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ABSTRACT
Themultikernel operating system architecture appeared over
a decade ago in response to a significant shift in an underly-
ing computer system architecture that saw a massive tran-
sition from unicore to multicore processors to deal with
scalability and hardware diversity issues. Multikernel con-
siders the computer a distributed system, directly reflects this
observation to the OS design and proposes several respective
design principles. In particular, multikernel OS constructs the
system as a tightly-coupled distributed operating system con-
sisting of a network of isolated nodes and interconnections
between them. Furthermore, it replaces implicit inter-core
communication through shared memory by explicit message
passing and maintains a general OS state using replication.
The original multikernel design was prototyped in the ex-
perimental operating system Barrelfish and proved that it
scales better than conventional Linux in environments of
many-core computer systems.
While over a decade has passed after the multikernel OS

design introduction, we still failed to see any significant
application of its ideas outside of academic research. We
reevaluate the architecture of multikernel OS and their de-
sign principles from the practical application viewpoint and
consider the current state of the art in the microprocessor
market, reconsidering assumptions made ten years ago. We
highlight the advantages of multikernel OS design and the
problems preventing its industrial adoption. Finally, we pro-
pose a practical way to overcome these challenges and pro-
mote beneficial practical applications of the new OS archi-
tecture.
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1 INTRODUCTION
In the middle of the 2000s computer industry experienced a
dramatic shift of a threefold nature. Firstly, AMD initiated
a massive transition from 32-bit to 64-bit architectures in
Spring 2003 with its Opteron [31] and Athlon 64 processors,
while Intel supported it soon in June 2004 with Xeon and
Pentium 4 processors. Secondly, VMware revived interest in
virtualization by bringing it to the x86 computers in 1999 [55]
and servers in 2001 [60]. Soon, in 2005, inspired by the fast
and widespread application of virtualization technologies,
Intel introduced ISA extension for hardware-assisted virtual-
ization – VMX [58], while AMD replied to Intel in 2006 with
SVM [1]. Finally, both major x86 CPU vendors hit the Brick
Wall (Power Wall + ILP Wall + Frequency Wall + Memory
Wall), and Intel failed with NetBurst and Hyper-Pipelined
Technology (deep pipelining) [10]. In response, in 2005, AMD
initiated the industry-wide transition to Chip Multiprocess-
ing [46] with their dual-core Athlon 64 x2 and Opteron CPUs
[20, 43]. If in the 1990s, computers were equipped with 32-bit
single-core processors without virtualization support, then
in the 2010s, the vast majority of them were equipped with
64-bit processors supporting virtualization and having from
2 up to 64 cores per chip.
This quick and massive shift in underlying computer ar-

chitecture has created new challenges and opportunities for
software development in general and operating systems de-
signers in particular. The OS research community answered,
to a large extent, the challenge of transition to 64-bit architec-
tures back in the 90s based on early non-x86 64-bit processors
like MIPS [44], DEC Alpha [53], and UltraSPARC [23] with
single address space operating systems (SASOS) like Opal
[16], Mungi [26], and Nemesis [25]. However, SASOS never
have found any significant application in the industry (some
embedded systems are an exception). Furthermore, some
features of x86-64 ISA prevent the benefits of SASOS.

In contrast to SAMOS, virtualization technologies raised a
hype in the system researcher’s community and became a hot
topic for years [1, 4, 17, 49, 54, 58, 60]. Furthermore, virtual-
ization technologies became a hot topic not only in academic
environment but substantially changed the landscape of com-
puter industry and became the standard infrastructure for
data centers [32]. Moreover, virtualization opened the way
to a new computing paradigm – cloud computing [13, 14, 61]
which use and development still continuously intensify.
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The transition from conventional single-core to multi-core
x86 processors initially took place without significant atten-
tion from the system research community. Conventional and
widespread operating systems like Linux and Windows ini-
tially took the conservative path of adaptation to the new
multi-core environment by reusing already existing facilities
for SMP with minimal additional investments [51]. These
operating systems developed and implemented these facili-
ties during the 1990s to support high-performance multipro-
cessor servers and reused them for a smooth transition to
multi-core processors. However, soon, system researchers
started to be concerned about operating systems scalabil-
ity [19, 52, 56], and processor design researchers boosted
these concerns by projections of soon arrival of heteroge-
neous [24, 27, 35] and many-core CPUs [11, 29, 42, 50]. This
pressure forced them to notice the principal shift in com-
puter architecture – computers from conventional central-
ized computational systems became distributed systems [7].
In response to this observation, the radically new operating
system design was introduced [6].
Multikernel is structuring the operating system as an in-

terconnected network of independent nodes, each of which
manages its own logically isolated and independent abstract
computer, consisting of a CPU core, a memory area, and a set
of I/O devices. It assumes no inter-core sharing and moves
OS functionality to a distributed system of processes commu-
nicating via message-passing. Multikernel OS architecture
is basing on three design principles:
1. Make all inter-core communication explicit by using

asynchronous message passing instead of shared memory
access as a primary means of communication between CPU
cores and operating system kernels.

2.Make OS structure hardware-neutral by separating CPU
core management code and inter-core communication man-
agement code.

3. View the state as replicated instead of shared. Multiker-
nel assumes a unified OSwith state shared through replicated
on each node.

Multikernel design became prototyped in Barrelfish OS for
x86-64 microprocessors [6]. All inter-core communication in
Barrelfish occurs by message passing facilities, which imple-
mentation is tailored carefully to the cache coherency pro-
tocol. OS supports the traditional process model of threads
sharing a single virtual address space across multiple cores
(Single System Image or SSI).

Multikernel in general and Barrelfish, in particular, have
inherited heavily from early Distributed Operating Systems
(DOS) developed in the 1980s for loosely-coupled networks
of computers [57] but reworked DOS ideas for a new envi-
ronment of tightly-coupled multi-core processors (hetero-
geneous) with shared memory. The primary motivation be-
hind Barrelfish was dealing with scalability and hardware

diversity issues of the operating system in the context of het-
erogeneous multi- and many-core processors, and it proved
that with the growth of cores count, it scales better than
conventional operating systems.
Barrelfish motivated a lot of OS research in the domain

of multikernel design [3, 8, 9, 21, 28, 36, 47, 59]. However,
after more than a decade passed, ideas of multikernel de-
sign still fail to go beyond the academic world and find any
significant application in the industry [9]. In this paper we
reevaluate ideas and assumptions behind multikernel and
propose a path to bridge the gap between academic research
and industrial application of multikernel.
The paper continues as follows: Section 2 provides an

overview of the multikernel operating system projects. Sec-
tion 3 provides a discussion on a reevaluation of multikernel
architecture and design principles. We consider the missed
benefits of a multikernel in Section 4. Finally, we propose a
way for bridging gap between multikernel and real-world
applications in Section 5 and conclude in Section 6.

2 MULTIKERNEL OPERATING SYSTEMS
Ideas of multikernel design ideas fell on fertile soil and moti-
vated considerable academic research worldwide. Below we
briefly discuss the most notable of them.
Quest-V is a multikernel operating system from Boston

University [36]. Like Barrelfish, Quest-V is structured as a
distributed system on a chip and linked into a single entity
by asynchronous message passing via shared memory chan-
nels. In contrast to Barrelfish trying to solve the scalability
and hardware diversity problems, Quest-V aimed for a high-
confidence multikernel. Because of this, Quest-V targets real-
time and mission-critical application domains and exploits
ideas of multikernel to provide extra reliability and fault
tolerance. For that purpose, Quest-V accompanies multiker-
nel concepts by using hardware virtualization mechanisms
for the partitioning of kernel services and by ensuring their
isolation. Quest-V does not support the concept of SSI. It
prohibits sharing the processes by different CPUs but allows
the sharing of device driver data structures to avoid complex
I/O virtualization.
Clustered Multikernel from NICTA [59] adopts the

ideas of multikernel OS design to deal with the scalability is-
sue of seL4microkernel [33]. seL4 is aminimalist concurrency-
free microkernel designed to keep kernel verification com-
plexity at an acceptable level. For concurrency avoidance,
seL4 employs a big kernel lock, which leads to a scalability
bottleneck. The more threads run in parallel, the more con-
tention they will experience accessing kernel services. The
Clustered Multikernel statically divides the computer system
into clusters, each encompassing a set of cores and memory
regions controlled by its private instance of the concurrency-
free kernel. A system administrator can set the appropriate



Towards Practical Multikernel OSes with MySyS APSys ’22, August 23–24, 2022, Virtual Event, Singapore

trade-off between kernel scalability and application-level
parallelism by managing the number and size of clusters.
At the same time, kernel verification complexity stays al-
most the same. Like Quest-V, clustered multikernel does not
support SSI abstraction.
Popcorn Linux from Virginia Tech [3] is a replicated-

kernel OS that aims to apply the multikernel OS design to
the traditional operating system, such as Linux. Popcorn
Linux is an SSI operating system built on top of multiple
instances of a kernel image, such that every kernel maintains
its state and manages its resources. Userspace applications
can run on it transparently without modification. Popcorn
implements software-based coherency based on inter-kernel
communication asynchronous message passing and enables
OS state consistency. Applications can exploit replication at
the user level too. The Popcorn Linux goal is to provide a
Linux-based SSI environment for heterogeneous and non-
coherent computer systems.
IX from Stanford and EPFL [8] is a control plane/data

plane multikernel OS designed for high throughput and low
latency networking applications. IX extends the Linux to
co-locate specialized dataplane OS nodes, which can run net-
working applications with increased performance require-
ments. IX employs hardware-assisted virtualization to isolate
dataplane nodes. Control plane Linux thus converts into a
hypervisor of a specific kind.

Arrakis from the University of Washington [47] is a con-
trol plane/data plane multikernel OS similar to IX. In con-
trast to IX, Arrakis is not an extended Linux but a modified
Barrelfish multikernel and leverages hardware support to re-
move kernel mediation from the data plane. Thus, in Arrakis,
a dataplane is an application running with direct access to
network interfaces.
IHK/McKernel is not a classical multikernel but a dual-

kernel OS from RIKEN [22] designed for Fugaku supercom-
puter. IHK/McKernel colocates in the single operating sys-
tem side-by-side two kernels: the general-purpose IHK Linux
and the special-purpose LWK McKernel aiming for applica-
tion in High-Performance Computing. Its design pursues the
following goals: provide scalable and consistent execution
of large-scale parallel applications, rapidly adapt to exotic
hardware and new programming models, provide efficient
memory and device management, eliminate OS noise, and
support the full POSIX API. IHK/McKernel uses a multiker-
nel approach to isolate Linux and offload the uncritical part
of the application from the LWK to the Linux domain. IHK
Linux plays a role of a service provider and a big universal
driver for everything. In its turn, McKernel offloads most of
the POSIX system calls to the Linux kernel while focusing
on specific requirements of HPC. IHK/McKernel supports
the SSI abstraction by running the proxy process instance
on IHK for each process instance executing on LWK.

Rack OS is a recent proposal from the TU Dresden [28].
It combines several different specialized kernels (L4-like[33]
and 𝑀3-like[2]) linked by messaging channels to manage
Rack with multiple discrete servers bundled together. Rack
OS borrows heavily frommultikernel ideas to deal with hard-
ware diversity and the absence of cache coherency between
different boards. Rack OS considers a new type of computer
architecture, taking a position between classical distributed
operating systems and classical multikernel.

NrOS from the University of Utah and VMware Research
[9] presents another approach to the multikernel – NRk-
ernel model that replicates the kernel but allows replica
sharing among cores, balancing performance and simplicity.
NrOS constructs from a simple, sequential OS kernel with
no concurrency. It scales across NUMA nodes using node
replication and uses operation logs to maintain strong con-
sistency between replicas. NrOS was written from scratch to
find a new design point in dealing with the complexity and
scalability of operating systems.

3 MULTIKERNEL ASSUMPTIONS
In this section, we reconsider and reevaluate the assumptions
underlying the original multikernel design.

Systems are increasingly diverse. Systems are not only
increasingly diverse but increasingly complicated. The hype
of recent years around Spectre [34] and Meltdown [38] vul-
nerabilities supports this point. The growth rate of ISA fea-
tures is worrying [5]. Modern CPUs are very diverse un-
der the hood (for instance, compare Intel Core i9 and ARM
Cortex-M0). However, the multikernel OS design provides
only limited support in dealing with problems of such kind.
At the same time, the problem is not new and was dis-
cussed and considered by Liedtke in application to micro-
kernel design in the mid-1990s [37]. Liedtke’s reply in the
form of non-portable architecture-specific implementation of
performance-critical code wrapped by portable architecture-
agnostic interfaces seems to stay actual and be more appro-
priate to the diversity problem.

Cores are increasingly diverse. This assumption is still
unfulfilled by the industry to a large extent. There are only
a few single-ISA heterogeneous CPUs. ARMs big.LITTLE is
one example. Recently released Intel’s Alder Lake is another
one. However, traditional OS can conservatively support
this heterogeneity type by updating the OS scheduler. At
the same time, while the specialization of processor cores
seems attractive, moving this way is blocked by many chal-
lenges. Furthermore, the industry faces a “Chicken or the
egg” problem moving this way.
The interconnect matters. It is a well-known funda-

mental property of distributed systems. However, it seems
we forgot a lesson learned from the history of distributed
operating systems [57]. They had attempted to present to



APSys ’22, August 23–24, 2022, Virtual Event, Singapore Yauhen Klimiankou

the user a network of computers as a single machine and
failed, while distributed applications succeeded ([18, 30] as
examples). The forgotten lesson is next: to achieve high per-
formance, the distributed applications should be explicitly
adjusted to the target distributed environment at design time
to maximize the locality between computations and data
and minimize the amount and distance of the communica-
tions. The SSI abstraction hides the details of the distributed
nature of the underlying machine from the application de-
signers. Therefore, it is unclear how multikernel will achieve
efficiency while hiding host environment details behind SSI
abstraction.

Messages cost less than sharedmemory. Barrelfish has
firmly proved this claim [6]. However, recent research ar-
gues that synchronization over shared memory outperforms
messaging-based synchronization at the intra-NUMA-node
level, while at the inter-NUMA-node level, the opposite is
true [9].
Cache coherence is not a panacea. During the Bar-

relfish design time, there were significant doubts about cache
coherency ability to scale, and processor designers exper-
imented with non-cache-coherent computer architectures
[29]. However, as we see, cache coherency is still with us
and shows no signs of imminent departure.
Messages are getting easier. The message-passing and

event-driven programming model found extensive use in
different domains and even programming languages [15].
Furthermore, both of them are especially common in dis-
tributed systems programming. These programming models
naturally fit into the networked structure of the underlying
hardware, while networks are commonly base on packet
switching. However, these programming models contradict
sticking to SSI abstraction to a large extent and complicate
porting of existing applications written for a shared memory
environment.
Traditional operating systems will not scale well

on many-core computers. One of the principal aims of
the original multikernel OS design was dealing with the
OS scalability on upcoming many-core computer systems.
There was an assumption that traditional OSes based on a
monolithic kernel would fail to scale well with the number
of cores growing. But almost immediately after Barrelfish’s
release, the Linux scalability analysis showed the falsehood
of this assumption [12].
Summary. Structuring the OS as a distributed system

linked by explicit inter-core communication still looks attrac-
tive. However, the assumptions about the massive introduc-
tion of heterogeneous and non-cache-coherent processors
stay unfulfilled. We also express skepticism about SSI ab-
straction in distributed environments. While this abstraction
can simplify the porting of applications to a new system, it
also limits their performance and scalability.

4 MISSED VALUES OF MULTIKERNEL
Many researchers of multikernel were focusing on scalability
and hardware heterogeneity issues. Meantime, we speculate
that wemissed other benefits ofmultikernel OS design. These
benefits came directly from the distributed and decentralized
nature of multikernel OS. We guess they can be even more
valuable and lead to a practical adoption of multikernel.

Horizontal virtualization and software heterogene-
ity.Multikernel design resembles a distributed networking
system on a single computer by the logical division of princi-
pal resources: CPU, RAM, and I/O. It provides an opportunity
to build a more flexible and diverse operating system. We
can co-locate different scheduling and interrupt handling
policies, kernels, and subsystems on the same machine, pro-
viding various APIs, each optimized for a particular range of
workloads. At the same time, we can consider an OS node in
a multikernel as a virtual machine or specialized container
and design, build, and deploy specific complex applications
co-designed and bundled with dedicated OS facilities. Such
horizontal or soft virtualization poses a new point in the
existing rapidly developing design space [4, 39, 41, 54]. Ap-
plication packaged with required OS infrastructure into the
multikernel OS node has isolated performance and pool of
resources and can bring all necessary application-specific
OS policies with itself.
Reliability and Fault tolerance. The traditional OSes

have a vertical structure. In this structure, the entire software
stack relies on a single monolithic system block – kernel.
The kernel is the only and the required mediator between
computer hardware and software. Due to this, it is a critical
system component, and failure automatically means a col-
lapse of the whole system. Multikernel OS adds a horizontal
dimension to the system structure. Multikernel resembles
a distributed system and inherits the decentralization prop-
erty from it. A decentralized multikernel OS does not have
a single critical component. Instead, it relies on a kernel
layer organized as an interlinked network of OS nodes and
distributes this criticality between them all. Kernel crash in
multikernel leads to loss of only a part of the system but not
to the total system failure. There is a tremendous amount of
techniques for reliability and fault tolerance accumulated in
the domain of distributed systems in general and, specifically,
in distributed OSes [45]. Multikernel OS can inherit most of
them and brings a previously impossible level of reliability
and fault tolerance into the context of a single computer
system. Besides, in contrast to the computer network, the
computer represents a case of a tightly integrated system
with shared memory. This feature creates an opportunity for
very flexible and rapid recovery after node failures. More-
over, it allows for minimizing loss in the application state,
which is not possible in the case of computer networks.
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Full software stack dynamism The critical nature of
the kernel in traditional vertically structured operating sys-
tems makes it a static component of the system. OS kernel
on-the-fly replacement or updating is challenging. Multiker-
nel OS design allows breaking these statics with far going
consequences. First of all, the temporal dynamism of the
kernel becomes possible. Multikernel systems can gradually
and seamlessly evolve over a long time distance by adding
new features to the OS kernels, fixing bugs and security
vulnerabilities inside them, and without the requirement
to stop system functioning. Secondly, multikernel opens an
opportunity for flexibility generated by spatial dynamism.
Multikernel systems can rapidly adapt and optimize them-
selves to changingworkloads. TheOS can dynamically reload
CPU cores with kernels most appropriate for the currently
running applications and the computational workload gen-
erated by these applications. Furthermore, the OS gets the
opportunity to change itself not only qualitatively but also
quantitatively. For example, it can collapse by offloading and
shutting down processor cores for power management pur-
poses but rapidly restore full computational power in reply
to changes in workload or the surrounding environment.

5 BRIDGING THE GAP TO REAL WORLD
We propose a path to practical adoption of a multikernel
design, which consists of four major building blocks:

1. Replace homogeneous OS for heterogeneous hard-
ware with the heterogeneous OS for homogeneous
hardware. The network of kernels should include different
kinds of OS kernels, some of which should be application-
specific and provide benefits for the resolution of actual real-
world problems. Heterogeneous OS on homogenous hard-
ware assumes that we can collocate radically different OS
kernels in the same multikernel network. Multikernel design
brings a new dimension into the operating systems design
space, which is not competing but orthogonal to the exist-
ing OS designs. OS architecture became two-level: system-
wide and intra-node. System-wide architecture defines only
coarse-grained inter-kernel resource sharing/isolation con-
ventions and communication protocols. Intra-node architec-
ture, in its turn, specifies how locally running applications
share and use resources assigned to the OS node.
2. Extend legacy OS to multikernel. Multikernel OS

should employ legacy widely used OS kernels such as Linux
or Windows. On the one hand, a multikernel can use a con-
ventional OS kernel as a big universal driver for all hardware.
On the other hand, it can employ a legacy OS kernel as a
service provider and offload complex uncritical tasks. Fur-
thermore, such an OS kernel can serve as a system monitor
and toolbox for the host computer administration. Finally, it
can play a role of a multikernel OS bootstrapper.

3. Reject SSI as a fundamental abstraction. Multiker-
nel OS implementations employ SSI as a fundamental ab-
straction primarily for backward compatibility with existing
software. This abstraction hides the distributed nature of the
underlying system from overlying software. Hence, already
existing third-party software can be easily ported and run in
the seems natural environment. This approach is similar to
distributed shared virtual memory systems in computer net-
works. However, "despite much work on distributed shared
virtual memory systems, performance, and scalability prob-
lems have limited their widespread use in favor of explicit
message-passing models" [6]. Meantime, software hetero-
geneity of multikernel OS through the employment of legacy
OS kernel solves the same issues with a lack of software, but
more elegantly.
4. Use special-purpose computer systems as a pri-

mary target for application of multikernel OS ideas.
Thewidespread adoption ofmultikernel design in the general-
purpose OS requires tremendous investments. The require-
ment of such one-moment huge investments significantly
restains both hardware and software vendors in moving for-
ward and experimenting with new architectures. However,
a wide range of current special-purpose computer systems
can employ multikernel with relatively small investments
and gain valuable benefits. Meantime, the development of
multikernel design on special-purpose computers ground in
a long-term perspective can provide a smooth transition for
the new architectures for both hardware and software ven-
dors, stretching over time and between vendors the required
investments.

6 MYSYS FRAMEWORK
We propose MySyS, a new approach for multikernel-style
application development and deployment. The MySyS frame-
work consists of a deployment application, a multikernel
hypervisor, and application bundles.
MySyS can transform non-modified legacy OSes such as

Windows or Linux into special-purpose application-specific
multikernel on the fly, dynamically deploy and run the appli-
cation bundles, and restore the system into its original state
after application completion.

MySyS performs in the following way (Fig. 1):
0. When the deployment application receives the com-

mand to deploy the system, it injects a MySyS driver or
kernel module bundle into the kernel of the host OS.

1.Driver virtualizes host OS on the fly by deployingMySyS
multikernel hypervisor between hardware and host OS.

2. Hypervisor performs intra-computer computations con-
solidation, which is similar to the virtual machines consolida-
tion in data centers. It collapses the host operating system to
a smaller number of processor cores, maintaining the illusion
for the host that it occupies all available CPU cores.
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Figure 1: Multikernel deployment/rollback in MySyS.
H - host CPU, HV - hypervisor, MK - multikernel node
3. Released CPU cores disconnect from the hypervisor

network and go down. Moreover, the MySyS hypervisor
reserves the requested amount of physical memory using
the ballooning technique [60] and isolates this memory from
the host OS. Finally, it reserves and isolates requested I/O
capabilities (PMIO, MMIO, IRQs).
4. Hypervisor deploys requested configuration of mul-

tikernel bundle using previously reserved resources (CPU
cores, memory, and I/O facilities). It configures OS node bun-
dles and boots them on free CPU cores. New multikernel
OS nodes connect to the network of hypervisor nodes and
run without virtualization. Instead, they use virtual memory
facilities to isolate application from the rest of the system.

5. Transformation of host OS into multikernel finished.
During the multikernel mode of operation, the hypervi-

sor mediates communication between processes running on
the host OS with applications deployed in the multikernel
partition of the system. At the same time, it mediates access
from the multikernel network to the services of the host
OS. Finally, it provides administration facilities to the sys-
tem administrator, allowing him to modify the multikernel
network, redistribute resources between the host OS parti-
tion and multikernel partition, redeploy multikernel node
bundles, and roll back the host system back.
Once the job of applications deployed in the multikernel

partition is finished, the hypervisor rollbacks the system
to its original state. It resets previously allocated cores and
reboots them with hypervisor nodes connected to the hy-
pervisor network. Then hypervisor unconsolidates the com-
putations, returning the host OS to its initial deployment
state. It also releases ballooned memory and returns to host
OS I/O facilities. After that, it devirtualizes the host OS by

Host 0S
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Figure 2: MySyS structure after deployment of applica-
tion bundles (A – Application).

removing hypervisor nodes from the system. Finally, the
driver unloads, and the host OS stays in the original state
without any sign showing that it was in a multikernel state
previously.
In contrast to many other multikernels, MySyS assumes

neither strict specific structure (neither in space nor in time)
nor homogeneity of the operating system’s nodes. Each appli-
cation bundle consists of a set of processes and a multikernel
node (kernel) dedicated and specialized for their manage-
ment and control and, after deployment, becomes a new
multikernel node. The simplest form of such an application
bundle is a single-process unikernel accompanied by a kernel
wrapper. However, it can be a multi-process application man-
aged by a dedicated microkernel node. Therefore, all kernels
forming multikernel networks are diverse and application-
specific, while the network is highly flexible and dynamic in
space and time.

For instance, the hypervisor MK nodes serve to collabora-
tively and seamlessly virtualize and isolate the unmodified
host operating system and consolidate it. It consists of top
and bottom layers. The top layer encompasses one or more
VCPUs and handles interaction between the host OS and hy-
pervisor. The bottom layer manages the physical CPU and all
interrupt sources (Local and IO APICs, PIT, PCI controller).
Hypervisor nodes perform IPI and IRQ routing, reserve and
isolate computer resources required for the application bun-
dles, schedule VCPUs concurrency, and deploy bundles.

Unikernel wrapper is trivial. It sets up virtual address space
to isolate the unikernel application, bypasses all resources
required for its execution, and sets exception handlers to
intercept its misbehavior. The current design assumes that
the unikernel application (network service) will run in user
space without the need to access kernel services.

A microkernel node is a shrunk second-generation micro-
kernel. It performs intra-node scheduling, memory manage-
ment, and IPC. It assumes a complex computational-intensive
workload and, because of this, lacks IO management facili-
ties.
There are only two functions common to all kernels par-

ticipating in the MySyS multikernel network: inter-kernel
communication, required for network integration into a sin-
gle system, and proper isolation of workload applications.
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7 DISCUSSION
MySyS employs a hypervisor solely for on-the-fly virtual-
ization and isolation of the host OS and does not require
virtualization for multikernel application bundles (but does
not prohibit it). Instead, multikernel OS nodes can use more
performant isolation based on virtual memory. Furthermore,
MySyS does not pose any limitation or specific requirement
on the multikernel node design except the usage of specified
communication and configuration protocols. Multikernel
nodes can be as simple as unikernel-like applications and as
complex as the full-featured OSwith a kernel andmultiple ap-
plications and services running on top. Finally, in MySyS, the
hypervisor controls and manages the allocation of resources
only on the host OS side. Multikernel OS nodes can imple-
ment any protocol or policy for redistribution, isolation, and
sharing of the resources allocated from the host. Hypervisor
maintains SSI abstraction but only for transparent virtual-
ization of the host OS and does not require or prohibit its
implementation in other nodes of the multikernel network.
MySyS framework is mostly OS-agnostic. The only OS-

dependent part is the wrapping driver, while the hypervisor
and application bundles are independent of the host OS. Due
to this, MySyS can be adapted to any OS that allows the
injection of kernel modules (drivers) into kernel space.

In contrast to many recently proposed systems exploring
kernel specialization but targeting exotic [40] or future hard-
ware platforms [2, 28], theMySyS framework is designed and
intended to run on commonly availablemulti- andmany-core
x86 processors and in collocation with widespread operating
systems. However, it is easy to note that it can adapt to het-
erogeneous and cache-non-coherent hardware environments
without significant investments.

7.1 Dimensions in OS design space
Our experience is that we should consider multikernel not
as just another participant of the long-lasting debate "mono-
lithic kernel or microkernel or exokernel or hypervisor" but
as a new dimension in the OS design space. All previously
existing approaches to OS design were invented in the era of
single-core processors and implicitly assumed hierarchical
vertical structuring of the OS, debating which part of func-
tionality onwhat layer of the software stack and inwhat form
should be placed. In contrast, multikernel assumes horizon-
tal structuring of the OS as a network. Thus, we argue that
there could be an open debate about multikernel network
structure, configuration, and topology. However, in general
vertical and horizontal dimensions in OS design space are
ortogonal to each other (Fig. 2). For the same reason we
cannot consider multikernel as a new layer in OS structure.
In contrast, all available kernel designs can be adapted and
integrated by multikernel OS.

7.2 Software complexity, requirements, and
virtualization

In recent decades not only computer architecture experi-
enced significant changes. Evergoing growth of software
complexity fueled the rise of virtualization. However, in
most cases, virtualization is used not for hardware emulation
but as a facility simplifying the management, deployment,
control, and running of complex applications – mega appli-
cations. Such mega applications consist of multiple applica-
tions/processes bundled, packaged, and isolated in a single
entity accompanied by a set of required libraries, runtimes,
policies, and kernel managing them while communicating
with an external world through virtualized NIC interface. At
the same time, growing diversity in application requirements
and demands for performance force researchers to explore
unikernel-over-hypervisor architectures where they face a
need for extended, more capable, and feature-reach but still
performant unikernels [48, 62]. However, MySyS solves the
same task of deployment and running specialized complex
applications, but in an alternative way.

7.3 Bluring the borders of OS notion
MySyS provides the original viewpoint on the system. In fact,
it blurs and dissolves previously firm borders between no-
tions of the operating system, kernel, driver, and application.
For instance, the host OS view the entire MySyS package
as a single application. But at the same time, the host OS is
viewed by the deployed multikernel as a single service repre-
sented by a group of hypervisor nodes. One of our OS nodes
unites the NIC driver, kernel, and application functionality
bundled together into a single “application node” that the
hypervisor deploys as a single entity. But at the same time,
a microkernel-based node serves as a platform on which
multiple processes execute concurrently.

8 CONCLUSIONS
Multikernel OS design was introduced more than ten years
ago in reply to a significant shift in CPU architectures –
the rapid spreading of multi-core processors. It has moti-
vated multiple research projects exploring multikernel de-
sign. However, multikernel still fails to find a way to our com-
puters. Meantime, multikernel can produce such valuable
advantages as flexibility, fault tolerance, and full dynamism
of software even on the current systems and can be adapted
for practical use to solve actual problems now. We reconsid-
ered the multikernel design principles and showed how to
bridge the gap between multikernel and current computer
systems. We hope that the proposed way will serve as an
incentive for a smooth transition of the industry to novel
architectures in hardware and software.
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