_HAS_DENORM__
# define DBL_HAS_SUBNORM __DBL_HAS_DENORM__
# define LDBL_HAS_SUBNORM __LDBL_HAS_DENORM__
#endif
#ifdef __STDC_WANT_IEC_60559_TYPES_EXT__
# define FLT16_MANT_DIG __FLT16_MANT_DIG__
# define FLT16_DECIMAL_DIG __FLT16_DECIMAL_DIG__
# define FLT16_DIG __FLT16_DIG__
# define FLT16_MIN_EXP __FLT16_MIN_EXP__
# define FLT16_MIN_10_EXP __FLT16_MIN_10_EXP__
# define FLT16_MAX_EXP __FLT16_MAX_EXP__
# define FLT16_MAX_10_EXP __FLT16_MAX_10_EXP__
# define FLT16_MAX __FLT16_MAX__
# define FLT16_EPSILON __FLT16_EPSILON__
# define FLT16_MIN __FLT16_MIN__
# define FLT16_TRUE_MIN __FLT16_TRUE_MIN__
#endif /* __STDC_WANT_IEC_60559_TYPES_EXT__ */
#endif /* __CLANG_FLOAT_H */

View File

@ -1,218 +0,0 @@
/*===---- fma4intrin.h - FMA4 intrinsics -----------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __X86INTRIN_H
#error "Never use <fma4intrin.h> directly; include <x86intrin.h> instead."
#endif
#ifndef __FMA4INTRIN_H
#define __FMA4INTRIN_H
#include <pmmintrin.h>
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("fma4"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("fma4"), __min_vector_width__(256)))
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_macc_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps((__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_macc_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd((__v2df)__A, (__v2df)__B, (__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_macc_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss((__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_macc_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd((__v2df)__A, (__v2df)__B, (__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_msub_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps((__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_msub_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd((__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_msub_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss((__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_msub_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd((__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_nmacc_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps(-(__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_nmacc_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd(-(__v2df)__A, (__v2df)__B, (__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_nmacc_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss(-(__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_nmacc_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd(-(__v2df)__A, (__v2df)__B, (__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_nmsub_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps(-(__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_nmsub_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd(-(__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_nmsub_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss(-(__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_nmsub_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd(-(__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_maddsub_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddsubps((__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_maddsub_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsubpd((__v2df)__A, (__v2df)__B, (__v2df)__C);
}
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_msubadd_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddsubps((__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_msubadd_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsubpd((__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_macc_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256((__v8sf)__A, (__v8sf)__B, (__v8sf)__C);
}
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_macc_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256((__v4df)__A, (__v4df)__B, (__v4df)__C);
}
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_msub_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256((__v8sf)__A, (__v8sf)__B, -(__v8sf)__C);
}
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_msub_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256((__v4df)__A, (__v4df)__B, -(__v4df)__C);
}
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_nmacc_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256(-(__v8sf)__A, (__v8sf)__B, (__v8sf)__C);
}
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_nmacc_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256(-(__v4df)__A, (__v4df)__B, (__v4df)__C);
}
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_nmsub_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256(-(__v8sf)__A, (__v8sf)__B, -(__v8sf)__C);
}
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_nmsub_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256(-(__v4df)__A, (__v4df)__B, -(__v4df)__C);
}
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_maddsub_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddsubps256((__v8sf)__A, (__v8sf)__B, (__v8sf)__C);
}
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_maddsub_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddsubpd256((__v4df)__A, (__v4df)__B, (__v4df)__C);
}
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_msubadd_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddsubps256((__v8sf)__A, (__v8sf)__B, -(__v8sf)__C);
}
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_msubadd_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddsubpd256((__v4df)__A, (__v4df)__B, -(__v4df)__C);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif /* __FMA4INTRIN_H */

View File

@ -1,780 +0,0 @@
/*===---- fmaintrin.h - FMA intrinsics -------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <fmaintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __FMAINTRIN_H
#define __FMAINTRIN_H
/* Define the default attributes for the functions in this file. */
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("fma"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS256 __attribute__((__always_inline__, __nodebug__, __target__("fma"), __min_vector_width__(256)))
/// Computes a multiply-add of 128-bit vectors of [4 x float].
/// For each element, computes <c> (__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADD213PS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier.
/// \param __C
/// A 128-bit vector of [4 x float] containing the addend.
/// \returns A 128-bit vector of [4 x float] containing the result.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fmadd_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps((__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
/// Computes a multiply-add of 128-bit vectors of [2 x double].
/// For each element, computes <c> (__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADD213PD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier.
/// \param __C
/// A 128-bit vector of [2 x double] containing the addend.
/// \returns A 128-bit [2 x double] vector containing the result.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fmadd_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd((__v2df)__A, (__v2df)__B, (__v2df)__C);
}
/// Computes a scalar multiply-add of the single-precision values in the
/// low 32 bits of 128-bit vectors of [4 x float].
/// \code
/// result[31:0] = (__A[31:0] * __B[31:0]) + __C[31:0]
/// result[127:32] = __A[127:32]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADD213SS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand in the low
/// 32 bits.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier in the low
/// 32 bits.
/// \param __C
/// A 128-bit vector of [4 x float] containing the addend in the low
/// 32 bits.
/// \returns A 128-bit vector of [4 x float] containing the result in the low
/// 32 bits and a copy of \a __A[127:32] in the upper 96 bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fmadd_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss3((__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
/// Computes a scalar multiply-add of the double-precision values in the
/// low 64 bits of 128-bit vectors of [2 x double].
/// \code
/// result[63:0] = (__A[63:0] * __B[63:0]) + __C[63:0]
/// result[127:64] = __A[127:64]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADD213SD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand in the low
/// 64 bits.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier in the low
/// 64 bits.
/// \param __C
/// A 128-bit vector of [2 x double] containing the addend in the low
/// 64 bits.
/// \returns A 128-bit vector of [2 x double] containing the result in the low
/// 64 bits and a copy of \a __A[127:64] in the upper 64 bits.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fmadd_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd3((__v2df)__A, (__v2df)__B, (__v2df)__C);
}
/// Computes a multiply-subtract of 128-bit vectors of [4 x float].
/// For each element, computes <c> (__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUB213PS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier.
/// \param __C
/// A 128-bit vector of [4 x float] containing the subtrahend.
/// \returns A 128-bit vector of [4 x float] containing the result.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fmsub_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps((__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
/// Computes a multiply-subtract of 128-bit vectors of [2 x double].
/// For each element, computes <c> (__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUB213PD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier.
/// \param __C
/// A 128-bit vector of [2 x double] containing the addend.
/// \returns A 128-bit vector of [2 x double] containing the result.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fmsub_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd((__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
/// Computes a scalar multiply-subtract of the single-precision values in
/// the low 32 bits of 128-bit vectors of [4 x float].
/// \code
/// result[31:0] = (__A[31:0] * __B[31:0]) - __C[31:0]
/// result[127:32] = __A[127:32]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUB213SS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand in the low
/// 32 bits.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier in the low
/// 32 bits.
/// \param __C
/// A 128-bit vector of [4 x float] containing the subtrahend in the low
/// 32 bits.
/// \returns A 128-bit vector of [4 x float] containing the result in the low
/// 32 bits, and a copy of \a __A[127:32] in the upper 96 bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fmsub_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss3((__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
/// Computes a scalar multiply-subtract of the double-precision values in
/// the low 64 bits of 128-bit vectors of [2 x double].
/// \code
/// result[63:0] = (__A[63:0] * __B[63:0]) - __C[63:0]
/// result[127:64] = __A[127:64]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUB213SD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand in the low
/// 64 bits.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier in the low
/// 64 bits.
/// \param __C
/// A 128-bit vector of [2 x double] containing the subtrahend in the low
/// 64 bits.
/// \returns A 128-bit vector of [2 x double] containing the result in the low
/// 64 bits, and a copy of \a __A[127:64] in the upper 64 bits.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fmsub_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd3((__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
/// Computes a negated multiply-add of 128-bit vectors of [4 x float].
/// For each element, computes <c> -(__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMADD213DPS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier.
/// \param __C
/// A 128-bit vector of [4 x float] containing the addend.
/// \returns A 128-bit [4 x float] vector containing the result.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fnmadd_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps(-(__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
/// Computes a negated multiply-add of 128-bit vectors of [2 x double].
/// For each element, computes <c> -(__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMADD213PD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier.
/// \param __C
/// A 128-bit vector of [2 x double] containing the addend.
/// \returns A 128-bit vector of [2 x double] containing the result.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fnmadd_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd(-(__v2df)__A, (__v2df)__B, (__v2df)__C);
}
/// Computes a scalar negated multiply-add of the single-precision values in
/// the low 32 bits of 128-bit vectors of [4 x float].
/// \code
/// result[31:0] = -(__A[31:0] * __B[31:0]) + __C[31:0]
/// result[127:32] = __A[127:32]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMADD213SS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand in the low
/// 32 bits.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier in the low
/// 32 bits.
/// \param __C
/// A 128-bit vector of [4 x float] containing the addend in the low
/// 32 bits.
/// \returns A 128-bit vector of [4 x float] containing the result in the low
/// 32 bits, and a copy of \a __A[127:32] in the upper 96 bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fnmadd_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss3((__v4sf)__A, -(__v4sf)__B, (__v4sf)__C);
}
/// Computes a scalar negated multiply-add of the double-precision values
/// in the low 64 bits of 128-bit vectors of [2 x double].
/// \code
/// result[63:0] = -(__A[63:0] * __B[63:0]) + __C[63:0]
/// result[127:64] = __A[127:64]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMADD213SD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand in the low
/// 64 bits.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier in the low
/// 64 bits.
/// \param __C
/// A 128-bit vector of [2 x double] containing the addend in the low
/// 64 bits.
/// \returns A 128-bit vector of [2 x double] containing the result in the low
/// 64 bits, and a copy of \a __A[127:64] in the upper 64 bits.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fnmadd_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd3((__v2df)__A, -(__v2df)__B, (__v2df)__C);
}
/// Computes a negated multiply-subtract of 128-bit vectors of [4 x float].
/// For each element, computes <c> -(__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMSUB213PS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier.
/// \param __C
/// A 128-bit vector of [4 x float] containing the subtrahend.
/// \returns A 128-bit vector of [4 x float] containing the result.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fnmsub_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddps(-(__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
/// Computes a negated multiply-subtract of 128-bit vectors of [2 x double].
/// For each element, computes <c> -(__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMSUB213PD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier.
/// \param __C
/// A 128-bit vector of [2 x double] containing the subtrahend.
/// \returns A 128-bit vector of [2 x double] containing the result.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fnmsub_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddpd(-(__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
/// Computes a scalar negated multiply-subtract of the single-precision
/// values in the low 32 bits of 128-bit vectors of [4 x float].
/// \code
/// result[31:0] = -(__A[31:0] * __B[31:0]) - __C[31:0]
/// result[127:32] = __A[127:32]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMSUB213SS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand in the low
/// 32 bits.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier in the low
/// 32 bits.
/// \param __C
/// A 128-bit vector of [4 x float] containing the subtrahend in the low
/// 32 bits.
/// \returns A 128-bit vector of [4 x float] containing the result in the low
/// 32 bits, and a copy of \a __A[127:32] in the upper 96 bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fnmsub_ss(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddss3((__v4sf)__A, -(__v4sf)__B, -(__v4sf)__C);
}
/// Computes a scalar negated multiply-subtract of the double-precision
/// values in the low 64 bits of 128-bit vectors of [2 x double].
/// \code
/// result[63:0] = -(__A[63:0] * __B[63:0]) - __C[63:0]
/// result[127:64] = __A[127:64]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMSUB213SD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand in the low
/// 64 bits.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier in the low
/// 64 bits.
/// \param __C
/// A 128-bit vector of [2 x double] containing the subtrahend in the low
/// 64 bits.
/// \returns A 128-bit vector of [2 x double] containing the result in the low
/// 64 bits, and a copy of \a __A[127:64] in the upper 64 bits.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fnmsub_sd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsd3((__v2df)__A, -(__v2df)__B, -(__v2df)__C);
}
/// Computes a multiply with alternating add/subtract of 128-bit vectors of
/// [4 x float].
/// \code
/// result[31:0] = (__A[31:0] * __B[31:0]) - __C[31:0]
/// result[63:32] = (__A[63:32] * __B[63:32]) + __C[63:32]
/// result[95:64] = (__A[95:64] * __B[95:64]) - __C[95:64]
/// result[127:96] = (__A[127:96] * __B[127:96]) + __C[127:96]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADDSUB213PS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier.
/// \param __C
/// A 128-bit vector of [4 x float] containing the addend/subtrahend.
/// \returns A 128-bit vector of [4 x float] containing the result.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fmaddsub_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddsubps((__v4sf)__A, (__v4sf)__B, (__v4sf)__C);
}
/// Computes a multiply with alternating add/subtract of 128-bit vectors of
/// [2 x double].
/// \code
/// result[63:0] = (__A[63:0] * __B[63:0]) - __C[63:0]
/// result[127:64] = (__A[127:64] * __B[127:64]) + __C[127:64]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADDSUB213PD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier.
/// \param __C
/// A 128-bit vector of [2 x double] containing the addend/subtrahend.
/// \returns A 128-bit vector of [2 x double] containing the result.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fmaddsub_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsubpd((__v2df)__A, (__v2df)__B, (__v2df)__C);
}
/// Computes a multiply with alternating add/subtract of 128-bit vectors of
/// [4 x float].
/// \code
/// result[31:0] = (__A[31:0] * __B[31:0]) + __C[31:0]
/// result[63:32] = (__A[63:32] * __B[63:32]) - __C[63:32]
/// result[95:64] = (__A[95:64] * __B[95:64]) + __C[95:64]
/// result[127:96 = (__A[127:96] * __B[127:96]) - __C[127:96]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUBADD213PS instruction.
///
/// \param __A
/// A 128-bit vector of [4 x float] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [4 x float] containing the multiplier.
/// \param __C
/// A 128-bit vector of [4 x float] containing the addend/subtrahend.
/// \returns A 128-bit vector of [4 x float] containing the result.
static __inline__ __m128 __DEFAULT_FN_ATTRS128
_mm_fmsubadd_ps(__m128 __A, __m128 __B, __m128 __C)
{
return (__m128)__builtin_ia32_vfmaddsubps((__v4sf)__A, (__v4sf)__B, -(__v4sf)__C);
}
/// Computes a multiply with alternating add/subtract of 128-bit vectors of
/// [2 x double].
/// \code
/// result[63:0] = (__A[63:0] * __B[63:0]) + __C[63:0]
/// result[127:64] = (__A[127:64] * __B[127:64]) - __C[127:64]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADDSUB213PD instruction.
///
/// \param __A
/// A 128-bit vector of [2 x double] containing the multiplicand.
/// \param __B
/// A 128-bit vector of [2 x double] containing the multiplier.
/// \param __C
/// A 128-bit vector of [2 x double] containing the addend/subtrahend.
/// \returns A 128-bit vector of [2 x double] containing the result.
static __inline__ __m128d __DEFAULT_FN_ATTRS128
_mm_fmsubadd_pd(__m128d __A, __m128d __B, __m128d __C)
{
return (__m128d)__builtin_ia32_vfmaddsubpd((__v2df)__A, (__v2df)__B, -(__v2df)__C);
}
/// Computes a multiply-add of 256-bit vectors of [8 x float].
/// For each element, computes <c> (__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADD213PS instruction.
///
/// \param __A
/// A 256-bit vector of [8 x float] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [8 x float] containing the multiplier.
/// \param __C
/// A 256-bit vector of [8 x float] containing the addend.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_fmadd_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256((__v8sf)__A, (__v8sf)__B, (__v8sf)__C);
}
/// Computes a multiply-add of 256-bit vectors of [4 x double].
/// For each element, computes <c> (__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADD213PD instruction.
///
/// \param __A
/// A 256-bit vector of [4 x double] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [4 x double] containing the multiplier.
/// \param __C
/// A 256-bit vector of [4 x double] containing the addend.
/// \returns A 256-bit vector of [4 x double] containing the result.
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_fmadd_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256((__v4df)__A, (__v4df)__B, (__v4df)__C);
}
/// Computes a multiply-subtract of 256-bit vectors of [8 x float].
/// For each element, computes <c> (__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUB213PS instruction.
///
/// \param __A
/// A 256-bit vector of [8 x float] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [8 x float] containing the multiplier.
/// \param __C
/// A 256-bit vector of [8 x float] containing the subtrahend.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_fmsub_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256((__v8sf)__A, (__v8sf)__B, -(__v8sf)__C);
}
/// Computes a multiply-subtract of 256-bit vectors of [4 x double].
/// For each element, computes <c> (__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUB213PD instruction.
///
/// \param __A
/// A 256-bit vector of [4 x double] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [4 x double] containing the multiplier.
/// \param __C
/// A 256-bit vector of [4 x double] containing the subtrahend.
/// \returns A 256-bit vector of [4 x double] containing the result.
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_fmsub_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256((__v4df)__A, (__v4df)__B, -(__v4df)__C);
}
/// Computes a negated multiply-add of 256-bit vectors of [8 x float].
/// For each element, computes <c> -(__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMADD213PS instruction.
///
/// \param __A
/// A 256-bit vector of [8 x float] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [8 x float] containing the multiplier.
/// \param __C
/// A 256-bit vector of [8 x float] containing the addend.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_fnmadd_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256(-(__v8sf)__A, (__v8sf)__B, (__v8sf)__C);
}
/// Computes a negated multiply-add of 256-bit vectors of [4 x double].
/// For each element, computes <c> -(__A * __B) + __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMADD213PD instruction.
///
/// \param __A
/// A 256-bit vector of [4 x double] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [4 x double] containing the multiplier.
/// \param __C
/// A 256-bit vector of [4 x double] containing the addend.
/// \returns A 256-bit vector of [4 x double] containing the result.
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_fnmadd_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256(-(__v4df)__A, (__v4df)__B, (__v4df)__C);
}
/// Computes a negated multiply-subtract of 256-bit vectors of [8 x float].
/// For each element, computes <c> -(__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMSUB213PS instruction.
///
/// \param __A
/// A 256-bit vector of [8 x float] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [8 x float] containing the multiplier.
/// \param __C
/// A 256-bit vector of [8 x float] containing the subtrahend.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_fnmsub_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddps256(-(__v8sf)__A, (__v8sf)__B, -(__v8sf)__C);
}
/// Computes a negated multiply-subtract of 256-bit vectors of [4 x double].
/// For each element, computes <c> -(__A * __B) - __C </c>.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFNMSUB213PD instruction.
///
/// \param __A
/// A 256-bit vector of [4 x double] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [4 x double] containing the multiplier.
/// \param __C
/// A 256-bit vector of [4 x double] containing the subtrahend.
/// \returns A 256-bit vector of [4 x double] containing the result.
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_fnmsub_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddpd256(-(__v4df)__A, (__v4df)__B, -(__v4df)__C);
}
/// Computes a multiply with alternating add/subtract of 256-bit vectors of
/// [8 x float].
/// \code
/// result[31:0] = (__A[31:0] * __B[31:0]) - __C[31:0]
/// result[63:32] = (__A[63:32] * __B[63:32]) + __C[63:32]
/// result[95:64] = (__A[95:64] * __B[95:64]) - __C[95:64]
/// result[127:96] = (__A[127:96] * __B[127:96]) + __C[127:96]
/// result[159:128] = (__A[159:128] * __B[159:128]) - __C[159:128]
/// result[191:160] = (__A[191:160] * __B[191:160]) + __C[191:160]
/// result[223:192] = (__A[223:192] * __B[223:192]) - __C[223:192]
/// result[255:224] = (__A[255:224] * __B[255:224]) + __C[255:224]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADDSUB213PS instruction.
///
/// \param __A
/// A 256-bit vector of [8 x float] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [8 x float] containing the multiplier.
/// \param __C
/// A 256-bit vector of [8 x float] containing the addend/subtrahend.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_fmaddsub_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddsubps256((__v8sf)__A, (__v8sf)__B, (__v8sf)__C);
}
/// Computes a multiply with alternating add/subtract of 256-bit vectors of
/// [4 x double].
/// \code
/// result[63:0] = (__A[63:0] * __B[63:0]) - __C[63:0]
/// result[127:64] = (__A[127:64] * __B[127:64]) + __C[127:64]
/// result[191:128] = (__A[191:128] * __B[191:128]) - __C[191:128]
/// result[255:192] = (__A[255:192] * __B[255:192]) + __C[255:192]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMADDSUB213PD instruction.
///
/// \param __A
/// A 256-bit vector of [4 x double] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [4 x double] containing the multiplier.
/// \param __C
/// A 256-bit vector of [4 x double] containing the addend/subtrahend.
/// \returns A 256-bit vector of [4 x double] containing the result.
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_fmaddsub_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddsubpd256((__v4df)__A, (__v4df)__B, (__v4df)__C);
}
/// Computes a vector multiply with alternating add/subtract of 256-bit
/// vectors of [8 x float].
/// \code
/// result[31:0] = (__A[31:0] * __B[31:0]) + __C[31:0]
/// result[63:32] = (__A[63:32] * __B[63:32]) - __C[63:32]
/// result[95:64] = (__A[95:64] * __B[95:64]) + __C[95:64]
/// result[127:96] = (__A[127:96] * __B[127:96]) - __C[127:96]
/// result[159:128] = (__A[159:128] * __B[159:128]) + __C[159:128]
/// result[191:160] = (__A[191:160] * __B[191:160]) - __C[191:160]
/// result[223:192] = (__A[223:192] * __B[223:192]) + __C[223:192]
/// result[255:224] = (__A[255:224] * __B[255:224]) - __C[255:224]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUBADD213PS instruction.
///
/// \param __A
/// A 256-bit vector of [8 x float] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [8 x float] containing the multiplier.
/// \param __C
/// A 256-bit vector of [8 x float] containing the addend/subtrahend.
/// \returns A 256-bit vector of [8 x float] containing the result.
static __inline__ __m256 __DEFAULT_FN_ATTRS256
_mm256_fmsubadd_ps(__m256 __A, __m256 __B, __m256 __C)
{
return (__m256)__builtin_ia32_vfmaddsubps256((__v8sf)__A, (__v8sf)__B, -(__v8sf)__C);
}
/// Computes a vector multiply with alternating add/subtract of 256-bit
/// vectors of [4 x double].
/// \code
/// result[63:0] = (__A[63:0] * __B[63:0]) + __C[63:0]
/// result[127:64] = (__A[127:64] * __B[127:64]) - __C[127:64]
/// result[191:128] = (__A[191:128] * __B[191:128]) + __C[191:128]
/// result[255:192] = (__A[255:192] * __B[255:192]) - __C[255:192]
/// \endcode
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the \c VFMSUBADD213PD instruction.
///
/// \param __A
/// A 256-bit vector of [4 x double] containing the multiplicand.
/// \param __B
/// A 256-bit vector of [4 x double] containing the multiplier.
/// \param __C
/// A 256-bit vector of [4 x double] containing the addend/subtrahend.
/// \returns A 256-bit vector of [4 x double] containing the result.
static __inline__ __m256d __DEFAULT_FN_ATTRS256
_mm256_fmsubadd_pd(__m256d __A, __m256d __B, __m256d __C)
{
return (__m256d)__builtin_ia32_vfmaddsubpd256((__v4df)__A, (__v4df)__B, -(__v4df)__C);
}
#undef __DEFAULT_FN_ATTRS128
#undef __DEFAULT_FN_ATTRS256
#endif /* __FMAINTRIN_H */

View File

@ -1,91 +0,0 @@
/*===---- fxsrintrin.h - FXSR intrinsic ------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <fxsrintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __FXSRINTRIN_H
#define __FXSRINTRIN_H
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("fxsr")))
/// Saves the XMM, MMX, MXCSR and x87 FPU registers into a 512-byte
/// memory region pointed to by the input parameter \a __p.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> FXSAVE </c> instruction.
///
/// \param __p
/// A pointer to a 512-byte memory region. The beginning of this memory
/// region should be aligned on a 16-byte boundary.
static __inline__ void __DEFAULT_FN_ATTRS
_fxsave(void *__p)
{
__builtin_ia32_fxsave(__p);
}
/// Restores the XMM, MMX, MXCSR and x87 FPU registers from the 512-byte
/// memory region pointed to by the input parameter \a __p. The contents of
/// this memory region should have been written to by a previous \c _fxsave
/// or \c _fxsave64 intrinsic.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> FXRSTOR </c> instruction.
///
/// \param __p
/// A pointer to a 512-byte memory region. The beginning of this memory
/// region should be aligned on a 16-byte boundary.
static __inline__ void __DEFAULT_FN_ATTRS
_fxrstor(void *__p)
{
__builtin_ia32_fxrstor(__p);
}
#ifdef __x86_64__
/// Saves the XMM, MMX, MXCSR and x87 FPU registers into a 512-byte
/// memory region pointed to by the input parameter \a __p.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> FXSAVE64 </c> instruction.
///
/// \param __p
/// A pointer to a 512-byte memory region. The beginning of this memory
/// region should be aligned on a 16-byte boundary.
static __inline__ void __DEFAULT_FN_ATTRS
_fxsave64(void *__p)
{
__builtin_ia32_fxsave64(__p);
}
/// Restores the XMM, MMX, MXCSR and x87 FPU registers from the 512-byte
/// memory region pointed to by the input parameter \a __p. The contents of
/// this memory region should have been written to by a previous \c _fxsave
/// or \c _fxsave64 intrinsic.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> FXRSTOR64 </c> instruction.
///
/// \param __p
/// A pointer to a 512-byte memory region. The beginning of this memory
/// region should be aligned on a 16-byte boundary.
static __inline__ void __DEFAULT_FN_ATTRS
_fxrstor64(void *__p)
{
__builtin_ia32_fxrstor64(__p);
}
#endif
#undef __DEFAULT_FN_ATTRS
#endif

View File

@ -1,194 +0,0 @@
/*===----------------- gfniintrin.h - GFNI intrinsics ----------------------===
*
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __IMMINTRIN_H
#error "Never use <gfniintrin.h> directly; include <immintrin.h> instead."
#endif
#ifndef __GFNIINTRIN_H
#define __GFNIINTRIN_H
/* Default attributes for simple form (no masking). */
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("gfni"), __min_vector_width__(128)))
/* Default attributes for YMM unmasked form. */
#define __DEFAULT_FN_ATTRS_Y __attribute__((__always_inline__, __nodebug__, __target__("avx,gfni"), __min_vector_width__(256)))
/* Default attributes for ZMM unmasked forms. */
#define __DEFAULT_FN_ATTRS_Z __attribute__((__always_inline__, __nodebug__, __target__("avx512f,gfni"), __min_vector_width__(512)))
/* Default attributes for ZMM masked forms. */
#define __DEFAULT_FN_ATTRS_Z_MASK __attribute__((__always_inline__, __nodebug__, __target__("avx512bw,gfni"), __min_vector_width__(512)))
/* Default attributes for VLX masked forms. */
#define __DEFAULT_FN_ATTRS_VL128 __attribute__((__always_inline__, __nodebug__, __target__("avx512bw,avx512vl,gfni"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS_VL256 __attribute__((__always_inline__, __nodebug__, __target__("avx512bw,avx512vl,gfni"), __min_vector_width__(256)))
#define _mm_gf2p8affineinv_epi64_epi8(A, B, I) \
((__m128i)__builtin_ia32_vgf2p8affineinvqb_v16qi((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), \
(char)(I)))
#define _mm_gf2p8affine_epi64_epi8(A, B, I) \
((__m128i)__builtin_ia32_vgf2p8affineqb_v16qi((__v16qi)(__m128i)(A), \
(__v16qi)(__m128i)(B), \
(char)(I)))
static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_gf2p8mul_epi8(__m128i __A, __m128i __B)
{
return (__m128i) __builtin_ia32_vgf2p8mulb_v16qi((__v16qi) __A,
(__v16qi) __B);
}
#ifdef __AVXINTRIN_H
#define _mm256_gf2p8affineinv_epi64_epi8(A, B, I) \
((__m256i)__builtin_ia32_vgf2p8affineinvqb_v32qi((__v32qi)(__m256i)(A), \
(__v32qi)(__m256i)(B), \
(char)(I)))
#define _mm256_gf2p8affine_epi64_epi8(A, B, I) \
((__m256i)__builtin_ia32_vgf2p8affineqb_v32qi((__v32qi)(__m256i)(A), \
(__v32qi)(__m256i)(B), \
(char)(I)))
static __inline__ __m256i __DEFAULT_FN_ATTRS_Y
_mm256_gf2p8mul_epi8(__m256i __A, __m256i __B)
{
return (__m256i) __builtin_ia32_vgf2p8mulb_v32qi((__v32qi) __A,
(__v32qi) __B);
}
#endif /* __AVXINTRIN_H */
#ifdef __AVX512BWINTRIN_H
#define _mm512_gf2p8affineinv_epi64_epi8(A, B, I) \
((__m512i)__builtin_ia32_vgf2p8affineinvqb_v64qi((__v64qi)(__m512i)(A), \
(__v64qi)(__m512i)(B), \
(char)(I)))
#define _mm512_mask_gf2p8affineinv_epi64_epi8(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectb_512((__mmask64)(U), \
(__v64qi)_mm512_gf2p8affineinv_epi64_epi8(A, B, I), \
(__v64qi)(__m512i)(S)))
#define _mm512_maskz_gf2p8affineinv_epi64_epi8(U, A, B, I) \
_mm512_mask_gf2p8affineinv_epi64_epi8((__m512i)_mm512_setzero_si512(), \
U, A, B, I)
#define _mm512_gf2p8affine_epi64_epi8(A, B, I) \
((__m512i)__builtin_ia32_vgf2p8affineqb_v64qi((__v64qi)(__m512i)(A), \
(__v64qi)(__m512i)(B), \
(char)(I)))
#define _mm512_mask_gf2p8affine_epi64_epi8(S, U, A, B, I) \
((__m512i)__builtin_ia32_selectb_512((__mmask64)(U), \
(__v64qi)_mm512_gf2p8affine_epi64_epi8((A), (B), (I)), \
(__v64qi)(__m512i)(S)))
#define _mm512_maskz_gf2p8affine_epi64_epi8(U, A, B, I) \
_mm512_mask_gf2p8affine_epi64_epi8((__m512i)_mm512_setzero_si512(), \
U, A, B, I)
static __inline__ __m512i __DEFAULT_FN_ATTRS_Z
_mm512_gf2p8mul_epi8(__m512i __A, __m512i __B)
{
return (__m512i) __builtin_ia32_vgf2p8mulb_v64qi((__v64qi) __A,
(__v64qi) __B);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS_Z_MASK
_mm512_mask_gf2p8mul_epi8(__m512i __S, __mmask64 __U, __m512i __A, __m512i __B)
{
return (__m512i) __builtin_ia32_selectb_512(__U,
(__v64qi) _mm512_gf2p8mul_epi8(__A, __B),
(__v64qi) __S);
}
static __inline__ __m512i __DEFAULT_FN_ATTRS_Z_MASK
_mm512_maskz_gf2p8mul_epi8(__mmask64 __U, __m512i __A, __m512i __B)
{
return _mm512_mask_gf2p8mul_epi8((__m512i)_mm512_setzero_si512(),
__U, __A, __B);
}
#endif /* __AVX512BWINTRIN_H */
#ifdef __AVX512VLBWINTRIN_H
#define _mm_mask_gf2p8affineinv_epi64_epi8(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectb_128((__mmask16)(U), \
(__v16qi)_mm_gf2p8affineinv_epi64_epi8(A, B, I), \
(__v16qi)(__m128i)(S)))
#define _mm_maskz_gf2p8affineinv_epi64_epi8(U, A, B, I) \
_mm_mask_gf2p8affineinv_epi64_epi8((__m128i)_mm_setzero_si128(), \
U, A, B, I)
#define _mm256_mask_gf2p8affineinv_epi64_epi8(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectb_256((__mmask32)(U), \
(__v32qi)_mm256_gf2p8affineinv_epi64_epi8(A, B, I), \
(__v32qi)(__m256i)(S)))
#define _mm256_maskz_gf2p8affineinv_epi64_epi8(U, A, B, I) \
_mm256_mask_gf2p8affineinv_epi64_epi8((__m256i)_mm256_setzero_si256(), \
U, A, B, I)
#define _mm_mask_gf2p8affine_epi64_epi8(S, U, A, B, I) \
((__m128i)__builtin_ia32_selectb_128((__mmask16)(U), \
(__v16qi)_mm_gf2p8affine_epi64_epi8(A, B, I), \
(__v16qi)(__m128i)(S)))
#define _mm_maskz_gf2p8affine_epi64_epi8(U, A, B, I) \
_mm_mask_gf2p8affine_epi64_epi8((__m128i)_mm_setzero_si128(), U, A, B, I)
#define _mm256_mask_gf2p8affine_epi64_epi8(S, U, A, B, I) \
((__m256i)__builtin_ia32_selectb_256((__mmask32)(U), \
(__v32qi)_mm256_gf2p8affine_epi64_epi8(A, B, I), \
(__v32qi)(__m256i)(S)))
#define _mm256_maskz_gf2p8affine_epi64_epi8(U, A, B, I) \
_mm256_mask_gf2p8affine_epi64_epi8((__m256i)_mm256_setzero_si256(), \
U, A, B, I)
static __inline__ __m128i __DEFAULT_FN_ATTRS_VL128
_mm_mask_gf2p8mul_epi8(__m128i __S, __mmask16 __U, __m128i __A, __m128i __B)
{
return (__m128i) __builtin_ia32_selectb_128(__U,
(__v16qi) _mm_gf2p8mul_epi8(__A, __B),
(__v16qi) __S);
}
static __inline__ __m128i __DEFAULT_FN_ATTRS_VL128
_mm_maskz_gf2p8mul_epi8(__mmask16 __U, __m128i __A, __m128i __B)
{
return _mm_mask_gf2p8mul_epi8((__m128i)_mm_setzero_si128(),
__U, __A, __B);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS_VL256
_mm256_mask_gf2p8mul_epi8(__m256i __S, __mmask32 __U, __m256i __A, __m256i __B)
{
return (__m256i) __builtin_ia32_selectb_256(__U,
(__v32qi) _mm256_gf2p8mul_epi8(__A, __B),
(__v32qi) __S);
}
static __inline__ __m256i __DEFAULT_FN_ATTRS_VL256
_mm256_maskz_gf2p8mul_epi8(__mmask32 __U, __m256i __A, __m256i __B)
{
return _mm256_mask_gf2p8mul_epi8((__m256i)_mm256_setzero_si256(),
__U, __A, __B);
}
#endif /* __AVX512VLBWINTRIN_H */
#undef __DEFAULT_FN_ATTRS
#undef __DEFAULT_FN_ATTRS_Y
#undef __DEFAULT_FN_ATTRS_Z
#undef __DEFAULT_FN_ATTRS_VL128
#undef __DEFAULT_FN_ATTRS_VL256
#endif /* __GFNIINTRIN_H */

View File

@ -1,298 +0,0 @@
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _HEXAGON_CIRC_BREV_INTRINSICS_H_
#define _HEXAGON_CIRC_BREV_INTRINSICS_H_ 1
#include <hexagon_protos.h>
#include <stdint.h>
/* Circular Load */
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_load_update_D(Word64 dst, Word64 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_load_update_D(dest,ptr,incr,bufsize,K) \
{ ptr = (int64_t *) HEXAGON_circ_ldd (ptr, &(dest), ((((K)+1)<<24)|((bufsize)<<3)), ((incr)*8)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_load_update_W(Word32 dst, Word32 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_load_update_W(dest,ptr,incr,bufsize,K) \
{ ptr = (int *) HEXAGON_circ_ldw (ptr, &(dest), (((K)<<24)|((bufsize)<<2)), ((incr)*4)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_load_update_H(Word16 dst, Word16 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_load_update_H(dest,ptr,incr,bufsize,K) \
{ ptr = (int16_t *) HEXAGON_circ_ldh (ptr, &(dest), ((((K)-1)<<24)|((bufsize)<<1)), ((incr)*2)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_load_update_UH( UWord16 dst, UWord16 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_load_update_UH(dest,ptr,incr,bufsize,K) \
{ ptr = (uint16_t *) HEXAGON_circ_lduh (ptr, &(dest), ((((K)-1)<<24)|((bufsize)<<1)), ((incr)*2)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_load_update_B(Word8 dst, Word8 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_load_update_B(dest,ptr,incr,bufsize,K) \
{ ptr = (int8_t *) HEXAGON_circ_ldb (ptr, &(dest), ((((K)-2)<<24)|(bufsize)), incr); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_load_update_UB(UWord8 dst, UWord8 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_load_update_UB(dest,ptr,incr,bufsize,K) \
{ ptr = (uint8_t *) HEXAGON_circ_ldub (ptr, &(dest), ((((K)-2)<<24)|(bufsize)), incr); }
/* Circular Store */
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_store_update_D(Word64 *src, Word64 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_store_update_D(src,ptr,incr,bufsize,K) \
{ ptr = (int64_t *) HEXAGON_circ_std (ptr, src, ((((K)+1)<<24)|((bufsize)<<3)), ((incr)*8)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_store_update_W(Word32 *src, Word32 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_store_update_W(src,ptr,incr,bufsize,K) \
{ ptr = (int *) HEXAGON_circ_stw (ptr, src, (((K)<<24)|((bufsize)<<2)), ((incr)*4)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_store_update_HL(Word16 *src, Word16 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_store_update_HL(src,ptr,incr,bufsize,K) \
{ ptr = (int16_t *) HEXAGON_circ_sth (ptr, src, ((((K)-1)<<24)|((bufsize)<<1)), ((incr)*2)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_store_update_HH(Word16 *src, Word16 *ptr, UWord32 incr, UWord32 bufsize, UWord32 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_store_update_HH(src,ptr,incr,bufsize,K) \
{ ptr = (int16_t *) HEXAGON_circ_sthhi (ptr, src, ((((K)-1)<<24)|((bufsize)<<1)), ((incr)*2)); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_circ_store_update_B(Word8 *src, Word8 *ptr, UWord32 I4, UWord32 bufsize, UWord64 K)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_circ_store_update_B(src,ptr,incr,bufsize,K) \
{ ptr = (int8_t *) HEXAGON_circ_stb (ptr, src, ((((K)-2)<<24)|(bufsize)), incr); }
/* Bit Reverse Load */
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_load_update_D(Word64 dst, Word64 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_load_update_D(dest,ptr,log2bufsize) \
{ ptr = (int64_t *) HEXAGON_brev_ldd (ptr, &(dest), (1<<(16-((log2bufsize) + 3)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_load_update_W(Word32 dst, Word32 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_load_update_W(dest,ptr,log2bufsize) \
{ ptr = (int *) HEXAGON_brev_ldw (ptr, &(dest), (1<<(16-((log2bufsize) + 2)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_load_update_H(Word16 dst, Word16 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_load_update_H(dest,ptr,log2bufsize) \
{ ptr = (int16_t *) HEXAGON_brev_ldh (ptr, &(dest), (1<<(16-((log2bufsize) + 1)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_load_update_UH(UWord16 dst, UWord16 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_load_update_UH(dest,ptr,log2bufsize) \
{ ptr = (uint16_t *) HEXAGON_brev_lduh (ptr, &(dest), (1<<(16-((log2bufsize) + 1)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_load_update_B(Word8 dst, Word8 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_load_update_B(dest,ptr,log2bufsize) \
{ ptr = (int8_t *) HEXAGON_brev_ldb (ptr, &(dest), (1<<(16-((log2bufsize))))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_load_update_UB(UWord8 dst, UWord8 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_load_update_UB(dest,ptr,log2bufsize) \
{ ptr = (uint8_t *) HEXAGON_brev_ldub (ptr, &(dest), (1<<(16-((log2bufsize))))); }
/* Bit Reverse Store */
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_store_update_D(Word64 *src, Word64 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_store_update_D(src,ptr,log2bufsize) \
{ ptr = (int64_t *) HEXAGON_brev_std (ptr, src, (1<<(16-((log2bufsize) + 3)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_store_update_W(Word32 *src, Word32 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_store_update_W(src,ptr,log2bufsize) \
{ ptr = (int *) HEXAGON_brev_stw (ptr, src, (1<<(16-((log2bufsize) + 2)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_store_update_HL(Word16 *src, Word16 *ptr, Word32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_store_update_HL(src,ptr,log2bufsize) \
{ ptr = (int16_t *) HEXAGON_brev_sth (ptr, src, (1<<(16-((log2bufsize) + 1)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_store_update_HH(Word16 *src, Word16 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_store_update_HH(src,ptr,log2bufsize) \
{ ptr = (int16_t *) HEXAGON_brev_sthhi (ptr, src, (1<<(16-((log2bufsize) + 1)))); }
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: void Q6_bitrev_store_update_B(Word8 *src, Word8 *ptr, UWord32 Iu4)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#define Q6_bitrev_store_update_B(src,ptr,log2bufsize) \
{ ptr = (int8_t *) HEXAGON_brev_stb (ptr, src, (1<<(16-((log2bufsize))))); }
#define HEXAGON_circ_ldd __builtin_circ_ldd
#define HEXAGON_circ_ldw __builtin_circ_ldw
#define HEXAGON_circ_ldh __builtin_circ_ldh
#define HEXAGON_circ_lduh __builtin_circ_lduh
#define HEXAGON_circ_ldb __builtin_circ_ldb
#define HEXAGON_circ_ldub __builtin_circ_ldub
#define HEXAGON_circ_std __builtin_circ_std
#define HEXAGON_circ_stw __builtin_circ_stw
#define HEXAGON_circ_sth __builtin_circ_sth
#define HEXAGON_circ_sthhi __builtin_circ_sthhi
#define HEXAGON_circ_stb __builtin_circ_stb
#define HEXAGON_brev_ldd __builtin_brev_ldd
#define HEXAGON_brev_ldw __builtin_brev_ldw
#define HEXAGON_brev_ldh __builtin_brev_ldh
#define HEXAGON_brev_lduh __builtin_brev_lduh
#define HEXAGON_brev_ldb __builtin_brev_ldb
#define HEXAGON_brev_ldub __builtin_brev_ldub
#define HEXAGON_brev_std __builtin_brev_std
#define HEXAGON_brev_stw __builtin_brev_stw
#define HEXAGON_brev_sth __builtin_brev_sth
#define HEXAGON_brev_sthhi __builtin_brev_sthhi
#define HEXAGON_brev_stb __builtin_brev_stb
#ifdef __HVX__
/* ==========================================================================
Assembly Syntax: if (Qt) vmem(Rt+#0) = Vs
C Intrinsic Prototype: void Q6_vmaskedstoreq_QAV(HVX_VectorPred Qt, HVX_VectorAddress A, HVX_Vector Vs)
Instruction Type: COPROC_VMEM
Execution Slots: SLOT0
========================================================================== */
#define Q6_vmaskedstoreq_QAV __BUILTIN_VECTOR_WRAP(__builtin_HEXAGON_V6_vmaskedstoreq)
/* ==========================================================================
Assembly Syntax: if (!Qt) vmem(Rt+#0) = Vs
C Intrinsic Prototype: void Q6_vmaskedstorenq_QAV(HVX_VectorPred Qt, HVX_VectorAddress A, HVX_Vector Vs)
Instruction Type: COPROC_VMEM
Execution Slots: SLOT0
========================================================================== */
#define Q6_vmaskedstorenq_QAV __BUILTIN_VECTOR_WRAP(__builtin_HEXAGON_V6_vmaskedstorenq)
/* ==========================================================================
Assembly Syntax: if (Qt) vmem(Rt+#0):nt = Vs
C Intrinsic Prototype: void Q6_vmaskedstorentq_QAV(HVX_VectorPred Qt, HVX_VectorAddress A, HVX_Vector Vs)
Instruction Type: COPROC_VMEM
Execution Slots: SLOT0
========================================================================== */
#define Q6_vmaskedstorentq_QAV __BUILTIN_VECTOR_WRAP(__builtin_HEXAGON_V6_vmaskedstorentq)
/* ==========================================================================
Assembly Syntax: if (!Qt) vmem(Rt+#0):nt = Vs
C Intrinsic Prototype: void Q6_vmaskedstorentnq_QAV(HVX_VectorPred Qt, HVX_VectorAddress A, HVX_Vector Vs)
Instruction Type: COPROC_VMEM
Execution Slots: SLOT0
========================================================================== */
#define Q6_vmaskedstorentnq_QAV __BUILTIN_VECTOR_WRAP(__builtin_HEXAGON_V6_vmaskedstorentnq)
#endif
#endif /* #ifndef _HEXAGON_CIRC_BREV_INTRINSICS_H_ */
#ifdef __NOT_DEFINED__
/*** comment block template ***/
/* ==========================================================================
Assembly Syntax: Return=instruction()
C Intrinsic Prototype: ReturnType Intrinsic(ParamType Rs, ParamType Rt)
Instruction Type: InstructionType
Execution Slots: SLOT0123
========================================================================== */
#endif /*** __NOT_DEFINED__ ***/

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More