nativity/bootstrap/library.zig
David Gonzalez Martin bd22f8eb80 Const local
2024-05-23 19:27:18 -06:00

824 lines
26 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const os = builtin.os.tag;
const arch = builtin.cpu.arch;
const page_size = std.mem.page_size;
pub fn assert(ok: bool) void {
if (!ok) unreachable;
}
pub const BoundedArray = std.BoundedArray;
pub const Arena = struct {
position: u64,
commit_position: u64,
alignment: u64,
size: u64,
pub const Temporary = struct {
arena: *Arena,
position: u64,
};
pub const commit_granularity = 2 * 1024 * 1024;
pub fn init(requested_size: u64) !*Arena {
var size = requested_size;
const size_roundup_granularity = commit_granularity;
size += size_roundup_granularity - 1;
size -= size % size_roundup_granularity;
const initial_commit_size = commit_granularity;
assert(initial_commit_size >= @sizeOf(Arena));
const reserved_memory = try reserve(size);
try commit(reserved_memory, initial_commit_size);
const arena: *Arena = @alignCast(@ptrCast(reserved_memory));
arena.* = .{
.position = @sizeOf(Arena),
.commit_position = initial_commit_size,
.alignment = 8,
.size = size,
};
return arena;
}
pub fn allocate(arena: *Arena, size: u64) ![*]u8 {
if (arena.position + size <= arena.size) {
const base: [*]u8 = @ptrCast(arena);
var post_alignment_position = arena.position + arena.alignment - 1;
post_alignment_position -= post_alignment_position % arena.alignment;
const alignment = post_alignment_position - arena.position;
const result = base + arena.position + alignment;
arena.position += size + alignment;
if (arena.commit_position < arena.position) {
var size_to_commit = arena.position - arena.commit_position;
size_to_commit += commit_granularity - 1;
size_to_commit -= size_to_commit % commit_granularity;
try commit(base + arena.commit_position, size_to_commit);
arena.commit_position += size_to_commit;
}
return result;
} else {
unreachable;
}
}
pub fn align_forward(arena: *Arena, alignment: u64) void {
arena.position = std.mem.alignForward(u64, arena.position, alignment);
}
pub fn new(arena: *Arena, comptime T: type) !*T {
const result: *T = @ptrCast(@alignCast(try arena.allocate(@sizeOf(T))));
return result;
}
pub fn new_array(arena: *Arena, comptime T: type, count: usize) ![]T {
const result: [*]T = @ptrCast(@alignCast(try arena.allocate(@sizeOf(T) * count)));
return result[0..count];
}
pub fn duplicate_bytes(arena: *Arena, bytes: []const u8) ![]u8 {
const slice = try arena.new_array(u8, bytes.len);
@memcpy(slice, bytes);
return slice;
}
pub fn duplicate_bytes_zero_terminated(arena: *Arena, bytes: []const u8) ![:0]u8 {
const slice = try arena.new_array(u8, bytes.len + 1);
slice[bytes.len] = 0;
@memcpy(slice[0..bytes.len], bytes);
return slice[0..bytes.len :0];
}
pub fn join(arena: *Arena, slices: []const []const u8) ![]u8 {
var byte_count: usize = 0;
for (slices) |slice| {
byte_count += slice.len;
}
const result = try arena.new_array(u8, byte_count);
byte_count = 0;
for (slices) |slice| {
@memcpy(result[byte_count..][0..slice.len], slice);
byte_count += slice.len;
}
return result;
}
};
pub fn DynamicBoundedArray(comptime T: type) type {
return struct {
pointer: [*]T = @constCast((&[_]T{}).ptr),
length: u32 = 0,
capacity: u32 = 0,
const Array = @This();
pub fn init(arena: *Arena, count: u32) !Array {
const array = try arena.new_array(T, count);
return Array{
.pointer = array.ptr,
.length = 0,
.capacity = count,
};
}
pub fn append(array: *Array, item: T) void {
const index = array.length;
assert(index < array.capacity);
array.pointer[index] = item;
array.length += 1;
}
pub fn append_slice(array: *Array, items: []const T) void {
const count: u32 = @intCast(items.len);
const index = array.length;
assert(index + count <= array.capacity);
@memcpy(array.pointer[index..][0..count], items);
array.length += count;
}
pub fn slice(array: *Array) []T {
return array.pointer[0..array.length];
}
};
}
const pinned_array_page_size = 2 * 1024 * 1024;
const pinned_array_max_size = std.math.maxInt(u32) - pinned_array_page_size;
const pinned_array_default_granularity = pinned_array_page_size;
const small_granularity = std.mem.page_size;
const large_granularity = 2 * 1024 * 1024;
// This must be used with big arrays, which are not resizeable (can't be cleared)
pub fn PinnedArray(comptime T: type) type {
return PinnedArrayAdvanced(T, null, small_granularity);
}
// This must be used with big arrays, which are not resizeable (can't be cleared)
pub fn PinnedArrayAdvanced(comptime T: type, comptime MaybeIndex: ?type, comptime granularity: comptime_int) type {
return struct {
pointer: [*]T = undefined,
length: u32 = 0,
committed: u32 = 0,
pub const Index = if (MaybeIndex) |I| getIndexForType(T, I) else enum(u32) {
null = 0xffff_ffff,
_,
};
const Array = @This();
pub fn const_slice(array: *const Array) []const T {
return array.pointer[0..array.length];
}
pub fn slice(array: *Array) []T {
return array.pointer[0..array.length];
}
pub fn get_unchecked(array: *Array, index: u32) *T {
const array_slice = array.slice();
return &array_slice[index];
}
pub fn get(array: *Array, index: Index) *T {
assert(index != .null);
const i = @intFromEnum(index);
return array.get_unchecked(i);
}
pub fn get_index(array: *Array, item: *T) u32 {
const many_item: [*]T = @ptrCast(item);
const result: u32 = @intCast(@intFromPtr(many_item) - @intFromPtr(array.pointer));
assert(result < pinned_array_max_size);
return @divExact(result, @sizeOf(T));
}
pub fn get_typed_index(array: *Array, item: *T) Index {
return @enumFromInt(array.get_index(item));
}
pub fn ensure_capacity(array: *Array, additional: u32) void {
if (array.committed == 0) {
assert(array.length == 0);
array.pointer = @alignCast(@ptrCast(reserve(pinned_array_max_size) catch unreachable));
}
const length = array.length;
const size = length * @sizeOf(T);
const granularity_aligned_size = align_forward(size, granularity);
const new_size = size + additional * @sizeOf(T);
if (granularity_aligned_size < new_size) {
assert((length + additional) * @sizeOf(T) <= pinned_array_max_size);
const new_granularity_aligned_size = align_forward(new_size, granularity);
const pointer: [*]u8 = @ptrCast(array.pointer);
const commit_pointer = pointer + granularity_aligned_size;
const commit_size = new_granularity_aligned_size - granularity_aligned_size;
commit(commit_pointer, commit_size) catch unreachable;
array.committed += @intCast(@divExact(commit_size, granularity));
}
}
pub fn append(array: *Array, item: T) *T {
array.ensure_capacity(1);
return array.append_with_capacity(item);
}
pub fn append_index(array: *Array, item: T) u32 {
return array.get_index(array.append(item));
}
pub fn append_typed_index(array: *Array, item: T) Index {
return array.get_typed_index(array.append(item));
}
pub fn append_slice(array: *Array, items: []const T) void {
array.ensure_capacity(@intCast(items.len));
array.append_slice_with_capacity(items);
}
pub fn add_one_with_capacity(array: *Array) *T {
const index = array.length;
assert(index * @sizeOf(T) < pinned_array_max_size);
array.length += 1;
const ptr = &array.pointer[index];
return ptr;
}
pub fn add_one(array: *Array) *T{
array.ensure_capacity(1);
return array.add_one_with_capacity();
}
pub fn append_with_capacity(array: *Array, item: T) *T {
const ptr = array.add_one_with_capacity();
ptr.* = item;
return ptr;
}
pub fn append_slice_with_capacity(array: *Array, items: []const T) void {
if (items.len > 0) {
const index = array.length;
const count: u32 = @intCast(items.len);
assert((index + count - 1) * @sizeOf(T) < pinned_array_max_size);
array.length += count;
@memcpy(array.pointer[index..][0..count], items);
}
}
pub fn insert(array: *@This(), index: u32, item: T) void {
assert(index < array.length);
array.ensure_capacity(1);
const src = array.slice()[index..];
array.length += 1;
const dst = array.slice()[index + 1 ..];
copy_backwards(T, dst, src);
array.slice()[index] = item;
}
pub fn in_range(array: *@This(), item: *T) bool {
if (array.committed == 0) return false;
if (@intFromPtr(item) < @intFromPtr(array.pointer)) return false;
const top = @intFromPtr(array.pointer) + array.committed * granularity;
if (@intFromPtr(item) >= top) return false;
return true;
}
};
}
pub fn reserve(size: u64) ![*]u8 {
return switch (os) {
.linux, .macos => (try std.posix.mmap(null, size, std.posix.PROT.NONE, .{
.ANONYMOUS = true,
.TYPE = .PRIVATE,
}, -1, 0)).ptr,
.windows => @ptrCast(try std.os.windows.VirtualAlloc(null, size, std.os.windows.MEM_RESERVE, std.os.windows.PAGE_READWRITE)),
else => @compileError("OS not supported"),
};
}
pub fn commit(bytes: [*]u8, size: u64) !void {
const slice = bytes[0..size];
return switch (os) {
.linux, .macos => try std.posix.mprotect(@alignCast(slice), std.posix.PROT.WRITE | std.posix.PROT.READ),
.windows => _ = try std.os.windows.VirtualAlloc(bytes, size, std.os.windows.MEM_COMMIT, std.os.windows.PAGE_READWRITE),
else => @compileError("OS not supported"),
};
}
pub fn getIndexForType(comptime T: type, comptime E: type) type {
assert(@typeInfo(E) == .Enum);
_ = T;
const MAX = std.math.maxInt(u32);
const EnumField = std.builtin.Type.EnumField;
comptime var fields: []const EnumField = &.{};
// comptime var enum_value: comptime_int = 0;
fields = fields ++ @typeInfo(E).Enum.fields;
fields = fields ++ [1]EnumField{.{
.name = "null",
.value = MAX,
}};
const Result = @Type(.{
.Enum = .{
.tag_type = u32,
.fields = fields,
.decls = &.{},
.is_exhaustive = false,
},
});
return Result;
}
fn JointEnum(comptime enums: []const type, comptime backing_type: ?type) type {
_ = backing_type; // autofix
_ = enums; // autofix
return @Type(.{
.Enum = .{
},
});
}
pub fn my_hash(bytes: []const u8) u32 {
const fnv_offset = 14695981039346656037;
const fnv_prime = 1099511628211;
var result: u64 = fnv_offset;
for (bytes) |byte| {
result ^= byte;
result *%= fnv_prime;
}
return @truncate(result);
}
fn CopyPtrAttrs(
comptime source: type,
comptime size: std.builtin.Type.Pointer.Size,
comptime child: type,
) type {
const info = @typeInfo(source).Pointer;
return @Type(.{
.Pointer = .{
.size = size,
.is_const = info.is_const,
.is_volatile = info.is_volatile,
.is_allowzero = info.is_allowzero,
.alignment = info.alignment,
.address_space = info.address_space,
.child = child,
.sentinel = null,
},
});
}
fn AsBytesReturnType(comptime P: type) type {
const size = @sizeOf(std.meta.Child(P));
return CopyPtrAttrs(P, .One, [size]u8);
}
/// Given a pointer to a single item, returns a slice of the underlying bytes, preserving pointer attributes.
pub fn asBytes(ptr: anytype) AsBytesReturnType(@TypeOf(ptr)) {
return @ptrCast(@alignCast(ptr));
}
pub fn byte_equal(a: []const u8, b: []const u8) bool {
if (a.len != b.len) return false;
if (a.len != b.len) return false;
if (a.len == 0 or a.ptr == b.ptr) return true;
for (a, b) |byte_a, byte_b| {
if (byte_a != byte_b) return false;
}
return true;
}
pub fn byte_equal_terminated(a: [*:0]const u8, b: [*:0]const u8) bool {
const a_slice = span(a);
const b_slice = span(b);
return byte_equal(a_slice, b_slice);
}
const pinned_hash_map_page_size = 2 * 1024 * 1024;
const pinned_hash_map_max_size = std.math.maxInt(u32) - pinned_hash_map_page_size;
const pinned_hash_map_default_granularity = pinned_hash_map_page_size;
pub fn PinnedHashMap(comptime K: type, comptime V: type) type {
return PinnedHashMapAdvanced(K, V, small_granularity);
}
pub fn PinnedHashMapAdvanced(comptime K: type, comptime V: type, comptime granularity: comptime_int) type {
return struct {
key_pointer: [*]K = undefined,
value_pointer: [*]V = undefined,
length: u64 = 0,
committed_key: u32 = 0,
committed_value: u32 = 0,
const Map = @This();
pub fn get_pointer(map: *Map, key: K) ?*V {
for (map.keys(), 0..) |k, i| {
const is_equal = switch (@typeInfo(K)) {
.Pointer => |pointer| switch (pointer.size) {
.Slice => byte_equal(k, key),
else => k == key,
},
.Struct, .Array => equal(k, key),
else => k == key,
};
if (is_equal) {
return &map.value_pointer[i];
}
}
return null;
}
pub fn get(map: *@This(), key: K) ?V {
if (map.get_pointer(key)) |p| {
return p.*;
} else {
return null;
}
}
pub fn put(map: *@This(), key: K, value: V) void {
if (map.get_pointer(key)) |value_pointer| {
value_pointer.* = value;
} else {
const len = map.length;
map.ensure_capacity(len + 1);
map.put_at_with_capacity(len, key, value);
}
}
pub fn put_no_clobber(map: *@This(), key: K, value: V) void {
assert(map.get_pointer(key) == null);
const len = map.length;
map.ensure_capacity(len + 1);
map.put_at_with_capacity(len, key, value);
}
fn put_at_with_capacity(map: *@This(), index: u64, key: K, value: V) void {
map.length += 1;
assert(index < map.length);
map.key_pointer[index] = key;
map.value_pointer[index] = value;
}
fn ensure_capacity(map: *Map, additional: u64) void {
if (map.committed_key == 0) {
map.key_pointer = @alignCast(@ptrCast(reserve(pinned_hash_map_max_size) catch unreachable));
map.value_pointer = @alignCast(@ptrCast(reserve(pinned_hash_map_max_size) catch unreachable));
}
const length = map.length;
assert((length + additional) * @sizeOf(K) <= pinned_array_max_size);
{
const key_size = length * @sizeOf(K);
const key_granularity_aligned_size = align_forward(key_size, granularity);
const key_new_size = key_size + additional * @sizeOf(K);
if (key_granularity_aligned_size < key_new_size) {
const new_key_granularity_aligned_size = align_forward(key_new_size, granularity);
const key_pointer: [*]u8 = @ptrCast(map.key_pointer);
const commit_pointer = key_pointer + key_granularity_aligned_size;
const commit_size = new_key_granularity_aligned_size - key_granularity_aligned_size;
commit(commit_pointer, commit_size) catch unreachable;
map.committed_key += @intCast(@divExact(commit_size, granularity));
}
}
{
const value_size = length * @sizeOf(V);
const value_granularity_aligned_size = align_forward(value_size, granularity);
const value_new_size = value_size + additional * @sizeOf(K);
if (value_granularity_aligned_size < value_new_size) {
const new_value_granularity_aligned_size = align_forward(value_new_size, granularity);
const value_pointer: [*]u8 = @ptrCast(map.value_pointer);
commit(value_pointer + value_granularity_aligned_size, new_value_granularity_aligned_size - value_granularity_aligned_size) catch unreachable;
const commit_pointer = value_pointer + value_granularity_aligned_size;
const commit_size = new_value_granularity_aligned_size - value_granularity_aligned_size;
commit(commit_pointer, commit_size) catch unreachable;
map.committed_value += @intCast(@divExact(commit_size, granularity));
}
}
}
pub fn keys(map: *@This()) []K {
return map.key_pointer[0..map.length];
}
pub fn values(map: *@This()) []V {
return map.value_pointer[0..map.length];
}
pub fn clear(map: *Map) void {
map.length = 0;
}
};
}
pub const ListType = enum {
index,
pointer,
};
pub fn enumFromString(comptime E: type, string: []const u8) ?E {
return inline for (@typeInfo(E).Enum.fields) |enum_field| {
if (byte_equal(string, enum_field.name)) {
break @field(E, enum_field.name);
}
} else null;
}
extern fn pthread_jit_write_protect_np(enabled: bool) void;
fn copy_backwards(comptime T: type, destination: []T, source: []const T) void {
@setRuntimeSafety(false);
assert(destination.len >= source.len);
var i = source.len;
while (i > 0) {
i -= 1;
destination[i] = source[i];
}
}
pub fn equal(a: anytype, b: @TypeOf(a)) bool {
const T = @TypeOf(a);
switch (@typeInfo(T)) {
.Struct => |info| {
inline for (info.fields) |field_info| {
if (!equal(@field(a, field_info.name), @field(b, field_info.name))) return false;
}
return true;
},
.ErrorUnion => {
if (a) |a_p| {
if (b) |b_p| return equal(a_p, b_p) else |_| return false;
} else |a_e| {
if (b) |_| return false else |b_e| return a_e == b_e;
}
},
.Union => |info| {
if (info.tag_type) |UnionTag| {
const tag_a = activeTag(a);
const tag_b = activeTag(b);
if (tag_a != tag_b) return false;
inline for (info.fields) |field_info| {
if (@field(UnionTag, field_info.name) == tag_a) {
return equal(@field(a, field_info.name), @field(b, field_info.name));
}
}
return false;
}
@compileError("cannot compare untagged union type " ++ @typeName(T));
},
.Array => {
if (a.len != b.len) return false;
for (a, 0..) |e, i|
if (!equal(e, b[i])) return false;
return true;
},
.Vector => |info| {
var i: usize = 0;
while (i < info.len) : (i += 1) {
if (!equal(a[i], b[i])) return false;
}
return true;
},
.Pointer => |info| {
return switch (info.size) {
.One, .Many, .C => a == b,
.Slice => a.ptr == b.ptr and a.len == b.len,
};
},
.Optional => {
if (a == null and b == null) return true;
if (a == null or b == null) return false;
return equal(a.?, b.?);
},
else => return a == b,
}
}
pub fn Tag(comptime T: type) type {
return switch (@typeInfo(T)) {
.Enum => |info| info.tag_type,
.Union => |info| info.tag_type orelse @compileError(@typeName(T) ++ " has no tag type"),
else => @compileError("expected enum or union type, found '" ++ @typeName(T) ++ "'"),
};
}
///Returns the active tag of a tagged union
pub fn activeTag(u: anytype) Tag(@TypeOf(u)) {
const T = @TypeOf(u);
return @as(Tag(T), u);
}
pub fn missingCase(e: anytype) noreturn {
@panic(@tagName(e));
}
// Converts values in the range [0, 100) to a string.
fn digits2(value: usize) [2]u8 {
return ("0001020304050607080910111213141516171819" ++
"2021222324252627282930313233343536373839" ++
"4041424344454647484950515253545556575859" ++
"6061626364656667686970717273747576777879" ++
"8081828384858687888990919293949596979899")[value * 2 ..][0..2].*;
}
pub fn digit_to_char(digit: u8) u8 {
return switch (digit) {
0...9 => digit + '0',
10...35 => digit + ((@as(u8, 'a')) - 10),
else => unreachable,
};
}
pub fn format_int(buffer: []u8, value: u64, base: u8, signed: bool) []u8 {
assert(base >= 2);
var a: u64 = value;
var index: usize = buffer.len;
if (base == 10) {
while (a >= 100) : (a = @divTrunc(a, 100)) {
index -= 2;
buffer[index..][0..2].* = digits2(@as(usize, @intCast(a % 100)));
}
if (a < 10) {
index -= 1;
buffer[index] = '0' + @as(u8, @intCast(a));
} else {
index -= 2;
buffer[index..][0..2].* = digits2(@as(usize, @intCast(a)));
}
} else {
while (true) {
const digit = a % base;
index -= 1;
buffer[index] = digit_to_char(@as(u8, @intCast(digit)));
a /= base;
if (a == 0) break;
}
}
if (signed) {
index -= 1;
buffer[index] = '-';
}
return buffer[index..];
}
pub fn span(ptr: [*:0]const u8) [:0]const u8 {
var len: usize = 0;
while (ptr[len] != 0) {
len += 1;
}
return ptr[0..len :0];
}
pub fn starts_with_slice(bytes: []const u8, slice: []const u8) bool {
if (slice.len <= bytes.len) {
if (byte_equal(bytes[0..slice.len], slice)) {
return true;
}
}
return false;
}
pub fn ends_with_slice(bytes: []const u8, slice: []const u8) bool {
if (slice.len <= bytes.len) {
if (byte_equal(bytes[bytes.len - slice.len ..], slice)) {
return true;
}
}
return false;
}
pub fn first_byte(bytes: []const u8, byte: u8) ?usize {
for (bytes, 0..) |b, i| {
if (b == byte) {
return i;
}
}
return null;
}
pub fn first_slice(bytes: []const u8, slice: []const u8) ?usize {
if (slice.len <= bytes.len) {
const top = bytes.len - slice.len;
var i: usize = 0;
while (i < top) : (i += 1) {
const chunk = bytes[i..][0..slice.len];
if (byte_equal(chunk, slice)) {
return i;
}
}
}
return null;
}
pub fn last_byte(bytes: []const u8, byte: u8) ?usize {
var i = bytes.len;
while (i > 0) {
i -= 1;
if (bytes[i] == byte) {
return i;
}
}
return null;
}
pub fn align_forward(value: u64, alignment: u64) u64 {
const mask = alignment - 1;
return (value + mask) & ~mask;
}
pub fn exit_with_error() noreturn {
@breakpoint();
std.posix.exit(1);
}
pub fn read_file(arena: *Arena, directory: std.fs.Dir, file_relative_path: []const u8) []const u8 {
const source_file = directory.openFile(file_relative_path, .{}) catch |err| {
const stdout = std.io.getStdOut();
stdout.writeAll("Can't find file '") catch {};
stdout.writeAll(file_relative_path) catch {};
// stdout.writeAll(" in directory ") catch {};
// stdout.writeAll(file.package.directory.path) catch {};
stdout.writeAll("' for error ") catch {};
stdout.writeAll(@errorName(err)) catch {};
@panic("Unrecoverable error");
};
const file_size = source_file.getEndPos() catch unreachable;
var file_buffer = arena.new_array(u8, file_size) catch unreachable;
const read_byte_count = source_file.readAll(file_buffer) catch unreachable;
assert(read_byte_count == file_size);
source_file.close();
//TODO: adjust file maximum size
return file_buffer[0..read_byte_count];
}
pub fn self_exe_path(arena: *Arena) ![]const u8 {
var buffer: [std.fs.MAX_PATH_BYTES]u8 = undefined;
return try arena.duplicate_bytes(try std.fs.selfExePath(&buffer));
}
pub fn realpath(arena: *Arena, dir: std.fs.Dir, relative_path: []const u8) ![]const u8 {
var buffer: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const stack_realpath = try dir.realpath(relative_path, &buffer);
const heap_realpath = try arena.new_array(u8, stack_realpath.len);
@memcpy(heap_realpath, stack_realpath);
return heap_realpath;
}
pub fn argument_copy_zero_terminated(arena: *Arena, args: []const []const u8) ![:null]?[*:0]u8 {
var result = try arena.new_array(?[*:0]u8, args.len + 1);
result[args.len] = null;
for (args, 0..) |argument, i| {
result[i] = try arena.duplicate_bytes_zero_terminated(argument);
}
return result[0..args.len :null];
}