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Glossary

Ancestor: A capability A is an ancestor of a capability X if X is a descendant of A.

APP Core: Application processor, processors booted either by the BSP or other APP cores and not the
initial boot-loader or firmware.

Aquarium: A visualization tool for Barrelfish trace data. Aquarium is written in C# and can accept data
as a stream over the network from a running Barrelfish machine, or from a trace file. It displays a
time line showing which dispatchers are running on which cores, messages between dispatchers,
and other system events.

Beehive: Beehive was an experimental soft-core processor designed by Chuck Thacker at Microsoft
Research Silicon Valley. Beehive was implemented in a simulator and on FPGAs, in particular the
BEE3 processor emulation board (which could run up to 15 Beehive cores at a time). The archi-
tecture had a number of unusual features, in particular, a ring interconnect for message passing,
a software-visible FIFO on each core for incoming messages, and a memory system implemented
using message passing (loads and stores became RPCs to the memory system). Barrelfish was
ported to the Beehive processor but support for the architecture was eventually dropped after the
Beehive project completed.

Boot driver: A piece of code running on a “home core” to manage a “target core”. It encapsulates the
hardware functionality to boot, suspend, resume, and power-down the latter.

BSP Core: Refers to the bootstrap processor, meaning the first processor that is usually booted by the
boot-loader or firmware on a hardware architecture.

cap: See capability.

capability (cap): Barrelfish uses “partitioned capabilities” to refer to most OS resources (most of which
are actually typed areas of memory). Operations on such resources are typically carried out “in-
voking” an operation on the capability via a system call to the local CPU driver. Capabilities are
fixed-size data structures which are held in areas of memory called CNodes, and which cannot be
directly read from or written to by user mode programs. Instead, users move capabilities between
CNodes by invoking operations on the capability that refers to the CNode. Capabilities can be “re-
typed” and progressively refined from pure memory capabilities to ones which can be mapped
into an address space, for example, or used as CNodes. The set of capability types understood by
Barrelfish is defined using the Hamlet language.

capability node (cnode): A region of RAM containing capabilities. A CNode cannot be mapped into a
virtual address space, and so can only be accessed by operations on the CNode capability which
refers to it – this is how strict partitioning of capability memory from normal memory is achieved.
The set of CNodes which can be referenced by a single dispatcher is called the cspace.

capability space (cspace): The set of capabilities held by a dispatcher on a core is organized in a guarded
page table structure implemented as a tree of CNodes, where internal nodes are CNodes and leaf
nodes are non-CNode capabilities. This allows any capability held by a dispatcher to be referred
to using a 32-bit address; when invoking a capability, the CPU driver walks the cspace structure
resolving a variable number of bits of this address at each level. This means that capabilities used
frequently should be stored near the top of the tree, preferably in the root CNode. Some CPU
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drivers allow a fast path where the 32-bit address is implicitly assumed to simply an offset in the
root CNode. The capability for the root CNode can be efficiently found from the DCB; note that,
unlike the vspace, the cspace is purely local to a core and cannot be shared between dispatchers
on difference cores.

CC-UMP: See User-level Message Passing.

Channel: A uni-directional kernel-mediated communication path between dispatchers. All messages
travel over channels. Holding a capability for a channel guarantees the right to send a message to
it (although the message may not be sent for reasons other than protection).

cnode: See capability node.

CNode capability: A capability type referring to a CNode.

CPU driver: The code running on a core which executes in kernel or privileged mode. CPU drivers
are the Barrelfish equivalent of a kernel, except that there is one per core, and they share no
state or synchronization. CPU drivers are typically non-preemptible, single-threaded, and mostly
stateless.

cspace: See capability space.

DCB: See dispatcher control block.

Descendant: A capability X is a descendant of a capability A if: X was retyped from A, or X is a de-
scendant of A1 and A1 is a copy of A, or X is a descendant of B and B is a descendant of A, or X is
a copy of X1 and X1 is a descendant of A.

device frame capability: A capability type which refers to a region of physical address space contain-
ing memory-mapped I/O registers. A direct subtype of a Physical Address capability.

dispatcher: The data structure representing an application’s runnability on a core. Dispatchers contain
scheduling state, message end points, and upcall entry points; they are the nearest equivalent to
processes in Unix. Dispatchers are always tied to a core. A Barrelfish application can be viewed
as a collection of dispatchers spread across the set of cores on which the application might run,
together with associated other resources. The term is from K42. Multiple dispatchers may share a
vspaceor cspace.

dispatcher capability: A capability referring to the memory region occupied by a Dispatcher Control
Block.

dispatcher control block (DCB): The kernel object representing the dispatcher. DCBs are referred to by
specially typed capabilities.

dite: A tool used to build a boot image in the proprietary Intel “32.obj” format, for booting on the
Single-chip Cloud Computer.

Domain: The word domain is used to refer to the user-level code sharing a protection domain and
(usually) an address space. A domain consists of one or more dispatchers.

Driver Domain: A driver domain executes one or more drivers. It is special in the sense that it com-
municates with Kaluga to act on requests to spawn or destroy new driver instances.

Driver Instance: A driver is the runtime object instantiated from a given driver module. In practice
any number of instancescan be created from a driver module and executed within one or more
driver domains.

Driver Module: A Barrelfish driver module is a piece of code (typically a library) that describes the
logic for interacting with a device. It follows a well defined structure that allows Kaluga to inter-
face with an instantiated driver (see Driver Instance) to control its life-cycle.

Elver: An intermediate boot loader for booting 64-bit ELF images on Intel-architecture machines where
the main boot loader (such as Grub) does not support entering a kernel in long mode. Elver is
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specified as the first module of the multiboot image, and puts the boot processor into long mode
before jumping to the CPU driver, which is assumed to be in the second multiboot module.

endpoint capability: A capability referring to a (core-local) communication endpoint. Posession of
such a capability enables the holder to send a message to endpoint.

errno.h: See Fugu.

Filet-o-Fish (FoF): An embedding of C into Haskell, used for writing C code generators for Haskell-
based domain specific languages. Instead of using C syntax combinators (as used in Flounder
and Mackerel) FoF-based DSLs (such as Fugu and Hamlet) use backend which are actually se-
mantic specifications of behavior, from which FoF can generates C code which is guaranteed to
implement the given semantics.

Flounder: The Interface Definition Language used for communication between domains in Barrelfish.
Flounder supports message type signatures, various concrete type constructors like structs and
arrays, and also some opaque types like capabilities and interface references. The Flounder com-
piler is written in Haskell and generates code in C or THC. Flounder generates specialized code
for each Interconnect Driver in a system.

FoF: See Filet-o-Fish.

foreign capability: A capability referring to a resource which only makes sense on a different core to
the one it exists on. For example, since the cspace is purely local to core, transferring a CNode
capability to another core transforms it into a Foreign CNode capability, whose only operations
are to remotely manipulate (principally copy capabilities from) the original CNode.

frame capability: A capability refering to a set of page frames which can be mapped into a virtual
address space. Frame capabilities are a subtype of RAM capabilities; the latter cannot be mapped.

Fugu (errno.h): A small domain-specific language (implemented using Filet-o-Fish) to express error
conditions and messages for Barrelfish. Fugu offloads the problem of tracking error messages
and code, and also implements a short error “stack” in machine word to provide more detailed
error information. Fugu generates the errno.h file.

Hake (Hakefile): The build system for Barrelfish. The Barrelfish source tree consists of a Hakefile in
each relevant source directory, which contains a single Haskell expression specifying a list of
targets to be built. Hake itself aggregates all these Hakefiles, and uses them to generate a single
Makefile in a separate, build directory. This Makefile contains an explicit target for every file
that can be built for Barrelfish for every appropriate architecture. A separate, manually-edited
Makefile contains convenient symbolic targets for creating boot images, etc. Since the contents of
Hakefiles are Haskell expressions, quite powerful constructs can be used to specify how to build
files for different targets.

Hakefile: See Hake.

Hamlet: The language used to specify all Barrelfish capability types, together with their in-memory
formats and transformation rules when transferring a capability from one core to another. Hamlet
is implemented using Filet-o-Fish and generates capability dispatch code for CPU drivers, among
other things. Surprisingly, Hamlet is a type of fish.

ICD: See interconnect driver.

interconnect driver (ICD): A partial abstraction of low-level message passing mechanism, such as a
shared-memory buffer or hardware message passing primitive. ICDs do not present a uniform
interface, and therefore require specific stubs to be generated by Flounder. Similarly, they do not
present any particular semantics with regard to flow control, polled or upcall-based delivery, etc.
A special case of an ICD is the local message passing (LMP) mechanism, which is implemented
for every type of core and provide communication between dispatchers running on that core.

IO capability: A capability enabling the holder to perform IO space operations on Intel architecture
machines. Each IO capability grants access to a range of IO space addresses on a specific core.
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Kaluga: The Barrelfish device manager. Kaluga is responsible to starting and stopping device drivers
in response to hardware events, and based on configurable system policies.

KCB: See kernel control block.

kernel capability: A capability enabling the holder to manipulate CPU driver data structures (in par-
ticular, the capability database). The kernel capability for a core is only held by the core’s monitor.

kernel control block (KCB): The kernel object representing all per-core state. KCBs are referred to by
special capability types.

LMP: See Local Message Passing.

Local Message Passing (LMP): Each Barrelfish CPU driver includes a special Interconnect Driver for
passing messages between dispatchers on the same core, often based on the concepts from LRPC
and L4 IPC. This is referred to as LMP.

Mackerel: The Domain Specific Language used in Barrelfish to specify device hardware registers and
hardware-defined in-memory data structures. The Mackerel compiler takes such a description
and outputs a C header file containing inline functions to read and write named bitfields for a
device or data structure, together with string formatting code to aid in debugging. Mackerel
input files are found in the /devices directory of the source tree, and end in .dev. Generated
header files are found in the /include/dev subdirectory of the build tree.

Mapping Database: The mapping database is used to facilitate retype and revoke operations. A capa-
bility that is not of type dispatcher, can only be retyped once. The mapping database facilitates
this check. When a capability is revoked, all its descendants and copies are deleted. The mapping
database keeps track of descendants and copies of a capability allowing for proper execution of a
revoke operation. Each core has a single private mapping database. All capabilities on the core
must be included in the database.

monitor: A privileged process running on a core which handles most core OS functionality not pro-
vided by the CPU driver. Since CPU drivers do not directly communicate with each other, the
task of state coordination in Barrelfish is mostly handled by Monitors. Monitors are also respon-
sible for setting up inter-core communication channels (“binding”), and transferring capabilities
between cores. When a capability is retyped or revoked, the monitors are responsible for ensuring
that this occurs consistently system-wide. The monitor for a core holds a special capability (the
kernel capability) which allows it to manipulate certain data structures in the CPU driver, such as
the capability database.

ND: See notification driver.

notification driver (ND): A partial abstraction of a low-level message passing mechanism which per-
forms notification (sending an event), rather than transferring data per se. In Barrelfish these
mechanisms are separated where possible for flexibility and to further decouple sender and re-
ceiver. Notification drivers exist in Barrelfish for sending inter-processor interrupts on most ar-
chitectures, for example.

Octopus: A service built on (and colocated with) the SKB which provides locking functionality inspired
by Chubby and Zookeeper, and publish/subscribe notification for Barrelfish processes.

physical address capability: A capability referring to a raw region of physical address space. This is
the most basic type of capability; all other capability types which refer to memory are ultimately
subtypes of this.

Pleco: The Domain Specific Language used in Barrelfish to specify constants for the tracing infras-
tructure. The Pleco compiler takes such description and outputs a C header file containing the
definitions, a C source file with the constants, and a JSON file to be used by host visualization
tools.

RAM capability: A capability type which refers to a region of Random Access Memory. A direct sub-
type of a Physical Address capability.
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scheduler manifest: A description of the scheduling requirements of multiprocessor application, used
to inform the various system schedulers about how best to dispatch the application’s threads.

SKB: See System Knowledge Base.

System Knowledge Base (SKB): A repository for hardware-derived system information in a running
Barrelfish system. The SKB is currently a port of the ECLiPse Constraint Logic Programming
system, and is used for (among other things) PCI bridge programming, interrupt routing, and
constructing routing trees for intra-machine multicast. The SKB runs as a system service accessed
by message passing.

THC: A dialect of C with extensions to support the asynchronous message passing flavor of most
Barrelfish services by providing an async construct and continuations. THC also integrates with
specially generated Flounder stubs.

UMP: See User-level Message Passing.

User-level Message Passing (UMP, CC-UMP): A series of Interconnect Drivers which use cache-coherent
shared memory to send cache-line sized frames between cores. UMP is based on ideas from
URPC, and avoids kernel transitions on message send and receive. It is the preferred channel for
communication between cores on an Intel-architecture PC, for example. However, because it op-
erates entirely in user space, it cannot send capabilities between cores. Instead, the Flounder stubs
for UMP send capabilities via another channel through LMP to the local monitor, which forwards
them correctly to the destination.

vnode capability: One of a set of capability types, one for each format of page table page for each
architecture supported by Barrelfish. For example, there are four Vnode capability types for the
x86-64 architecture, corresponding to the PML4, PDPT, PDIR, and PTABLE pages in a page table.

vspace: An object representing a virtual address space. Unlike a cspace, a vspace can under some
circumstances be shared between cores. However, a vspace is tied to a particular core architecture,
and a particular physical address space, though vspaces can be manipulated on other cores and
even cores of other architectures. Mappings are created in a vspace by specifying capabilities to
regions of memory that are mappable (such as frame capabilities).

ZZZ terms yet to be added: asmoffsets, retype, iref
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