
Barrelfish Project
ETH Zurich

A Messaging Interface to Disks

Barrelfish Technical Note 015

Manuel Stocker, Mark Nevill, Simon Gerber

N/A

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

http://www.barrelfish.org/

This lab project introduces an AHCI driver and associated ATA primitives to Barrelfish1. In-
terfacing disks is implemented in a library that communicates with a management service. To
enable integration of multiple controllers offering access to ATA/ATAPI-based devices, Floun-
der modifications including a backend for AHCI are proposed. This project also provides a
basic analysis of the driver’s performance characteristics. To demonstrate usage, a simple test-
case, a FAT filesystem implementation and a simple block device filesystem are introduced.

1http://www.barrelfish.org

http://www.barrelfish.org

Contents

1 Introduction 9
1.1 ATA/ATAPI/SATA . 10

1.1.1 SATA . 10
1.2 AHCI . 10

1.2.1 Memory Registers . 10
1.2.2 Received FIS Area . 11
1.2.3 Commands . 12

2 Related Work 15
2.1 Other OSes . 16

2.1.1 FreeBSD . 16
2.1.2 Linux . 16

3 Design 17
3.1 Design Options . 18
3.2 General Architecture . 18
3.3 ahcid . 18

3.3.1 Operation . 18
3.4 libahci . 19
3.5 Flounder Backend . 19
3.6 Implemented ATA Commands . 19

4 ahcid 21
4.1 Introduction . 22

4.1.1 Public IDC Interface . 22
4.2 Initialization . 22
4.3 Interrupt Handling . 22

5 libahci 25
5.1 Introduction . 26

5.1.1 Purpose . 26
5.1.2 Design . 26

5.2 DMA Buffer Pool . 26
5.2.1 Design . 28
5.2.2 Implementation . 28

5.3 libahci Interface . 29
5.3.1 ahci issue command . 29
5.3.2 Command Completed Callback . 29
5.3.3 ahci init . 30
5.3.4 ahci close . 30
5.3.5 sata fis.h . 30

5.4 Error Handling . 30

Barrelfish TN-015 Disk Driver Architecture - 5

6 Flounder AHCI Backend 33
6.1 Introduction . 34

6.1.1 Purpose . 34
6.1.2 Design . 34

6.2 Discussion . 35
6.2.1 Targeting: Compiler vs. Topic . 35
6.2.2 Parameter Analysis . 35

6.3 Generated Interface . 35
6.3.1 Initialization . 35
6.3.2 Binding Type . 36
6.3.3 Interface methods . 36

6.4 Implementation . 36
6.4.1 Command Completion . 36
6.4.2 DMA Handling . 36
6.4.3 FIS Setup . 37

7 Driver Usage Example 39
7.1 Datastructures . 40
7.2 Initialization . 40
7.3 Data Manipulation . 41
7.4 Cleanup . 42

8 Blockdevice Filesystem 43
8.1 Datastructures . 44
8.2 Backend API . 44
8.3 Usage . 45
8.4 Backends . 45

8.4.1 AHCI Backend . 45
8.4.2 ATA Backend . 46

8.5 Restrictions . 46
8.6 VFS adaptation . 46

9 FAT Filesystem 47
9.1 Overview . 48
9.2 Implementation and Limitations . 48

9.2.1 Unicode . 49
9.2.2 BSD conv Functions . 49

9.3 Caching Layer . 49
9.4 VFS Interaction . 50

10 Running the AHCI Driver 51
10.1 QEMU . 52
10.2 Physical Hardware . 52

10.2.1 PCI Base Address Registers . 52
10.2.2 PCI Bridge Programming . 52
10.2.3 BIOS Memory Maps . 53

11 Future Work 55
11.1 ATA Messages . 56
11.2 Integration with the System Knowledge Base . 56

Disk Driver Architecture - 6 Barrelfish TN-015

11.3 Handling multiple AHCI controllers at the same time 56
11.4 Support for advanced AHCI/SATA features . 56
11.5 Further Controllers . 57

12 Conclusion 59
12.1 Flounder Modifications . 60
12.2 Security . 60
12.3 Performance . 60

Bibliography 61

Barrelfish TN-015 Disk Driver Architecture - 7

1 Introduction

Barrelfish TN-015 Disk Driver Architecture - 9

The Advanced Host Controller Interface (AHCI) is a standard by Intel that defines a com-
mon API for Serial ATA (SATA) and SAS host bus adapters. In order to provide backwards-
compatibility, AHCI specifies modes for both legacy IDE emulation and a standardized AHCI
interface.

AHCI only implements the transport aspect of the communication with devices. Commands
are still transferred as specified in the AT Attachment (ATA)/AT Attachment Packet Interface
(ATAPI) standards.

1.1 ATA/ATAPI/SATA

The ATA standard specifies an interface for connecting several types of storage devices, in-
cluding devices with removable media. ATAPI provides an extension to allow ATA to transmit
SCSI commands.

Commands that can be sent to ATA devices are specified in the ATA Command Set (ACS)
specifications. Commands in particular interest for this lab project are the IDENTIFY, READ
DMA, WRITE DMA and FLUSH CACHE commands.

The way these commands are sent to the device is specified in the respective specification, for
example the SATA or Parallel ATA (PATA) specifications.

1.1.1 SATA

The SATA standard specifies the layout of the command Frame Information Structures (FISs)
that encapsulate traditional ATA commands as well as all the lower layers of the interface to
the disk, such as the physical layer.

Figure 1.1 shows the structure of an example FIS. A Host to Device Register FIS can be used
to send commands to the disk. The command value is specified by ATA. The FIS contains
additional values such as Logical Block Address (LBA) and sector count.

Features Command C R R R PM Port FIS Type (27h) 0

Device LBA High LBA Mid LBA Low 1

Features (exp) LBA High (exp) LBA Mid (exp) LBA Low (exp)
2

Control Reserved (0) Sector Count (exp) Sector Count 3

Reserved (0) Reserved (0) Reserved (0) Reserved (0) 4

Figure 1.1: Host to Device Register FIS [2, p. 336]

1.2 AHCI

1.2.1 Memory Registers

While the PCI base address register 0-4 may contain pointers to address spaces for legacy
IDE emulation, Base Address Register (BAR) 5 contains the address of the Host Bus Adapter

Disk Driver Architecture - 10 Barrelfish TN-015

(HBA)’s memory mapped registers. As shown in figure 1.2, this address space is divided into
two areas: global registers for control of the HBA and registers for up to 32 ports. A port can be
attached to either a device or a port multiplier. In this lab project, we focus on device handling
and ignore port multipliers.

Figure 1.2: HBA Memory Space Usage [1, p. 33]

Every port area (Figure 1.3) contains further control registers and pointers to the memory re-
gions for the command list and receive FIS area. Each of these pointers is a 64-bit value (32-bit
for HBAs that don’t support 64-bit addressing) stored in two port registers.

Port
Registers

Received
FIS
Structure

Command 0

Command 1

Command 2

Command 31

...

Command List
Structure

Command Tables
with Physical Region
Descriptor Tables

Physical Regions,
i.e. DMA transfer
data frames

FIS

FIS

PRD 0
...

PRD 0
...

RFIS AreaController
Memory

Figure 1.3: Port System Memory Structure adapted from [1, p. 34]

1.2.2 Received FIS Area

The received FIS area serves as an area where copies of the FISs received from the device are
stored. The HBA will copy all incoming FISs to the appropriate region of the Received FIS

Barrelfish TN-015 Disk Driver Architecture - 11

(RFIS) area. If the HBA receives an unkown FIS it is copied to the Unknown FIS region if it is
at most 64 bytes long. If the HBA receives an unknown FIS that is longer than 64 bytes, it will
be considered illegal.

0x
00

0x
1C

0x
20

0x
34

0x
40

0x
54

0x
58

0x
60

0x
A0

0x
10

0

DMA
Setup
FIS

PIO
Setup
FIS

D2H
Reg-
ister
FIS

Unknown FIS Reserved

Se
t

D
ev

ic
e

B
its

 F
IS

Figure 1.4: Received FIS Organization, adapted from [1, p. 35]

1.2.3 Commands

A command list (Figure 1.5) contains 32 command headers, which each contain the metadata
for a single command.

Commands can be issued to the device by constructing a command header containing a refer-
ence to a command table and further metadata for the command to be issued.

Figure 1.5: Command List Structure [1, p. 36]

The command table (Figure 1.6) contains the command FIS itself and an optional number of
physical region descriptors specifying chunks of main memory in form of a scatter-gather list.

Disk Driver Architecture - 12 Barrelfish TN-015

Figure 1.6: Command Table [1, p. 39]

Commands are issued by setting the corresponding bit in the command issue register. Upon
command completion, the bit is cleared and if enabled, an interrupt is triggered.

Barrelfish TN-015 Disk Driver Architecture - 13

2 Related Work

Barrelfish TN-015 Disk Driver Architecture - 15

2.1 Other OSes

Most Unix-derived Operating Systems (Linux, BSD flavours, OpenSolaris, etc) integrate their
AHCI subsystem into a larger disk subsystem with support for IDE disks, SATA disks (via
AHCI), CDROM/DVD drives, and also floppy drives.

This larger disk subsystem often utilizes a general buffer layer which the OS kernel provides to
its subsystems. Furthermore most Unix derivates – due to their essentially monolithic nature –
couple the different layers of their disk subsystems (transport layer, message format and disk
commands, e.g. AHCI, SATA and ATA respectively) using function pointers and most of them
have in-kernel structures that describe commands that are issued to the disk in a message
format and transport agnostic way. This makes those systems relatively easy to extend by
adding a new layer implementations (e.g. when AHCI was first implemented a few years ago,
it was as simple as providing a new transport layer implementation for disks attached to AHCI
controller).

2.1.1 FreeBSD

FreeBSD employs the Common Access Method (CAM)1 framework to seperate implementa-
tion of the driver for the I/O bus from the device driver for the attached device. Therefore,
FreeBSD’s AHCI driver is realized as a SCSI Interface Module (SIM) handling the I/O oper-
ations needed to get an ATA or SCSI command to the device (transparently using the packet
interface of ATAPI). Other aspects of the storage system, such as filesystem or disk driver do
not have to be modified.

2.1.2 Linux

Linux handles access to ATA devices with libATA2 which unifies interfacing with SCSI and
ATA based devices and adapters in a common API. libATA can translate SCSI commands to
ATA and vice-versa or simulate a certain command if there is no translation possible. Drivers
for adapters only need to implement hooks for basic device operations and communication.

1FreeBSD SCSI Documentation can be found under http://www.freebsd.org/doc/en_US.ISO8859-1/books/

arch-handbook/scsi-general.html
2The libATA Developer’s Guide can be found under http://www.kernel.org/doc/htmldocs/libata.html

Disk Driver Architecture - 16 Barrelfish TN-015

http://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/scsi-general.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/scsi-general.html
http://www.kernel.org/doc/htmldocs/libata.html

3 Design

Barrelfish TN-015 Disk Driver Architecture - 17

3.1 Design Options

In order to be able to register as a PCI device driver, some sort of management process for
receiving the interrupts is necessary. A management process is also useful for device detection
and initialization, providing the system with an overall view of what devices are available.

Consumers of AHCI-related interrupts must register with the management process so that
interrupts may be forwarded. To provide clients with access to different SATA devices, it
makes sense to grant access to invidual HBA ports, and similarly to forward all interrupts for
a port to any clients registered to that port.

However, in choosing the method of accessing the ports, a trade-off must be made between
security and performance. For example, by setting a suitable address, another domain’s mem-
ory can be written to disk, and then read back, violating domain separation. To stop this from
occuring, a central location must check that all Physical Region Descriptors (PRDs) reference
memory which the client may access.

In such a design, all port memory access, including issuing of commands, would happen via
Flounder messages to the central daemon. The central daemon would have to ensure that the
client does not modify the command list or command tables after they are checked, so the all
these areas would have to be copied into a memory area not accessible to the client.

To achieve optimal performance at the cost of security, each client must be given full access to
the port memory. Because this is usually within the same page as the HBA memory, clients are
able to access not just their own port’s registers, but all other ports’ and the HBA’s registers as
well. Also, as described above, the client can access all memory with suitable DMA commands.

3.2 General Architecture

As shown in in Figure 3.1, our message passing to disk has two main parts: a management
part and a communication part. The management part, ahcid, provides a system-wide au-
thority over an AHCI controller. The communication part, consisting of libahci (a low-level
abstraction for using an AHCI port) and the ATA message specification and translation layer
using Flounder, is used by all user-level code that wants to access a disk to send and receive
messages from a disk.

3.3 ahcid

ahcid exists as a central point of authority over an AHCI HBA. It is responsible for HBA ini-
tialization, Interrupt handling and access mediation.

3.3.1 Operation

ahcid ensures only one user can access an AHCI port at a time. Users can open a port by send-
ing an IDC message to ahcid. If no other user currently owns the port, ahcid will provide a

Disk Driver Architecture - 18 Barrelfish TN-015

ata_rw28_test

ATA messages from
Flounder interface

libahci

fish

VFS

FAT blockdevfs

libahci

ATA messages from
Flounder interface

ahcid

Flounder IDC

AHCI

AHCI
Interrupts

Figure 3.1: Barrelfish AHCI subsystem architecture

memory capability to the port’s memory registers. The user is then able to use the port exclu-
sively. Interrupts generated by the port are handled by ahcid and dispatched to the associated
user via an IDC message. ahcid registers itself as PCI device driver for certain AHCI chipsets.

3.4 libahci

libahci tries to hide the necessary bit-twiddling and DMA buffer management for sending and
receiving messages to a disk. Its interface resembles a Flounder-generated interface and makes
use of Barrelfish’s waitsets.

3.5 Flounder Backend

This lab project also contains a Flounder backend and Flounder modifications in order to be
able to specify ATA commands as message definitions. The resulting interface can be used
similarly to performing IDC.

3.6 Implemented ATA Commands

For our purposes (designing a messaging interface to disks) it was sufficient to implement
commands for reading and writing blocks to and from disks using DMA (ATA commands

Barrelfish TN-015 Disk Driver Architecture - 19

READ DMA, WRITE DMA), inspecting the disk (IDENTIFY) and flushing the cache (FLUSH CACHE).
Due to the Flounder layer in our system (specifically the AHCI backend) adding new ATA
commands is quite easy: just add the command you want in the ATA interface specification.

Disk Driver Architecture - 20 Barrelfish TN-015

4 ahcid

Barrelfish TN-015 Disk Driver Architecture - 21

4.1 Introduction

4.1.1 Public IDC Interface

ahcid’s design is modeled after netd. It has a small IDC interface that facilitates user access
to a port: when registering for a port, the user is given the capability for the port registers.
Interrupts are forwarded via IDC messages. Currently the interface also provides access to the
IDENTIFY data of all available disks. This is useful to determine the type of device and total
disk space without having to open the port.

interface ahci_mgmt "AHCI Management Daemon" {

rpc list(out uint8 port_ids[len]);

rpc identify(in uint8 port_id,

out uint8 identify_data[data_len]);

rpc open(in uint8 port_id, out errval status,

out cap controller_mem, out

uint64 offset, out uint32 capabilities);

rpc close(in uint8 port_id, out errval status);

message command_completed(uint8 port_id,

uint32 interrupt_status);

};

Listing 4.1: ahci management Flounder interface

4.2 Initialization

ahcid registers itself as a driver for the AHCI device class. Once the init procedure is called, ah-
cid consults the received base address registers to find the memory region used for the HBA’s
registers.

As a first step, the HBA is reset in order to get to a known state. The HBA is also put into AHCI
mode. After the initial reset, ahcid discovers the number of ports and detects which of them
are implemented and have a disk connected. Discovered disks are assigned a system-wide
unique port id and are registered with the skb. For every disk, an ATA IDENTIFY command is
sent to determine the disk’s parameters. A copy of the IDENTIFY response is cached in ahcid
for later use.

After all attached disks are initialized, ahcid exports the ahci management interface, which
clients can then use to register themselves for a single port.

4.3 Interrupt Handling

ahcid registers itself as an interrupt handler for the AHCI HBA controller when calling pci_register_driver_irq.
The interrupt handler extracts the current interrupt state of the controller from the device mem-

Disk Driver Architecture - 22 Barrelfish TN-015

ory and decides if the interrupt was triggered by the HBA. If the interrupt was triggered by the
HBA, the handler loops over all ports and checks which ports received an interrupt and clears
the port’s interrupt register. The HBA’s interrupt register is cleared after all port interrupt
registers have been cleared. At last, if a client is registered for a port that has received an inter-
rupt, ahcid sends a command_completed message (Listing 4.1) using the established ahci_mgmt

interface. Clearing the interrupts before delivering the completion messages to the respective
users ensures that we do not miss interrupts that would be triggered as a consequence of any
commands issued in the command completion handler. Missing any interrupts for further
completions could deadlock a user since we do not poll the port’s state if no interrupts have
been triggered.

Barrelfish TN-015 Disk Driver Architecture - 23

5 libahci

Barrelfish TN-015 Disk Driver Architecture - 25

5.1 Introduction

5.1.1 Purpose

The intent behind libahci is to provide an easy-to-use low-level interface to a single AHCI
port. The main reason why such a library is desirable is to be able to send arbitrary ATA
commands via AHCI without having to bother with the AHCI specification details.

5.1.2 Design

libahci abstracts the low-level AHCI operations such as the writing to memory mapped con-
trol registers of the HBA. It exposes an interface similar to that of Flounder-generated interfaces
to offer a familiar environment for Barrelfish developers. The library is also used for the AHCI
specific layer of the Flounder AHCI backend. It acts as a central point for interfacing AHCI
controllers.

Apart from handling the sending of AHCI formatted ATA messages, libahci also provides
memory management for DMA regions.

5.2 DMA Buffer Pool

As all data transfers with AHCI as transport are done via DMA, we need a mechanism to
manage data buffers that are mapped non-cached. Because Barrelfish does not have mem-
ory reclamation for raw frame allocation, we must manage these buffers ourselves and have
therefore implemented our own memory subsystem in the form of a DMA buffer pool, which
allows for DMA buffer allocation and freeing.

The user has to call ahci_dma_pool_init to initialize the DMA buffer pool. After that, calls to
ahci_dma_region_alloc and ahci_dma_region_alloc_aligned allocate buffers of the given
size rounded up to 512 bytes, and the latter aligns the base address such that base % alignment -

requirement == 0. ahci_dma_region_free returns the region it gets passed to the pool.

Additionally the buffer pool provides helper functions that facilitate copying data in and out
of a buffer (ahci_dma_region_copy_in and ahci_dma_region_copy_out).

struct ahci_dma_region {

void *vaddr;

genpaddr_t paddr;

size_t size;

size_t backing_region;

};

Listing 5.1: DMA region handle

Disk Driver Architecture - 26 Barrelfish TN-015

next

prev

size
//size of free chunk
backing_region

0

first_free
// first free chunk

next

prev

size
//size of free chunk
backing_region

0

next

prev

size
//size of free chunk
backing_region

1

size_t size
// size in bytes of the pool

size_t addr_count
// number of allocated
// backing memory regions
size_t addr_entries
// number of allocated slots for
// backing memory regions
void **virt_addrs
// virtual addresses of backing
// memory regions (only valid
// for indices 0 – addr_count - 1)

genpaddr_t *phys_addrs
// physical addresses of backing
// memory regions (only valid
// for indices 0 – addr_count - 1)
void **first_free
// void* pointing to first free chunk
// in backing memory regions (only
// valid for indices 0 – addr_count - 1)

2

8

0x
8f
e0

00
0x
ca
00

00

last_free
// last free chunk

free list
global first/last free
in-region first free
backing region

Figure 5.1: DMA Buffer Pool Design

Barrelfish TN-015 Disk Driver Architecture - 27

5.2.1 Design

The pool memory is organized in regions which are allocated and mapped using
frame_alloc and vspace_map_one_frame respectively. The virtual and physical addresses of
each of these regions are stored in the fields vaddr and paddr of
struct dma_pool (c.f. Figure 5.1). The DMA buffer pool uses a doubly linked free list for
maintaining the free chunks of the memory belonging to the pool. A pointer to the first free
chunk of each backing region of the pool is stored in the pool metadata. Additionally pointers
to the first and last free chunk are stored.

When processing an allocation request, the free list is scanned from the front for a sufficiently
free chunk (first-free policy), which is returned in its entirety if it is at most 512 bytes larger
than the requested size or split otherwise. If the chunk is split, the request is taken from the
end of the chunk and the beginning of the block is left in the free list. If the entire chunk is
returned, it is removed from the free list and the appropriate metadata pointers (first_free,
last_free, and pool.first_free[backing_region]) are updated, if necessary.

If there is no block large enough to satisfy the allocation request, the pool is grown. This
is done in steps of 8 megabytes at a time. Growing the pool involves resizing the metadata
arrays (virt_addrs, phys_addrs, and first_free) and allocating and mapping memory for
the new backing region.

Returning a block to the pool is similar: using the info in pool.first_free, a suitable point in
the free list is found, and the block is inserted into the free list.

5.2.2 Implementation

ahci_dma_region_alloc searches through the free list linearly and stops at the first free chunk
that meets the condition request size <= chunk size. If no free chunk meets that condi-
tion grow_dma_pool is called to increase the pool size by eight megabytes and the free list
traversal continues with the new memory regions. When a sufficiently large free chunk is
found, get_region is called. That function checks if the free chunk will be split or not (a
chunk is split if the remaining free chunk will be at least 512 bytes), allocates and constructs a
struct ahci_dma_region for the buffer that will be returned, including computing the virtual
and physical addresses of the buffer, and shrinks the free chunk or removes it from the free list
(according to the chunk-splitting decision).

ahci_dma_pool_init calls grow_dma_pool with the requested initial pool size rounded up to
BASE_PAGE_SIZE.

ahci_dma_region_free calls return_region on the passed struct ahci_dma_region. That
function inserts the region into the free list. Inserting the region into the free list can take
different forms according to the state of the free list before inserting the chunk.

After inserting the newly freed chunk into the free list, return_region tries to merge the chunk
with its predecessor and successor in order to prevent excessive fragmentation of the buffer
pool memory. After calling return_region, the struct ahci_dma_region is freed.

The last two functions (ahci_dma_region_copy_in and ahci_dma_region_copy_out) are im-
plemented as static inline and take a struct ahci_dma_region, a void* data buffer, a
genvaddr_t offset (into the DMA region), and a size_t size. These functions just calculate

Disk Driver Architecture - 28 Barrelfish TN-015

the source (for ahci_dma_region_copy_out) or destination (for ahci_dma_region_copy_in)
pointer for the memcpy and then copy the data.

5.3 libahci Interface

5.3.1 ahci_issue_command

ahci_issue_command is the main function of libahci and takes a void* tag with which the user
can later match the command completed messages to his issued commands, a FIS and FIS
length, a boolean flag is_write which indicates if DMA takes place to or from the disk, and a
struct vregion* data buffer and associated length.

First off ahci_issue_command calls ahci_setup_command which allocates a command slot in
the port’s command header. After that, ahci_setup_command allocates a command table for
the new command that has enough entries to accomodate ddata length/prd sizee PRDs. Then
ahci_setup_command inserts the newly allocated command table into the reserved slot in the
port’s command header and sets the bit to indicate the DMA direction (according to is_write)
and also sets the FIS length in the command header slot. Finally, the FIS is copied into the
newly allocated command table and the int *command output parameter is assigned the com-
mand slot number of the new command.

After completion of ahci_setup_command, ahci_issue_command saves the user’s tag into the
command slot metadata and proceeds to call ahci_add_physical_regions. This function
takes the command slot number (int commmand) and a data buffer, partitions the data buffer
into physical regions and inserts those regions into the command slot indicated by command.
The size of the physical regions is specified as at most 4MB and must be an even byte count.
However, due to hardware-related problems when using physical regions larger than 128kB
we artificially cap the physical region size at 128kB. Memory addresses have to be word
aligned. If a constant and predictable physical region size is desired, one can define AHCI_FIXED_PR_SIZE
and PR_SIZE to enforce a specific size for physical regions.

Finally ahci_issue_command sets the issue command bit for the command slot in which the
new command is stored and calls the user continuation, if any.

5.3.2 Command Completed Callback

The command completed callback is called when the AHCI management daemon receives a in-
terrupt targeted to the AHCI port which is coupled with the associated struct ahci_binding.
The command completed callback can be adjusted by user code in order to post-process (cleanup,
copy-out of read data, etc.) a completed AHCI command.

The management command completed callback in libahci (which is called from ahcid when
the port associated with the current libahci binding receives an interrupt) reads the comm-
mand issue register of the port and calls the user-supplied command completed callback for
each command slot which is marked in_use in libahci but which has the corresponding bit in
the command issue register cleared.

The user-supplied command completed callback takes a void *tag as its only argument; these

Barrelfish TN-015 Disk Driver Architecture - 29

tags are also saved in libahci, and should uniquely identify their correpsonding AHCI com-
mand.

5.3.3 ahci_init

ahci_init is the first function a user of libahci calls. ahci_init initializes the struct ahci_binding

for the connection and if the connection to ahcid has not yet been established, tries to bind to
ahcid. The initalization of libahci continues when the bind callback that was specified in the
call to ahcid executes.

On the first call to ahci_init, the bind callback sets up the function table for the manage-
ment binding and then calls ahci_mgmt_open_call__tx to request the port specified by the
uint8_t port parameter of ahci_init from ahcid. The initialization finishes when the ahci
management open callback executes.

On later ahci_init calls ahci_init updates the ahcid binding to know about the new libahci

connection and directly calls ahci_mgmt_open_call__tx.

The open callback checks if the open call succeeded, and if so, the memory region contain-
ing the registers belonging to the requested port is mapped in the address space in which
libahci executes. After that the receive FIS area and the command list are set up, a copy of
the IDENTIFY data is fetched from ahcid, the port is enabled (the command list running flag is set
to one) and all port interrupts are enabled.

5.3.4 ahci_close

The purpose of ahci_close is to release the port by calling the close function of ahcid (c.f. List-
ing 4.1). This needs to be done, as otherwise ahcid will return AHCI_ERR_ PORT_BUSY on subse-
quent open calls for the same port.

5.3.5 sata_fis.h

This header contains definitions dealing with SATA’s FIS that are used for sending commands
over AHCI. While the ATA command specification defines what registers exist for each FIS
type and how they are used, the SATA specification defines the binary layout of these registers.

While it might initially seem that a mackerel specification for these structures would be suffi-
cient, complexity introduced through optional ATA features makes a custom API preferable.
As an example, consider the layout of 28-bit and 48-bit LBAs: for 28 bit LBAs, the lower 24 bits
are placed in registers lba0 through lba2, while the upper 4 bits are placed in the low bits of
the device register. However, for 48-bit LBA, the device register is not used, and the upper 24
bits are placed in register lba3 through lba5, which are separate from the lower 3 lba registers.

5.4 Error Handling

A mandatory part of an AHCI driver is to check if the HBA signals any errors on command
completion. libahci does check the relevant registers, but the only error handling imple-

Disk Driver Architecture - 30 Barrelfish TN-015

mented right now is to dump the registers specifying the error and then aborting the domain
that received the error.

In order to comply to the AHCI specification, the software stack (i.e. libahci) should attempt
to recover. Errors signaled by one of the HBFS, HBDS, IFS or TFES interrupts are fatal and will
cause the HBA to stop processing commmands. To recover from a fatal error, the port needs
to be restarted and any pending commands have to be re-issued to the hardware or user level
code has to be notified that these commands failed.

Errors signaled by the INFS or OFS interrupts are not fatal and the HBA continues processing
commands. In this case the software stack does not have to take any action.

Barrelfish TN-015 Disk Driver Architecture - 31

6 Flounder AHCI Backend

Barrelfish TN-015 Disk Driver Architecture - 33

6.1 Introduction

6.1.1 Purpose

The goal of the AHCI Flounder backend is twofold: first, it should allow specifying ATA mes-
sages declaratively, making adding messages easier and reducing the amount of code poten-
tially containing bugs. Second, sending such ATA messages to a disk should behave just like
general-purpose inter-dispatch messaging, enabling transparent proxying of messages should
no direct connection be available between a dispatcher and a suitable I/O controller.

6.1.2 Design

However, our use of Flounder also represents a major extension to its purpose. So far, Flounder
transports have simply been responsible for transferring data, i.e. marshalling, packaging and
transmission. Our backend differs in that it must understand the purpose of each data item:
depending on that purpose, it must be formatted in a particular way, other actions may be
necessary, and certain restrictions (in particular on the size and type of the data) may apply.

What this means for our project is that we must extend Flounder’s syntax with message meta-
data, i.e. parameters providing additional information about a message definition but not
contributing to the runtime message payload. An example of our current syntax can be seen
in figure 6.1.

interface ata_rw28 "ATA read & write with 28-bit LBA" {

@ata(command=0xC8, dma_arg=buffer, dma_size=read_size,

lba=start_lba)

rpc read_dma(in uint32 read_size, in uint32 start_lba,

out uint8 buffer[buffer_size]);

@ata(command=0xC8, dma_arg=buffer, dma_size=512, lba=lba)

rpc read_dma_block(in uint32 lba, out uint8 buffer[buffer_size]);

@ata(command=0xCA, dma_arg=buffer, is_write=1, lba=lba)

rpc write_dma(in uint8 buffer[buffer_size], in uint32 lba,

out errval status);

@ata(command=0xEC, dma_arg=buffer, dma_size=512)

rpc identify_device(out uint8 buffer[buffer_size]);

@ata(command=0xE7)

rpc flush_cache(out errval status);

};

Figure 6.1: Example ATA message definitions

Disk Driver Architecture - 34 Barrelfish TN-015

6.2 Discussion

6.2.1 Targeting: Compiler vs. Topic

As seen in the syntax example, a set of meta-parameters is targeted using the “@” notation.
Two possibilities exist for the interpretation of the target specifier:

• The target may specify a compiler name (e.g. @AHCI_Stubs), with each compiler receiving
only the meta-parameters targeted to it. Among other things, this requires an additional
step between parsing and compiling, thus a compiler no longer receives the interface
definition’s full AST.

Also, compilers are unable to share such parameters, e.g. if backends exist for different
ATA command transports, parameters related to formatting of ATA commands must be
repeated for each backend’s compiler.

• The target may specify a generic “topic”. This does not require the extra preprocessing
step and allows sharing of meta-parameters, but requires compilers to match their inter-
pretation of shared parameters. Nonetheless, the sharing of parameters (also between
header and stub compilers of the same backend) may make this solution preferable.

While the initial implementation used the former solution, this was replaced and we now use
the second option.

6.2.2 Parameter Analysis

Extracting information from parameters and meta-parameters can be done in various ways.
Their presence, absence, type and (for meta-parameters) value can all be used as sources of
information. The question is therefore how best to handle this information, as demonstrated
in the following examples:

• The presence of an output parameter status of type errval_t may imply that it should
be used for a status result. But what if the type is different, or there is a errval_t-typed
parameter with a different name?

• The size of a buffer may be extracted from its type if that is an array typedef. If it is a
dynamic array, the may be the dynamic length parameter. In either case, the size might
also be specified as a meta-parameter. Which of these information sources should be
accepted?

6.3 Generated Interface

6.3.1 Initialization

Initialization is done with if name_ahci_init. The client must first initialize libahci, at which
point the target device is specified with the port parameter of ahci_init. Also, the client must
allocate a suitable if name_ahci_binding.

Barrelfish TN-015 Disk Driver Architecture - 35

6.3.2 Binding Type

The if name_ahci_binding type extends the generic binding type, allowing the generated
AHCI bindings to be used anywhere the generic binding type is used. In particular, the RPC-
Client can be wrapped around AHCI bindings, greatly simplifying their usage.

Additionally, an AHCI binding contains a libahci binding, used internally for communication
with the library.

6.3.3 Interface methods

Because AHCI Flounder bindings use the generic binding as a base, the generic messaging
methods can be used, with the if name_ahci_binding cast to the generic if name_binding.

6.4 Implementation

6.4.1 Command Completion

To generate Flounder responses, the AHCI backend must associate command completion call-
backs from libahci with information from the original command. This is done using libahci’s
command tags; before issuing a command, a completed_rx_st “command completion” struct
is allocated and filled. The address of this struct is sent as the command tag for issue_command.
Upon command completion, the tag is cast to a completed_rx_st, and the completed_fn call-
back function pointer is called.

The completed_rx_st contains information for the message-specific completion handler. Cur-
rently, this consists of the if name_ahci_binding and the region used for DMA. If the message
is supposed to perform a DMA read, the data must be copied out of the DMA region into an
allocated buffer to be passed to the client. If DMA is used at all, the region must also be freed.

Finally, the completed_rx_st is used by the issue_command_cb for freeing the allocated FIS
and calling the message send user continuation.

6.4.2 DMA Handling

When parameter analysis indicates a DMA transfer is expected, the AHCI backend must gener-
ate code to setup DMA regions, copying in TX data before issuing the command, and copying
out RX data after the command completes.

To perform DMA, a dma_arg must be specified in the ata-targeted message meta-arguments.
When the AHCI backend detects this argument, it expects the value to be an identifier that
corresponds to one of the formal message arguments. The DMA direction is then the direction
of that message argument; in is a transmit, out is a receive.

Because the DMA region must be allocated before the command is issued, if a DMA argument
is present, the size of the DMA must either be specified in the interface file, or must be de-
terminable upon receiving the rpc call from the client. The size of the DMA may therefore be
specified with any of the following means:

Disk Driver Architecture - 36 Barrelfish TN-015

• If dma_arg is a dynamic array, its size argument is used. (transmit only)

• If dma_arg’s type is an array of fixed size, that is used.

• If a meta-argument dma_size is present and is an integer, that is used.

• If a meta-argument dma_size is present and is an identifier, the RPC must have an in

argument with that name, the value of which is used.

Finally, the DMA data must be copied in and out of suitably mapped regions, managed using
libahci’s ahci_dma_region API. This is necessary because flounder semantics require that the
client owns buffer memory.

6.4.3 FIS Setup

To issue a command over AHCI, the AHCI backend must first set up a suitable FIS. This is
done using the sata_fis API in libahci.

Barrelfish TN-015 Disk Driver Architecture - 37

7 Driver Usage Example

Barrelfish TN-015 Disk Driver Architecture - 39

This lab project contains a new testcase ata_rw28_test to test the Flounder-generated interface
for ATA in LBA28 addressing mode. This chapter walks through its code to demonstrate the
steps needed to access disks using the Flounder backend.

The application first initializes the necessary bindings and RPC client. It then uses the RPC
wrapper around the Flounder-based ATA interface geared towards LBA28 addressing mode.
The test itself is performed by writing 0xdeadbeef in multiple 512 byte blocks and verifying
that the data is actually written to disk by reading it back and checking the contents. The test
concludes with releasing the port.

7.1 Datastructures

To be able to perform RPC calls to read from or write to the disk, an ahci_binding as well
as an ahci_ata_rw28_binding and an ata_rw28_rpc_client are necessary. ata_rw28_test

defines these as global variables out of convenience:

struct ahci_ata_rw28_binding ahci_ata_rw28_binding;

struct ata_rw28_rpc_client ata_rw28_rpc;

struct ata_rw28_binding *ata_rw28_binding = NULL;

struct ahci_binding *ahci_binding = NULL;

The required header files are:

#include <barrelfish/barrelfish.h>

#include <barrelfish/waitset.h>

#include <if/ata_rw28_defs.h>

#include <if/ata_rw28_ahci_defs.h>

#include <if/ata_rw28_rpcclient_defs.h>

7.2 Initialization

First, we need to initialize the DMA pool which is used to manage frames that are mapped
uncached and are therefore suitable for DMA transfers. We initialize the pool to be 1MB in
size:

ahci_dma_pool_init(1024*1024);

Next, we need to initialize libahci and specify which AHCI port we want to use. For simplic-
ity, we use port 0 which is the first device detected. To achieve blocking behaviour, we enter a
spinloop and wait for the callback from ahcid:

err = ahci_init(0, ahci_bind_cb, NULL, get_default_waitset());

if (err_is_fail(err) ||

err_is_fail(err=wait_bind((void**)&ahci_binding))) {

USER_PANIC_ERR(err, "ahci_init");

}

The callback ahci_bind_cb simply sets the global ahci_binding and wait_bind waits for this
global to be set:

Disk Driver Architecture - 40 Barrelfish TN-015

static void ahci_bind_cb(void *st,

errval_t err, struct ahci_binding *_binding)

{

bind_err = err;

if (err_is_ok(err)) {

ahci_binding = _binding;

}

}

static errval_t wait_bind(void **bind_p)

{

while (!*bind_p && err_is_ok(bind_err)) {

messages_wait_and_handle_next();

}

return bind_err;

}

The RPC client can be constructed by first initializing the ata_rw28 binding and then building
an RPC client on top of it. The pointer to the binding is stored for convenience as it is used
frequently:

err = ahci_ata_rw28_init(&ahci_ata_rw28_binding, get_default_waitset(),

ahci_binding);

if (err_is_fail(err)) {

USER_PANIC_ERR(err, "ahci_ata_rw28_init");

}

ata_rw28_binding = (struct ata_rw28_binding*)&ahci_ata_rw28_binding;

err = ata_rw28_rpc_client_init(&ata_rw28_rpc, ata_rw28_binding);

if (err_is_fail(err)) {

USER_PANIC_ERR(err, "ata_rw28_rpc_client_init");

}

RPC calls can now be made to perform operations on the disk.

7.3 Data Manipulation

write_and_check_32 is the function used to write 0xdeadbeef to the disk and verify that writ-
ing succeeded. It accepts arbitrary 32 bit patterns that are written to disk. First off, we need to
calculate some values, allocate a buffer and fill this buffer with the pattern:

static void write_and_check_32(uint32_t pat, size_t start_lba,

size_t block_size, size_t block_count)

{

errval_t err;

size_t bytes = block_size*block_count;

uint8_t *buf = malloc(bytes);

assert(buf);

Barrelfish TN-015 Disk Driver Architecture - 41

size_t step = sizeof(pat);

size_t count = bytes / step;

assert(bytes % sizeof(pat) == 0);

for (size_t i = 0; i < count; ++i)

(uint32_t)(buf+i*step) = pat;

The actual writing is very simple. We issue the write_dma RPC call, pass it the binding, the
buffer, the number of bytes to write, the LBA on the disk where we want to write to and do
some basic error handling:

printf("writing data\n");

errval_t status;

err = ata_rw28_rpc.vtbl.write_dma(&ata_rw28_rpc, buf, bytes,

start_lba, &status);

if (err_is_fail(err))

USER_PANIC_ERR(err, "write_dma rpc");

if (err_is_fail(status))

USER_PANIC_ERR(status, "write_dma status");

Reading data is equally simple:

size_t bytes_read;

err = ata_rw28_rpc.vtbl.read_dma(&ata_rw28_rpc, bytes,

start_lba, &buf, &bytes_read);

if (err_is_fail(err))

USER_PANIC_ERR(err, "read_dma rpc");

if (!buf)

USER_PANIC("read_dma -> !buf");

if (bytes_read != bytes)

USER_PANIC("read_dma -> bytes_read != bytes");

At the end, we do a simple verification and free the allocated buffer.

7.4 Cleanup

To return ownership of the port and clean up resources, a simple call to ahci_close suffices:

ahci_close(ahci_binding, NOP_CONT);

Disk Driver Architecture - 42 Barrelfish TN-015

8 Blockdevice Filesystem

Barrelfish TN-015 Disk Driver Architecture - 43

Barrelfish offers a simple VFS layer for accessing different filesystems. blockdevfs adds a fur-
ther layer to facilitate exporting of file-like objects to the filesystem layer. There is no restriction
on the nature of these files, apart from having to be of a fixed size.

The backends of blockdevfs can expose an arbitrary number of filenames. The filenames from
different backends are combined to form the root directory of the blockdevfs filesystem. VFS
calls are mapped to the corresponding backend. The filesystem only consists of a single direc-
tory with no nested directories. Files cannot be created nor deleted or truncated.

8.1 Datastructures

blockdevfs keeps a very simple doubly-linked list of directory entries. These entries contain a
file name, file position, file size, backend type and backend handle. blockdevfs does not en-
force any kind of order in this list. Therefore, enumerating the contents of the blockdevfs root
directory will yield the files registered by blockdevfs backends in the order they were added
to blockdevfs. When routing VFS calls to the right backend, the number stored in backend
type is used as an index into the backends array holding function pointers to the backend’s
operations.

Figure 8.1 shows how the directory structure looks like with two entries. prev and next are
used to implement the linked list. path holds a pointer to the filename. size contains the size
of the file in bytes. type is either 0 for the libahci backend or 1 for the Flounder-based backend.
backend_handle points to an internal handle private to the backend. open is a boolean value
indicating if the file has been opened already.

blockdevfs backends must use the blockdev_append_entry function to register files they ex-
port.

nextprev
path
size
type

backend handle
open

nextprev
path
size
type

backend handle
open

first last

Figure 8.1: Directory entries of blockdevfs

8.2 Backend API

blockdevfs only exports blockdev_append_entry which can be used by backends to register
their exported files. A backend can choose the backend_handle freely. This handle will be
passed as an argument to all VFS related functions.

For standard VFS operations, backends need to provide these four functions:

Disk Driver Architecture - 44 Barrelfish TN-015

• open(void *handle) to open an exported file. The backend does not have to check or
manipulate any blockdevfs-specific structures. blockdevfs ensures that only one client
has a file open concurrently.

• close(void *handle) to close a previously opened file. As with open, blockdevfs takes
care of manipulating its structures.

• read(void *handle, size_t pos, void *buffer, size_t bytes,

size_t *bytes_read) to read from the file corresponding to the handle.

• write(void *handle, size_t pos, void *buffer, size_t bytes,

size_t *bytes_written) to write to the file corresponding to the handle.

• flush(void *handle) to flush all data of the file correpsonding to the handle to persis-
tent storage.

All functions are supplied with the backend-handle associated with the corresponding file.

8.3 Usage

blockdevfs can by mounted by issuing mount mountpoint blockdevfs:// and does not ac-
cept any further parameters.

Upon mounting, blockdevfs initializes its backends which in turn populate the list of directory
entries. Listing the directory contents will yield any attached disk drives and report their sizes.

8.4 Backends

Currently the block device file system has two backends. One backend uses libahci stand-alone
and the other backend uses the Flounder-generated ATA interface. The backends are named
the ahci and ata backend respectively.

As both these backends expose the same devices (namely any SATA disks attached to the
AHCI controller), the file names for the devices are composed of the backend name and the
device’s unique id, e.g. ahci0 and ata0 for the device with unique id 0. Keep in mind that ahcid
prevents concurrent access, therefore you can’t open the respective ata and ahci devices at the
same time.

8.4.1 AHCI Backend

The AHCI blockdevfs backend implements the open and close commands by calling the corre-
sponding functions in libahci (ahci_init and ahci_close) and implements read and write by
allocating a DMA buffer using ahci_dma_region_alloc, constructing an appropriate FIS and
calling ahci_issue_command. The read implementation updates the rx_vtbl.command_completed
pointer to point to rx_read_command_completed_cb. That function then uses ahci_dma_region_copy_out
to copy the read bytes from the DMA buffer to the user buffer, frees the DMA buffer, and calls
the user continuation. The write implementation copies the bytes that need to be written to the
DMA buffer (using ahci_dma_region_copy_in) and updates the rx_vtbl.command_completed
pointer to point to rx_write_command_completed_cb which frees the DMA buffer and calls the

Barrelfish TN-015 Disk Driver Architecture - 45

user continuation. Flush is implemented by issuing the FLUSH CACHE ATA command which
flushes the on-disk cache to the harddisk proper.

8.4.2 ATA Backend

The ATA blockdevfs backend implements the open command by initializing an RPC client
to the ata_rw28 Flounder AHCI interface. The close command just calls ahci_ close so that
a subsequent open-call on the same blockdevfs file is successful. The read, write and flush
commands are easy to implement using the RPC client to the Flounder AHCI interface by just
calling the read_dma, write_dma and flush_cache functions in the RPC function table.

8.5 Restrictions

As blockdevfs is only intended to provide a simple way for VFS aware applications (e.g. fish)
it has several restrictions:

• The size of the files should not change. Although a backend might change the size stored
in the handle dynamically, blockdevfs is not geared towards this.

• Subdirectories are not supported.

• Only one client can have a file open.

• Files cannot be removed, neither by the user nor by the backend.

8.6 VFS adaptation

In order to ensure that data written to a block device really gets written to the hard disk, we
added a new VFS call, namely vfs_flush, which is used to flush the hard disk’s volatile cache.
vfs_flush returns VFS_ERR_NOT_IMPLEMENTED for VFS backends that have no handler for flush
in their struct vfs_ops table.

Disk Driver Architecture - 46 Barrelfish TN-015

9 FAT Filesystem

Barrelfish TN-015 Disk Driver Architecture - 47

9.1 Overview

The layout of the FAT16 and FAT32 filesystems can be seen in Figures 9.1 and 9.2 respectively.
The File Allocation Table (FAT) itself is simply a linked list, where the value of a cell indicates
the index of the next cell, and special values indicate unused, bad and list-terminating cells.
The data area is split into clusters with sizes a multiple of the sector size. The cluster corre-
sponding to a FAT entry is simply the cluster with the same index, i.e. for an index i the FAT
entry is fat start+ i · entry size and the cluster entry is clusters start+ i · cluster size.

Boot sector
First FAT
Second FAT
Root Directory

Clusters

Index in FAT is index in clusters

Root directory has its own
fixed area before clusters

Figure 9.1: FAT16 Layout

Boot sector
First FAT
Second FAT

Clusters

Index in FAT is index in clusters

FS Info Sector

Figure 9.2: FAT32 Layout

FAT16 (and FAT12) have the particularity that the root directory is not like other directories,
but is instead inside its own area preceding the start of the “clusters” area. This also implies
that the maximum number of entries in the root directory is fixed when formatting. FAT32 re-
moves this limitation, and adds an additional Filesystem Information Sector (FSIS) containing
dynamic information about the state of the filesystem, e.g. the amount of allocated/free space.

9.2 Implementation and Limitations

We have implemented read-only support for FAT16 and FAT32. However, because the example
ata_rw28 interface only has the 28-bit READ DMA and WRITE DMA commands, we can only access

Disk Driver Architecture - 48 Barrelfish TN-015

the first 128GB of a disk (with 512-byte sectors).

9.2.1 Unicode

While FAT 8.3 filenames are 8-bit strings, FAT long filenames use UTF-16. Barrelfish does
not have any concept of Unicode, so our FAT implementation replaces non-ASCII characters
with a question mark in directory listings, and does not support opening files with non-ASCII
filenames.

9.2.2 BSD conv Functions

To generate 8.3 filenames in the first place, we have adapted various conversion functions from
OpenBSD’s msdosfs. However, our current implementation still compares filenames case-
sensitively.

9.3 Caching Layer

key

hash function

hash index

collisions
linked
list

data

Figure 9.3: Cache Design

The FAT code uses a cache layer as a global block and cluster store, simplifying the code and
improving performance. The cache is implemented as a fixed-size hashmap from keys to in-
dices into a backing array. The backing array uses doubly linked lists to handle collisions,
the free list, and a list of unused cache entries that can be freed if space is required. Clients
must acquire a reference to a cache entry, either using fs_cache_acquire if the entry is al-
ready present, or fs_cache_put when creating a new entry. When the entry is no longer used,
the client must call fs_cache_release. If the reference count for an entry sinks to zero, it is
appended to the aforementioned list of unused entries, which can be seen as an LRU queue.
Thus when fs_cache_put is called and the cache is at its maximum capacity, it can pop the
front entry from the unused list, free its data, and use the entry for the new cache item.

The caching API consists of the following methods:

• fs_cache_init and fs_cache_free, for cache setup and teardown. The initialization
method takes the maximum capacity of the backing array and the hashmap size. Both
values must be powers of two.

• fs_cache_acquire, for getting a reference to an existing entry.

Barrelfish TN-015 Disk Driver Architecture - 49

• fs_cache_put, for adding an item to the cache. This also increments the reference count
as if fs_cache_acquire had been called.

• fs_cache_release, for releasing a reference to an entry.

9.4 VFS Interaction

The mount URI for FAT has the format fat<version>://<port>[+<startblock>], e.g. fat32://0+63,
where version is is either 16 or 32, port is the AHCI port of the device, and the optional
startblock specifies the offset the first sector of the filesystem (the boot sector).

Unlike Barrelfish’s ramfs, our FAT implementation does not share state between multiple
mounts using IDC, so with the current VFS implementation mounting a FAT filesystem gives
the mounting domain exclusive access to the filesystem and the whole disk. An alternative
that would avoid code duplication would be for the VFS to allow part of its directory structure
to be exported as a service, creating a Barrelfish-internal system conceptually similar to NFS.

Disk Driver Architecture - 50 Barrelfish TN-015

10 Running the AHCI Driver

Barrelfish TN-015 Disk Driver Architecture - 51

This chapter details the ways the AHCI driver can be run and elaborates on the adjustments
needed to be able to run the driver on real hardware.

10.1 QEMU

Since version 0.14, QEMU contains an emulation layer for an ICH-9 AHCI controller1. To
define a disk, the QEMU command line needs to be extended with:

-device ahci,id=ahci -device ide-drive,drive=disk,bus=ahci.0 \

-drive id=disk,file=/path/to/disk.img,if=none

QEMU emulates an ICH-9 controller sufficiently well that little special code is required. A
first workaround is needed for finding the AHCI PCI BAR; since the QEMU AHCI emulation
layer does not provide the legacy IDE compatibility mode, the AHCI MMIO region is found
in BAR 0 instead of BAR 5. Another workaround is necessary when receiving the response for
an IDENTIFY, which is a PIO command but is delivered as a Device to Host Register FIS by
QEMU.

10.2 Physical Hardware

Running Barrelfish on real hardware, one can run into several issues. In order to be able to test
our AHCI implementation, we had to adjust several aspects of Barrelfish outside the scope of
the AHCI driver infrastructure. This chapter details any additional modifications.

10.2.1 PCI Base Address Registers

Barrelfish’s system knowledge base is not able to handle addresses above 32 bit correctly. Fix-
ing this issue would require extensive modifications in the SKB which are out of the scope of
this lab project. As a consequence, ahcid will receive zero BARs on hardware where the AHCI
memory regions are mapped in memory above 4GB and thus be unable to access the memory
mapped I/O region to control the HBA. For the same reason, the code produced by this lab
project has not been tested for 64bit addresses in memory mapped I/O regions. Still, once
the issues in the HBA have been fixed, the driver should properly recognise and handle the
devices in question.

10.2.2 PCI Bridge Programming

Because of a bug in PCI bridge programming, Barrelfish sometimes does not program PCI
BARs correctly if PCI bridges are present. For this lab project, we introduce a workaround that
will retrieve the original BARs in case no reprogrammed BARs can be found in the SKB.

This is achieved in the device_init function of pci.c, by querying the SKB for the original
bar(...) facts of the device if no reprogrammed ones can be found:

1The QEMU 0.14 changelog is available at http://wiki.qemu.org/ChangeLog/0.14

Disk Driver Architecture - 52 Barrelfish TN-015

http://wiki.qemu.org/ChangeLog/0.14

error_code = skb_execute_query(

"findall(baraddr(BAR,Base,0,Size),bar(addr(%u,%u,%u)"

",BAR,Base,Size,_,_,_), BARList),"

"sort(1, =<, BARList, L),"

"length(L,Len),writeln(L)",

*bus, *dev, *fun);

The result of this prolog expression has exactly the same form as pci_get_

implemented_BAR_addresses therefore the surrounding code is exactly the same as in the
usual case.

10.2.3 BIOS Memory Maps

On x86 architectures, the BIOS memory map can be retrieved to determine the layout of mem-
ory. Some BIOSs report a memory map that is not sorted by increasing base address or even
might return overlapping and conflicting memory regions. This lab project contains modifica-
tions to the code that creates capabilities to physical memory in startup_arch.c such that the
memory map is preprocessed to eliminate conflicts and ensure ascending addresses.

As the preprocessed memory map might be larger due to the case where one memory region
completely contains another and thus is split into three new regions, we first need to copy the
map into a larger buffer. The memory map is then sorted with a simple bubblesort. To remove
conflicts, overlapping regions are given to the region with the higher type or merged if they
are both of the same type. At the end, regions are page-aligned as Barrelfish can only map
whole pages.

Figure 10.1 shows the memory maps seen on a DELL Optiplex 755 workstation. Several re-
gions are not aligned to the pagesize and the region at 0xfec00000 does not appear in as-
cending order. After preprocessing, memory addresses appear in ascending order and are
page-aligned. Note that higher types take precedence, therefore page alignment does not nec-
essarily round down.

Barrelfish TN-015 Disk Driver Architecture - 53

Type 1: Available RAM
Type 2: Reserved
Type 3: Reserved
Type 4: Reserved

00000000
000f0000
00100000
cf4ff800
cf553c00
cf555c00
e0000000
fed00000
fed20000
fec00000
fee00000
ffb00000
100000000

0008a400
00100000
cf4ff800
cf553c00
cf555c00
d0000000
f0000000
fed00400
feda0000
fed00000
fef00000
100000000
128000000

00000000
000f0000
00100000
cf4ff000
cf554000
cf556000
e0000000
fec00000
fed00000
fed20000
fee00000
ffb00000
100000000

0008a400
00100000
cf4ff000
cf554000
cf556000
d0000000
f0000000
fed00000
fed00400
feda0000
fef00000
100000000
128000000

BIOS reported MMAP Preprocessed MMAP

Figure 10.1: Memory map transformation

Disk Driver Architecture - 54 Barrelfish TN-015

11 Future Work

Barrelfish TN-015 Disk Driver Architecture - 55

11.1 ATA Messages

Since this lab project was geared towards designing and implementing a message passing
interface to disk, only very few message types have been defined to showcase the interface.
SATA supports a wider range of devices which can benefit from more aspects of the ATA
command set, such as TRIM on solid state drives. Adding further commands to the flounder-
based approach is as simple as adding a further message definition.

11.2 Integration with the System Knowledge Base

As we have mainly focused on getting message passing to disk to work, we have taken a few
shortcuts concerning the integration of our subsystem into Barrelfish as a whole. For instance,
we do not really use the SKB to uniquely identify the disks attached to an AHCI controller.
Neither do we use the SKB to store additional data, e.g. serial number and size, of the attached
disks. Adding that kind of data would simplify discovery of disks and acting appropriately,
for example automatically mounting a volume or similar.

11.3 Handling multiple AHCI controllers at the same time

Currently our management daemon (see chapter 4, ahcid) successfully exits from the initializa-
tion code as soon as a AHCI controller has been found. It would be prefereable if on systems
with multiple controllers attached all of these could be used. One consideration in this case
would be whether to have one management daemon per controller or a global management
daemon that controls all available AHCI controllers.

11.4 Support for advanced AHCI/SATA features

Some of the features of AHCI/SATA we did not look at are Port Multiplication and Native
Command Queueing (NCQ).

However, our system design, including a management daemon that presents each port to the
rest of the system as a separate entity, makes accomodating multiplied ports (multiplying ports
is actually done in hardware and the AHCI host controller has a register for each port which
contains the port multiplication status for that port) relatively easy as the only parts that have
to be changed are the management daemon and libahci. Also, NCQ could be implemented
almost entirely in libahci, if desired.

We also do not handle hotplug of devices. Addition of devices could implemented relatively
easy by extending ahcid’s interrupt handler and performing the initialization steps once the
link to the device has been established. Removal however is more challenging. Outstanding re-
quests have to be completed with an error, the user notified and memory resources reclaimed.

Disk Driver Architecture - 56 Barrelfish TN-015

11.5 Further Controllers

The modular nature of the Flounder-based approach allows to add additional backends for
other controllers. Since this lab project only examined AHCI-compliant controllers, support is
limited to realtively new controllers for SATA. In reality, there are still a lot of use cases where
one might have to access PATA-based devices, such as older CDROM drives. Therefore, back-
ends for more chipsets should be developed, most importantly one for a widespread PATA
controller such as the PIIX family or the ICH controllers before the introduction of AHCI.

Barrelfish TN-015 Disk Driver Architecture - 57

12 Conclusion

Barrelfish TN-015 Disk Driver Architecture - 59

In the course of this lab project we successfully implemented an AHCI driver and supporting
code for data storage and retrieval.

12.1 Flounder Modifications

The extensions added to flounder provide a very simple and extensible way to interface with
disks. The overhead incurred is acceptable in the trade-off for simplicity and modularity. The
seperation of interface definition for ATA from implementation of command dispatching to
the device allows simple addition of further ATA transports, such as additional PATA/SATA
controllers.

12.2 Security

The AHCI driver demonstrates the trade-off when dealing with DMA. If a domain is allowed
full control over the configuration of DMA aspects, it can obtain full read/write access to
physical memory. To mitigate this problem, the management service would have to check and
validate any memory regions supplied before allowing a command to execute. If only trusted
domains are allowed to bind to the AHCI driver, these checks are not neccessary. This is a
valid assumption, as filesystems and blockdevice-like services are the only ones that should
be allowed raw access to disks.

12.3 Performance

Performance is in the same order of magnitude as seen on Linux for large blocksizes and
random access. There is some bottleneck during read operations that could relate either to
interrupt dispatching or memcopy performance. To achieve high throughput on sequential
workloads with small blocksizes, a prefetcher of some sort is necessary. A possible solution
would be to have a cache that stores pages or larger chunks of data. A read operation would
then have to read multiples of the cached size if the data is not present in the cache. If data is
cached, the request can be completed much faster without needing to consult the disk.

Disk Driver Architecture - 60 Barrelfish TN-015

Bibliography

[1] Intel Corp. Serial ATA Advanced Host Controller Interface (AHCI) 1.3, 06 2008. http://

download.intel.com/technology/serialata/pdf/rev1_3.pdf.

[2] SATA-IO. Serial ATA Revision 2.6, 02 2007. https://www.sata-io.org/developers/

purchase_spec.asp.

Barrelfish TN-015 Disk Driver Architecture - 61

http://download.intel.com/technology/serialata/pdf/rev1_3.pdf
http://download.intel.com/technology/serialata/pdf/rev1_3.pdf
https://www.sata-io.org/developers/purchase_spec.asp
https://www.sata-io.org/developers/purchase_spec.asp

	Introduction
	ATA/ATAPI/SATA
	SATA

	AHCI
	Memory Registers
	Received FIS Area
	Commands

	Related Work
	Other OSes
	FreeBSD
	Linux

	Design
	Design Options
	General Architecture
	ahcid
	Operation

	libahci
	Flounder Backend
	Implemented ATA Commands

	ahcid
	Introduction
	Public IDC Interface

	Initialization
	Interrupt Handling

	libahci
	Introduction
	Purpose
	Design

	DMA Buffer Pool
	Design
	Implementation

	libahci Interface
	ahci_issue_command
	Command Completed Callback
	ahci_init
	ahci_close
	sata_fis.h

	Error Handling

	Flounder AHCI Backend
	Introduction
	Purpose
	Design

	Discussion
	Targeting: Compiler vs. Topic
	Parameter Analysis

	Generated Interface
	Initialization
	Binding Type
	Interface methods

	Implementation
	Command Completion
	DMA Handling
	FIS Setup

	Driver Usage Example
	Datastructures
	Initialization
	Data Manipulation
	Cleanup

	Blockdevice Filesystem
	Datastructures
	Backend API
	Usage
	Backends
	AHCI Backend
	ATA Backend

	Restrictions
	VFS adaptation

	FAT Filesystem
	Overview
	Implementation and Limitations
	Unicode
	BSD conv Functions

	Caching Layer
	VFS Interaction

	Running the AHCI Driver
	QEMU
	Physical Hardware
	PCI Base Address Registers
	PCI Bridge Programming
	BIOS Memory Maps

	Future Work
	ATA Messages
	Integration with the System Knowledge Base
	Handling multiple AHCI controllers at the same time
	Support for advanced AHCI/SATA features
	Further Controllers

	Conclusion
	Flounder Modifications
	Security
	Performance

	Bibliography

