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Chapter 1

Introduction

This technical note is aimed to describe the design of suitable cross domain bulk transport for Barrelfish.
This chapter gives a motivation for this design by providing the details about existing implementations
of bulk-transport in Barrelfish and reasoning about why those are not good enough. The chapter 2
contains the actual details about the design. So, if you are already convinced of the need for better
bulk-transport in Barrelfish, then you can directly jump to the chapter 2

1.1 Existing implementation in Barrelfish

There are two bulk transport mechanisms that exist in the current(as of August 2011) implementation
of Barrelfish. lib/barrelfish/bulk transfer.c and pbufs used in the network stack. We will discuss them
briefly in following two sub-sections.

1.1.1 bulk transfer.c/h

This is the official bulk transfer method supported by Barrelfish. In brief, this facility works by sharing
a continuous piece of memory (in form of capability) between two domains. These domains then map
this physical memory into their virtual address-space. The virtual address where this shared memory is
loaded can be different. So, participating processes can’t exchange the virtual addresses directly. Bulk
transfer mechanism works by dividing the entire memory area into the blocks of fixed size. The domain
which initiated the bulk transfer is responsible for managing these blocks. This responsibility includes
following.

1. Allocation and deallocation of the blocks.

2. Maintaining the information about free and used blocks.

So, this bulk transfer facility works in master-slave setup. The master allocates the blocks and passes
the index of the block to slave. Once the block is passed to the slave, master should not touch it. The
slave can locate the block by adding the (index*block-size) to the virtual address pointing to the
beginning of the shared memory area. Now slave can read/modify the contents in the memory area
of this block. Once the slave is done with accessing the block, it can pass the block-index back to the
master. Master can either access the block or release it for future use.

Limitations

Security This transfer mechanism can only be used between domains which are co-operative and
willing to follow the protocol set for using the bulk transfer mechanism. Malicious domain can corrupt
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the data in shared memory by writing at random locations in it or can refuse to return the blocks once
passed to it.

More than two domains The design of this bulk transport does not stop you from using it with more
than two domains as long as the protocol is followed. But current implementation does not track which
domain is holding the buffer. So, one can use the current implementation with multiple domains as
long as the domains are co-operative and applications are willing to deal with added complexity of
tracking which domains hold which buffers.

Current usage Due to the relatively simple nature of the implementation, its use is limited only to few
places. And hence it is not throughly tested in various scenarios.

1.1.2 pbufs

The network stack uses its own custom bulk transport mechanisms. Lets call them pbufs. These pbufs
work in similar way to above mechanism, but are more flexible. The application shares some piece
of physical memory with network driver which is used as shared memory. Then application creates a
list of pbuf structures, each one of them holding an offset within shared memory, length, pbuf-id and
the shared memory id to which they belong. The key difference here is that the these pbufs may not
hold consecutive memory locations even when pbuf-id’s are consecutive. In contrast with Barrelfish
bulk-transfer where buffer-id value is enough to find the location of buffer within shared memory, pbuf
needs to store the offset separately in another list. So, pbufs provide another layer of indirection to
allow more flexible use of memory.

The way this mechanism currently works is that, application creates pool of initial pbufs and registers
them with network driver. Both, application and network driver maintain the list of pbufs in their
private memory. This list is kept in synchronization by sending explicit messages. Now each pbuf can
in principle point to any buffer of any size, located anywhere in the shared memory.

This flexibility is used by application when it receives a data from the network driver. Application
creates a new pbuf structure with same pbuf-id but pointing at new buffer location and send it back
to the driver as new free pbuf to use. And the location of previous buffer is used for processing the
data. This way, application can return the pbufs back to driver ASAP without getting affected by how
long does the data processing takes. When application is done with processing the data in that buffer, it
releases that buffer. This released buffer is then used to create new pbuf which will be registered again
with driver in future.

Limitations

Needs more memory The shared memory needs to be bigger than the memory shared with network
driver in form of registered pbufs. This is because, at any given point in time, some pbufs will be in
application data processing phase and hence can-not be used by driver to receive the new data.

Data corruption This bulk-transfer mechanism assumes co-operative domains. Both domains have
read/write access to the shared memory at all the time. This means that if they do not follow the
protocol correctly, they may end up writing at same physical location, leading to data corruption.

Complicated memory reclamation The current implementation of pbufs assumes that application
can have multiple threads and all of them can access the data in pbufs which are delivered to the
application. This complicates the problem of detecting when exactly all threads are done with accessing
the particular pbuf. The current implementation uses a reference count mechanism for this detection.
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Even though this memory reclamation is functional, it is complicated and one can easily get it wrong,
leading to memory leaks.

Supporting more than two domains In theory, this design can be used with more than two domains
which are co-operating with each other, but implementation is not designed with such a case in mind.
The problematic issues will be tracking which memory buffer is with which domain, and when the
memory buffer can be reused.

More issues with current network stack implementation

Following issues are not exactly due to the bulk transfer mechanisms, but are mainly the implementa-
tion issues of network stack. I am documenting them here for sake of completeness. Also, knowing the
issues in current stack will help in understanding the design decisions made.

Favors the setup with driver on different core It is optimized for the case where application and
network driver are running on separate core. It is reasonable to prefer such cases for multicore archi-
tectures where presence of large number of cores is assumed. This preference has resulted on overly
dependence on efficiency of UMP messages. Current implementation sends around 2 messages (send-
packet, tx-done) for transmitting single packet assuming that packet fits into one pbuf. Similarly on
packet receiving side, each received packet involves 2 messages (register-pbuf, packet-received). The
performance impact of these messages is not strongly visible when application and driver are on dif-
ferent core. But there are cases like SCC where you may end up running the driver on same core as an
application. In such scenarios LMP’s are used for communication which involves doing context-switch
in sending every message. This leads to lot of performance in-efficiencies when current network stack
implementation is used in LMP contexts. Specially on those hardware where cost of context-switch is
relatively high.

1.2 Related work

The issues of bulk-transport has been investigated quite a few times in the past by work like F-bufs,
R-bufs and Beltway buffers so the solution of this problem is known to the large extent. What this doc-
ument is aiming is to choose right approach and right solution which will suit the requirements of the
Barrelfish.

1.3 Requirements of Barrelfish

Following are the ideal requirements from the bulk-transport mechanism.

1. Avoid data copy as much as possible, if can’t avoid, then try to push it into user-space/user-core.

2. Ability to batch the notifications.

3. Should work with more than two domains.

4. Should work with multiple producers and multiple consumers.

5. True zero copy capability(scatter-gather packet sending/receiving).

The solution that we are trying to design tried to satisfy as many of these requirements as possible.
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Chapter 2

Design

This chapter discusses the design of bulk-transport mechanism that will be implemented in future for
Barrelfish network stack.

2.1 Bird’s eye view of design

We are aiming to design a cross domain bulk transport mechanism, which supports following features.

1. Should reduce the data copy as much as possible.

2. Should exploit the fact that complete data-isolation is not always needed.

3. More than two separate domains should be able to share the data without copying it.

4. Number of explicit notifications needed should be low.

5. It should work in single producer, single consumer and single producer, multiple consumers

2.2 Terminology used

This section briefly explains the term used in the design description. This should help in the under-
standing by reducing the ambiguity of the terms.

1. Generator: An entity which is generating the data. It can be software or hardware entity. For
example, Network Interface Card(NIC) is a generator, or the application code which is generating
the packets to send over the NIC.

2. data-element: The data-element is what generator is generating. In case of NIC device, a packet
will be a data-element.

3. Producer: An entity which is managing the generated data. This management contains providing
access mitigation, notifying interested consumers, reclaiming the memory when data-element is
consumed. The example of producer will be NIC device driver.

The distinction between generator and producer is rather fine. They are intentionally kept sep-
arate because generators can have hardware constraints which does not allow it to provide all
functionalities.

4. Consumer: An entity which is consuming the data-elements.

5. Slot: The contiguous piece of memory where data-element is entirely or partially stored. A data-
element can span over more than one slots.
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6. Shared-pool: A contiguous piece of memory accessible in read/write mode to producer and ac-
cessible in read only mode to consumers. Shared pools are divided into above slots.

7. Production-pool: It is a collection of all shared-pools used by the particular producer. The ini-
tial shared-pool is added by the producer, and later on every consumer which joins the system
contributes a new shared-pool to the production-pool.

8. Free slot: A slot which is available, and can be given to generator.

9. In-generation slot: A slot is given to generator. Only the generator should read/write this slot
now. This is the only mode when data can be written in the slot.

10. In-consumption slot: One or more consumers are currently consuming this slot. In this mode,
slot is strictly read-only no one should modify the data in slot in this mode.

11. Slot-pointer: A data-structure which holds enough information to locate particular slot present in
any shared-pool with producer. These are typically used in cross domain communication to iden-
tify the exact slot. A typical slot-pointer should have a shared-pool-id and offset within shared-
pool to find the particular slot.

12. Classification: This term refers to the classification of data-elements between consumers. In other
words, it is a process of deciding which consumers should receive this particular data-element.
In network stack parlance, this classification will map to deciding which process should get the
received packet.

2.3 The Producer

This section describes the producer and generator together with their responsibilities. Even though
producer and generator can be a different entities internally, the consumers will only see the producer
interface.

2.3.1 Generator

Lets make a rough sketch of typical generator. Here we are aiming for the NIC devices. Typically, these
devices will have an internal queue (RX-queue) of slots where the packet received from wire will be
copied. These generators are also capable of generating a notification in form of interrupt. Now the
way RX-queues work on different devices differ in some way. Few devices expect contiguous memory
in the slots whereas other devices are capable of DMAing the packet in non-contiguous memory as
well.

The software generators like application logic which creates new packet to send out is much simpler
than NIC devices but can have quirky behavior like above described NIC devices.

From bulk-transport point-of-view we will be treating the generator as a part of producer.

2.3.2 The Producer abstraction

The producer abstraction is nothing but the combination of generator and remaining producer func-
tionalities. The producer abstraction is what consumer sees and interacts with. It is responsible for
managing the data produced by generator and using shared-pools to get that data till consumers. It
is also responsible for managing the shared-pool memory and co-ordinating the access to this shared
resource.
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2.3.3 Shared-pool

Shared-pool is the area where producer will generate the data and consumers will read it from. The
producer breaks this shared-pool into slots. The size of slot is based on the capability of generator and
should be multiple of cache-line size. The details of how to choose the slot size and the side-effects of
small or large size are discussed in subsection 2.7.5.

The producer is responsible for managing these shared-pools, and it does by maintaining the list of
shared-pools. At the time of producer initialization there will be only one shared-pool which is added
by the producer itself. As new consumers join the system, each one of them will contribute an additional
shared-pool.

Releasing the shared-pool

If any consumer decides to leave the system, then producer stops using the shared-pool provided by
him. The producer will wait till all the slots in that shared-pool are free and then it will ask all con-
sumers who have mapped this shared-pool to release the pool. Once all consumers release the pool
then producer can also release the pool and inform the consumer who contributed the shared-pool
about completion of the process.

This is rather long process and depends on all the consumers for it’s completion. But this process is not
part of the critical path, it is only part of the tear-down process so some inefficiency can be tolerated
here.

Ideal size of production-pool

The production-pool is just a collection of all valid shared-pools available at given time. Ideally, production-
pool should be big enough to accommodate the queue of the generator (ie. All the descriptors in RX-
queue of NIC device) and all the data-elements which are with consumers and are not released back
(in-consumption state). So, the total memory size should be proportional to the capacity of the genera-
tor(ie. NIC device) and number of consumers. So, one way to look at this is that, producer will provide
shared-pool which can satisfy the needs of generator and each consumer will contribute a shared-pool
to allow in-consumption data-elements. Each consumer is allowed to keep only fixed amount of in-
consumption data-elements based on the size of shared-pool it contributed. This way, fixing the size
of allowed pending in-consumption data-elements limits the ability to consumers to over-consume the
slots from production-pool.

2.3.4 A meta-slot structure

This structure hold the additional information about each slot in a shared-pool. It can be seen as index
table on shared-pool. This structure is private to producer and is used to manage the slots within
shared-pool. Following are the key elements of this structure.

1. slot-id: The slot identifier.

2. offset: The location of slot within the shared pool.

3. data-len: Size of valid data in the slot.

4. state: The state of slot (Free, in-Generation, in-Consumption)

5. consumer-list: Which consumers are accessing it?

6. Next, prev: Used to maintain the list (eg. Free slots)
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The producer maintains a separate meta-slot list for very shared-pool available with the producer. This
setup enables producer to track every slot and its state.

Other than this, the producer also maintains the list of consumers who have registered.

2.3.5 shared and private data-structure

This section briefly describes which of above data-structures are private and which of them are shared
with other entities.

Private data-structures

The producer maintains lot of state in private data-structures. It includes following.

1. List of consumers connected. This list also maintains the state of each consumer with respect to
the communication with producer.

2. List of shared-pool-meta-data. This meta-data includes following information.

(a) Consumers having access to this shared-pool.

(b) meta-slot structure containing private information about state of each slot in this shared-
pool.

(c) List of free slots in this shared-pool.

(d) The generator-queue which is used by generator to create data-elements is shared with gen-
erator. But as we treat generator as internal entity, we mark this as private data instead of
shared data.

Shared data-structures

The producer shares following data-structures with different entities.

1. Shared-pools can be shared with any consumer.

2. For every consumer, a consumer-queue (see 2.4.1) is pairwise shared with that consumer.

2.4 Consumer

This section describes the internals of the consumer. Consumer mainly consist of a consumer-queue
data-structure which allows sharing of slots between producer and consumer. Consumer also has read-
only access to the shared-pools.

2.4.1 Consumer-queue

This section describes the consumer-queue in details. The consumer-queue is a shared data-structure
between consumer and producer and it is exclusive between each pair of consumer-producer. This data-
structure is also maintained on contiguous shared memory which is read/writable by both consumer
and producer. This data-structure is shared ring-buffer with few virtual-registers which are used to
manage the access the ring-buffer.
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1. write-register: This virtual register is the first element in the consumer-queue. This element
should be of size cache-line to avoid any cache-conflicts. This element can be modified only
by the producer and consumer can only read it. The value in this virtual-register contains the
write-index for consumer-queue. The write-index points to the slot-pointer within consumer-queue that
producer will provide next.

2. read-register: This virtual register is the second element in the consumer-queue. This element
should be of size cache-line to avoid any cache-conflicts. This element can be modified only by the
consumer and producer can only read it. The value in this virtual-register contains the read-index
for consumer-queue. The read-index points to the slot-pointer within consumer-queue that consumer will
consume next.

3. queue-size-register: This virtual register is the third element in the consumer-queue. This el-
ement can be modified by producer and consumer can only read it. The value in this virtual-
register indicate the number of slot-pointers which are valid in the consumer-queue. This register
allows dynamic adjustment queue-size based on the current load. Similar feature is implemented
in the beltway buffers with the claim that keeping the size of queue as small as possible helps in
cache friendliness. This feature is actually optional and will be added in later stages. To imple-
ment this feature, one also need to made decision like when the queue size should be reduced
and when it should be increased again. Producer can make these decisions based on how much
preference it wants to give to this particular consumer over others.

4. Slot-pointers: After above three registers, the rest of the space in consumer-queue is used for
storing slot-pointers. The slot pointers are used to point a particular slot in one of the shared-
pools within production-pool of the producer. Slot-pointers have following information.

(a) shared-pool-id: Id of the shared-pool which is holding this particular slot. These id’s are
given by the producer and will be unique within that particular producer for given shared-
pool. As the shared-pools within particular producer may increase/decrease over time, the
consumer may receive a slot-pointer with shared-pool-id which it has not mapped yet. In
such a case, it should send a message to producer asking for read-only access to this new
shared-pool and then map it into the virtual address-space. Once the shared memory frame
associated with shared-pool memory is mapped, consumer can continue to access the slot
using slot-pointer.

(b) slot-index: The index of slot within that shared-buffer. This value is only useful for pro-
ducer as this slot-index maps into the meta-slot structure which is private to the producer.
Consumer should not alter this value. In case malicious consumer alters this value, the pro-
ducer will be able to detect it as meta-slot structure maintains the information about which
all consumers are currently consuming the slot and whenever the producer reclaims the slots
freed by consumer, it validates if this consumer was consuming the slot being released. The
reason for maintaining this information in slot-index even when it is not useful to consumer
is because it speeds up the producer in relocating the slot within shared-pool when it is freed
by the consumer.

(c) Offset: The start of the slot within shared-buffer. In case of fixed size slot, offset can be
calculated by slot-index.

(d) More: As the data-element can span more than one slots, this flag tells us if there are more
slot-pointers following which belongs to same data-element. This flag is equivalent to the
More Fragments bit in the IP protocol. In contrast to IP protocol there is no fragment iden-
tification number, but the slot-pointers belonging to same data-elements are assumed to fol-
low each other. So, the order in which the slot-pointers are added to the consumer-queue
is important. As we have only one producer which is adding the slot-pointers in available to
consume section and also this producer is dealing with one data-element at one time, main-
taining this order is fairly simple.
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Conditions on consumer-queue registers

1. Queue empty condition: read-index == write-index

2. Queue full condition: ((write-index + 1) % size) == read-index

3. Elements available to consume
(assuming queue not empty):
if (write-index > read-index)
then {[read-index, (write-index - 1)]}
else {[read-index, (size - 1)], [0, (write-index - 1)]}

4. Elements which are already consumed and are now free.
(assuming queue not empty):
if (write-index > read-index)
then {[write-index, (size - 1)], [0, (read-index - 1)]}
else {[write-index, (read-index - 1)]}

2.4.2 shared and private data-structure

This section briefly describes which of above data-structures are private and which of them are shared
with other entities.

Private data-structures

The consumer does not have to maintain lot of private state based on which model of slot-consumption
is used (refer 2.7). When doing out-of-order consumption it will have to maintain some state about
which slots are in consumption and which slots are free and ready to go back to producer. Every
consumer will also need some private state to remember the state of the producer and the consumer-
queue status. If this consumer is directly communicating with other consumers then it will also need to
maintain some private state about that communication (refer 3).

Shared data-structures

The consumer shares following data-structures with producer and other consumers.

1. The shared-pool that it has contributed to producer and potentially shared with all consumers.

2. The consumer-queue is exclusively shared with producer.

2.5 Events/notification/communication between consumer and pro-
ducer

This section describes the communication between the consumer and the producer.

2.5.1 From Producer to Consumer

This paragraph describes the events sent by producer to consumers.
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1. More data arrived: This notification is sent to consumer whenever the consumer-queue is empty
and new data-element arrived. This callback is not triggered for every arrival of data, but only
when consumer is not explicitly polling for data. Whenever new data arrives on the empty queue,
producer can assume that consumer is not polling the channel as queue is empty, and hence
producer should send this notification to consumer to wake it up. In other case where queue is
non-empty, consumer is already aware of the presence of data-elements there. Consumers are
expected to deal with dynamically growing of queue-size and hence adding more elements to
non-empty queue without sending explicit notifications should not break the consumer-logic.

2. Consumer-queue full: This notification is sent to consumer whenever consumer-queue is full
and producer is not able to add new data-elements to the consumer-queue. Triggering of this
notification means that consumer is slow in consuming the data from the consumer-queue. And
result of this producer is going to drop the data-elements which were aimed for this consumer till
there is more free space with this consumer. This message also means that producer is not going
to actively check if consumer-queue has a free space or not. It is a responsibility of consumer to
send a notification to the producer whenever it is ready to receive more data.

3. Consumer-queue almost full: This is an optional notification and is designed as refinement of
the basic approach. This additional event can be called when the number of free slot-pointers
in the queue drops bellow certain threshold. This notification can be used as a warning sign to
the consumer that either it takes some action to free up more slot-pointers in consumer-queue, or
producer will soon start dropping the data-elements addressed to this consumer.

4. Error event: This notification is sent when something unexpectedly goes wrong. The information
and severity of the error will inform the consumer that if the problem is transient or permanent.
And based on the problem type, consumer can take corrective actions. Few samples of these
errors are corruption of consumer-queue, fetal error in producer, etc.

5. Add shared-pool: This is an optional notification which allow producer to push the notifications
about newly added shared-pools. This message is optional because consumers can lazily ask for
these new shared-pools whenever they encounter them as part of slot-pointer while consuming
data-elements. This notification is not considered as part of critical path or part of the data-flow.
This notification will be generated only on the arrival of new consumer or if producer decides to
increase the available shared-pools. This can be classified as setup or maintenance path.

6. Remove shared-pool: This notification is opposite of above add shared-pool call. It tells consumer is
that producer will not be using a particular shared-pool from now onwards for whatever reason
(eg. the consumer which gave that shared-pool frame has terminated the connection with pro-
ducer). So, every consumer which receives this message should remove the mapping for shared-
pool from it’s virtual memory. This notification is also relatively rare and will be generated only
when one of the consumer decides to quit or if producer decides to reduce the number of available
shared-pool. So, this notification should not be considered as part of critical-path or data-flow. It
can be classified into setup or maintenance path.

2.5.2 From Consumer to Producer

This paragraph describes the notifications sent by consumer to the producer.

1. Consumer-queue space available: This notification is sent to the producer when consumer-queue
is full and new free slot-pointer is added creating new space. Once the queue is full, producer is
not expected to check the queue status until it receives this message saying that now application
has more space to receive packet. As an optimization, consumer might wait till some more free-
space is accumulated before informing the producer to re-start the flow. This way the inefficiency
similar to silly window behavior in TCP flow control can be avoided.

2. Get frame for shared-pool-id: This notification is sent to the producer when consumer receives
a slot-pointer with shared-pool-id which is not mapped by this consumer yet. By sending this
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notification, consumer is asking for the read-only access to this shared-pool. The producer should
respond to this message with either with valid capability or with error.

3. Forwarding slot-pointer to other consumer: This message is related to the ability of consumers
to forward slot-pointers within each other. There are two cases here. In first case, the consumer
forwards the slot-pointer to other consumer and then also collects it back before declaring it as
free. In this case, producer does not need to be informed at-all about this sharing as consumer
is taking responsibility of properly freeing the slot. But in case where consumer just wants to
forward the slot-pointer and continue on it’s own working without bothering about when and
how other consumer is going to stop accessing that slot, then it should inform the producer that
it has forwarded that slot to some other consumer. It can be done with this message. The reason
we need this separate message is that, because of sharing there will be two consumers which
will be releasing the slots and producer should be aware of them. The information from this
message is used to update the meta-slot structure inside producer for given slot with one more
consumer. This message contains the slot identification information and consumer identification
information. The other consumer can now release the slot whenever it is done using it’s consumer-
queue, and producer can validate and account that operation correctly.

This forwarding has some more implications which are not fully explored in this document. Here
are few leads on that. Firstly, this path allows consumer to receive the slots without being initiated
by producer and this slot will not be a part of consumer-queue. So, the producer need to somehow
account for these slots so that it can maintain the fairness in the number of outstanding slots
per consumer. This mechanism also needs some way by which two consumers can talk with
each other and exchange the information like consumer-id’s, producer-id and slot-pointers. Also,
consumers should be careful in dealing this information as consumer-id and slot-pointers are only
valid in context of particular producer.

2.5.3 The communication between producer and generator

The communication between producer and generator is very hardware dependent, and I am not sure
if it should be part of this document. Following are the generic notifications which are exchanged
between the producer and generator. These notifications are aimed to maintain the generator-queue.

1. Add empty slot (from producer to generator): This message will add a new free slot into generator-
queue.

2. Data-element generated (from generator to producer): This message informs the producer that
there is new data-element in the generator queue that should be handled. It is equivalent of packet
received interrupt from NIC hardware to the device driver.

3. Generator-queue full (from generator to producer): This message tells the producer that there is
no space left for generator to create more data-elements.

2.5.4 The communication between consumers

TBD: The communication between consumers is needed to share the slot-pointers between them.

2.6 Initialization

This section briefly provides the steps involved in initialization of producer and consumers.
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2.6.1 Producer initialization

At producer initialization, following steps will happen.

1. Create and initialize the empty list of shared-pools and meta-slots.

2. Create and add the initial shared-pool big enough to satisfy generator needs.

3. Divide the shared-pool into slots, create a meta-slots list for this shared-pool and add it to meta-
slots list.

4. Create an empty list of consumers.

5. Initialize the generator (if needed). This might involve populating the generator-queue with free
slots so that generator can start producing data.

6. Loop: wait for next event/message and process it accordingly.

2.6.2 Consumer registration

As part of initialization process, consumer should register itself with the producer. This initialization
process includes following steps.

1. Create a new contiguous memory frame and provide it to producer as new shared-pool frame.

2. Get the list of registered shared-pools from producer and map it as read-only in the virtual
address-space of consumer.

3. Create a new contiguous memory block to maintain a consumer-queue.

4. Initialize this memory block with consumer-queue data-structure.

5. Share this memory block with producer.

6. Send a notification consumer-queue space available to the producer so that it will start sending data-
elements.

7. Loop: wait for next event/message and process it accordingly.

2.7 Memory management (slot management)

The slots are most important aspect of this bulk transport mechanism. They hold the data which will
be sent across the domains. Now lets see how exactly these slots work.

2.7.1 Slot state machine

Slots are created by the producer in the memory provided by shared-pools. Once created, slot remains
valid until and unless the shared-pool holding the slot needs to be freed. In the lifetime of the slot, it
goes through following states.

1. Free: This is the initial state, in this state slot is free and ready to be used. The producer maintains
a list of free slots so that it can quickly find them whenever they are needed.

2. In-generation: This is the second stage of slot. In this state, the slot is owned by the generator
and no one should access it(not even in read state!). This is the only state in which the data will
be written into the slot.
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3. In-classification: This is the third and transient state. This is the state when generator returns the
slot after it has generated the data. The producer will use the classification to figure out which
consumers this data-element should go. The producer is free to use any type of classification
that is needed. The description of how that classification should happen is not in the scope of
this document. Once classified, the producer will update the consumer-queues of each selected
consumer with slot-pointer and if needed, send them the notifications. Once the slot-pointers are
added into consumer-queue, the state of slot is updated to the in-consumption.

If no consumer is interested, then the slot is marked as free and added back to the list of free slots.

This is the stage where zero copy data access is achieved. As instead of actually copying the data
from the slot, slot-pointers are provided to the consumers. These slot-pointers provide zero-copy
access and data-sharing capabilities.

4. In-consumption: This is the state in which data is available to the consumers. Here, consumer
has multiple options about what to do with this slot.

• In-order consumption: Consume the slot as quickly as possible, and once consumed add
it to freed slot by moving the read-index. As consumer is dealing with one data-element
at a time, there is no need for complex state management and free-slot management inside
consumer-queue is sufficient enough without needing any additional state machinery.

• Out-of-order consumption: Saves the newly arrived slot-pointer and replace it with one of
the other slot-pointers which has been previously consumed and then add this replaced slot
to freed slot by moving the read index. This method allows you to consume the slots at
leisure and you can have more than one data-elements in consumption at any given moment
of time. It also allows you to free up the slots which don’t hold useful data quickly and
release the slots with important data later on. This method gives much more flexibility but
at cost of added free-slot management within consumer. As consumer is releasing the slot
in out-of-order of their consumption, it has to maintain some state about which slots are
released and which are still in consumption.

• Private-mutable consumption: If the application needs a private access to the slots where
it can modify it then it should make copy of this slot in it’s private memory and release the
actual slot. This way, application is free to do anything it wants with the private slot. This
solution scales well with large number of private-mutable consumers because the data-copy
operation is performed by consumers and not by producer. As data-copy operation is typ-
ically most expensive, we want to push it out from producer into consumers. If consumers
are running on separate cores then the data-copy operation of one consumer will not affect
other consumers.

Once the consumer is done with consumption, the slot will be returned to the producer. And
when all consumers who are sharing the slot report that they are done with consumption then
producer can mark the slot as free and add it to the list of free slots for future reuse.

2.7.2 Slot management inside producer

The producer maintains a private meta-slot data-structure for each slot to track these slots. It also
maintains the list of free, in-generation and in consumption slots.

2.7.3 Slot management inside consumer

The slot management is not needed in consumer if they are following in-order or private-mutable con-
sumption. In these two cases, the consumer-queue implicitly does the slot management on behalf of
consumers.
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In case of out-of-order consumption, the consumer will have to maintain the list of all slot-pointers
which are currently accessible and also the list of slot-pointers which are done with the use and can be
released as free slots.

2.7.4 Freeing up the slots

Whenever consumer is done with accessing/consuming the data-element, it should be added back to
the free-slot-pointers area of the consumer queue. It is important to note that the order in which slots
will be freed by consumer need not match the order in which it consumed the slots. This flexibility al-
lows consumer to take longer time on certain slots while quickly returning the slots which have arrived
afterwards. Consumer can hold back certain number of slots without releasing them, but this number
depends on the length of the consumer queue. As the producer controls the consumer-queue length
it can give some consumers more slots than other based on the configurable policies. The policy that
initial implementation of this buffer will be using is that, the size of consumer-queue will be directly
proportional to the size of shared-pool that particular consumer has contributed.

2.7.5 Slot size

The size of the slot is greatly dictated by the capabilities of the generator. If generator needs continuous
memory to produce data-element then the size of slot will be the size of biggest data-element. If the
generator can DMA the data-element into multiple non-contiguous memory locations then, the slot size
should be based on the average data-element size. In any case, the slot size must alway be a multiple
of cache size and every slot should be cache aligned. This is mostly due to the fact that each data
element might get consumed by different consumer running on different cores, and we do not want
cache conflicts when they are accessing different data-elements.

The dis-advantage of having slots of size of largest data-element is that it leads to internal fragmentation
and waste of memory when packets are small. On other hand, when slot size is small, we reduce the
capacity of NIC hardware as typically RX-queue will have limited number of entries, and by using
small sized slots, we will fill up the entries quickly.

2.8 Security and trust model

This section discusses the trust model assumed by this bulk transport design and it’s security implica-
tions.

2.8.1 Slot access security

This bulk transport mechanism works by sharing the memory and it needs security against invalid
memory accesses. This security is provided by the slot-pointers. Slot-pointers are designed to be valid
across the virtual address-spaces of all consumers. Slot-pointers contain information like shared-pool-
id which can be used to find the starting address and length of the pool. When consumer is calculating
actual pointer, it can always validate that the pointer lies within shared-pool by making sure that offset
is always smaller than shared-pool size.

2.8.2 Security against memory invalidation

The more problematic case is when one of the consumer dies or invalidate the memory given to pro-
ducer without informing first. This case can lead to invalid memory access in producer, generator and
other consumers as one of the shared-pool is not accessible any longer. The protection against such
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a case should be provided by operating system by not removing the memory frame as long as it is
mapped by at-least one domain/process. If operating system does not provide such an assurance and
if the consumers are non-trustworthy then producer should somehow take the complete ownership of
the memory provided by the consumer, or provide all the memory itself.

From above discussion, it can be seen that the trust mainly lies with producer and not the consumer.
Consumers can’t do much damage to producer as all the actions of consumers can be validated by the
producer. For example, when any consumer tries to free up the slot, the producer can verify if the
consumer really holds that slot or not.

2.8.3 Security against data sniffing

The only damage that consumer can do is to try and read the data-elements which are not destined to
it. Consumers can do this as they have read-only access to entire production-pool. Performing this type
of snooping is not trivial as all the meta-data about the slots is maintained in the private memory by
the producer, so consumer can only guess about location and type of data inside the other visible slots.
But nevertheless unauthorized data-sniffing between consumers is theoretically possible in this design.

This shortcoming can be overcome by sharing the shared-pool pairwise between consumer and pro-
ducer and then by either adding the overhead of performing data-copy, or by using generator capabil-
ity to perform early classification of data elements. The 2.9 will give more details about these stricter
privacy models.

2.9 Privacy model

This bulk transport is designed to work in relaxed privacy model with possibility of tightening the
privacy model by either using early classification capabilities of generator or at added cost of data-
copy. This section describes all of these modes.

2.9.1 Relaxed privacy model

The bulk-transport design described most of the above document is based the relaxed privacy model.
The reason for describing this model in detail is that other models which gives better privacy (described
in 2.9.2, 2.9.3) are sub-set of this model hence they are easy to understand once this model is clear. In this
model, all consumers have read-only access to entire production-pool. And hence in theory malicious
consumers can sniff the data-elements addressed to other consumers. The 2.8.3 gives some description
of this issue from the security perspective.

2.9.2 Strict privacy model with additional data-copy

In this model, shared-pools are not shared with all consumers, but every shared-pool is pairwise shared
between producer and with only one consumer (one who has contributed that shared-pool). The initial
shared-pool contributed by the producer itself is shared between producer and generator. This shared-
pool will not be directly accessible to any consumer. All the data generated in this pool which is private
to producer and generator and then based on the classification of the data-element, it is explicitly copied
into the shared-pool of the selected consumers. This way, other consumers can never see the data-
elements which are not destined to them. This stricter privacy policy comes with the cost of additional
data-copy. Also, as producer is performing this data-copy, this can adversely affect the throughput of
the whole system.
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2.9.3 Strict privacy model with early classification support from generator

In this model as well, shared-pools are not shared with all consumers, but every shared-pool is shared
between producer and with only one consumer. This model depends on the capabilities of generator
to provide stricter privacy model. If the generator is smart enough and can classify the data-elements
before they are created, then these data-elements can be directly created into the shared-pool of selected
consumer. This avoids additional copy from the producers pool to the shared-pool of the consumer.

This is an ideal model which provides strict privacy without compromising on the performance. But it
needs smarter generators. The recent NIC hardwares like Solarflair and e10000 are capable of perform-
ing such a classification.

2.10 Adaptability with different hardware

This section discusses the ability of this design to adapt with different designs and features of NIC
hardwares. We believe that the interface provided by the producer is generic enough to cover most of
the functionalities provided by the smarter generators. And as we can control the integration between
producer and generator without affecting the consumers, we can easily adapt to exploit the different
hardware features provided by the generators. One of the example of such an adaptation can be seen
in 2.9.3, the design discussed here easily adapted to exploit the early classification capabilities of the
generator to give stricter privacy based zero copy bulk transport.

2.11 Limitations

This design still misses some good features in favor of keeping the complexity reasonable. These fea-
tures include support for multiple-producer, multiple-consumer setup and ability for consumer to spec-
ify where data-element should be generated (true zero copy receive).

2.12 Conclusion

This chapter provides the details about the new cross-domain transfer facility design. This facility
allows zero-copy network implementation which can support sharing between more than two domains
as well as multi-level sharing (sharing by consumers between consumers). This solution also reduce the
number of messages exchanged by sending them only when it is absolutely necessary.
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