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Abstract
We propose FlexNIC, a flexible network DMA interface
that can be used by operating systems and applications
alike to reduce packet processing overheads. The re-
cent surge of network I/O performance has put enormous
pressure on memory and software I/O processing sub-
systems. Yet even at high speeds, flexibility in packet
handling is still important for security, performance iso-
lation, and virtualization.

Thus, our proposal moves some of the packet process-
ing traditionally done in software to the NIC DMA con-
troller, where it can be done flexibly and at high speed.
We show how FlexNIC can benefit widely used data cen-
ter server applications, such as key-value stores.

1 Introduction
Network bandwidth is growing steadily: 40 Gbps Ether-
net is a commodity and 100 Gbps is starting to become
available. This trend is straining the server computation
and memory capabilities that we have to devote to pro-
cess network traffic, and it is likely to limit future server
performance. For example, last level cache access la-
tency in Intel Sandy Bridge processors is 15 ns [24] and
has not improved in newer processors. A 100 Gbps in-
terface can receive a cache-line sized (64B) packet close
to every 5 ns. Thus, at 100 Gbps, even a single last-level
cache access in the packet data handling path will prevent
software from keeping up with the tremendous speed of
arriving network traffic.

We claim that the primary reason for high memory
and processing overheads is the inefficient use of these
resources by current commodity network interface cards
(NICs). NICs communicate with software by accessing
data in server memory, either in DRAM or via a desig-
nated last level cache (e.g., via DDIO [15], DCA [14],
or TPH [28]). A number of packet descriptor queues in-
struct the NIC as to where in server memory it should
place the next received packet and from where to read the
next packet for transmission. Except for simple header
splitting, no further modifications to packets are made
and only basic distinctions are made among packet types.
For example, it is possible to choose a virtual queue
based on the TCP connection, but not, say, on the ap-
plication key in a memcache lookup.

This design introduces overhead in several ways. For
example, even if software is only interested in a sub-
set of each packet, the current interface requires NICs
to transfer packets in their entirety to host memory. No

interface exists to steer packets to the right location in
the memory hierarchy based on application-level infor-
mation, causing extraneous cache coherence traffic when
a packet is not in the right cache. Finally, network pro-
cessing code repetitively has to process each packet of a
network stream, such as to check packet headers, even if
it is clear what to do in the common case.

The current approach to network I/O acceleration is
to put fixed-function offload features into NICs [35].
While useful, these offloads bypass application and OS
concerns and can thus only perform low-level func-
tions, such as checksum processing and packet segmen-
tation for commonly used, standard protocols (UDP and
TCP). Higher-level offloads can constrain the system in
other ways. For example, remote direct memory ac-
cess (RDMA) [34], is difficult to fit to server applica-
tions [22, 9], resulting in diminished performance ben-
efits [18]. Hardware I/O virtualization can eliminate
hypervisor and operating system overheads [29, 4], but
prevents common server consolidation techniques, such
as memory overcommit, as DMA-able memory regions
have to be pinned to ensure accessibility by the NIC.

To address these shortcomings, we propose FlexNIC, a
flexible DMA interface for network I/O. FlexNIC allows
applications and OSes to install packet processing rules
into the NIC, which instruct it to execute simple opera-
tions on packets while exchanging them with host mem-
ory. These rules allow applications and the OS to exert
fine-grained control over how data is exchanged with the
host, including where to put each portion of it. FlexNIC
can improve packet processing performance, while re-
ducing memory system pressure at fast network speeds.

The idea is not far-fetched. OpenFlow switches sup-
port rule-based packet processing at high line-rates and
are currently being enhanced with programmability fea-
tures to allow transformations on packet fields [6]. High-
speed programmable NICs that can support limited pro-
cessing on the NIC also exist [25, 38, 8] and higher-level
abstractions to program them are being proposed [16].
We build upon these ideas to provide a flexible, high-
speed I/O interface for server systems.

The rest of this paper discusses what is needed to re-
alize this vision—in hardware, the operating system, and
applications—and points out several further use cases of
the approach. For example, we show how FlexNIC can
benefit key-value store performance by steering traffic
based on the key in client requests to the cores with the
corresponding value in their cache.
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Figure 1: RMT switch pipeline.

2 Hardware Considerations
To provide the needed flexibility at fast line rates, we
apply the reconfigurable match table (RMT) model re-
cently proposed for flexible switching chips [7] to the
NIC DMA interface. RMT offers packet processing per-
formance an order of magnitude above specialized net-
work processors [8, 25], at a cost well below an FPGA-
based design [7]. The fact that RMT has been evaluated
as feasible for switches in the current generation gives us
confidence that the design can provide sufficient perfor-
mance for the next generation of NICs. We briefly de-
scribe the RMT model in switches and then discuss how
to apply it to arrive at an ideal NIC hardware model.

RMT in switches. RMT switches can be programmed
with a set of rules that match on various parts of the
packet, and then apply data-driven modifications to it as
well as programmable routing, all operating at line rate
for the switched packets. This is implemented using two
packet processing pipelines that are connected by a set
of queues allowing for packets to be replicated and then
modified separately. Such a pipeline is shown in Fig-
ure 1. A packet enters the pipeline through the parser,
which identifies all relevant packet fields as described by
the software-defined parse graph. It extracts the specified
fields into a field buffer (FB0) to be used in later process-
ing stages. The relevant fields pass through the pipeline
of match and action (M+A) stages (MA1..MAm) and
further field buffers (FB1..FBm). In a typical design,
m = 32. An M+A stage matches on field buffer contents
using a match table (of implementation-defined size),
looking up a corresponding action, which is then applied
as we forward to the next field buffer. Independent ac-
tions can be executed in parallel within one M+A stage.
Finally, the deparser combines the modified fields with
the original packet data received from the parser to get
the final packet. To be able to operate at high line rates,
multiple parser instances can be used. In addition to ex-
act matches, RMT tables can also be configured to per-
form prefix matches or wildcard matches.

Applying RMT to NICs. To gain the largest benefit
from our approach, we enhance commodity NIC DMA
capabilities by integrating three RMT pipelines with the
DMA engine, as shown in Figure 2. Similar to the
switch model, incoming packets from any of the NIC’s
Ethernet ports (P1..Pn) first traverse the ingress pipeline
where they may be modified according to M+A rules.
Packet fields can be added, stripped, or modified, poten-

tially leaving a much smaller packet to be transfered to
the host. Modified packets are stored in a NIC-internal
packet buffer and pointers to the corresponding buffer
positions are added to a number of NIC-internal holding
queues depending on the final destination—host mem-
ory or P1..Pn. From each holding queue, packets are
dequeued and (depending on the final destination) pro-
cessed separately in the DMA pipeline or the egress
pipeline. Both can again apply modifications.

If host memory is the final destination, the DMA
pipeline issues requests to the DMA controller for trans-
ferring data between host memory and packet, after
which the packet can again be enqueued in NIC queues
for further processing. DMA parameters such as the
range in memory and the offset in the packet to trans-
fer are passed to the DMA engine by adding a header to
packets in the DMA pipeline. We can use this design to
simply exchange packets with host memory or to carry
out more complex memory exchanges. For example, to
support RDMA-like protocols, a received RDMA read
request can be passed to the DMA pipeline to get the
data from the host and then sent out by enqueuing it to
an egress pipeline to craft the response. Packet check-
sums can then be calculated on the final packets using
the existing checksum offload capabilities.

Extensions. The design discussed so far provides the
basis for efficiently interacting with host memory. Two
simple extensions can be useful: 1. To implement state-
ful packet matching, we can allow M+A stages to match
and modify small portions of NIC-internal SRAM. This
extension has the potential to extend the functionality of-
fered by existing NIC offloads, such as TCP segmenta-
tion offload, to other, application-defined protocols. 2.
To enable protected application-level access to packet fil-
tering under hardware virtualization [29, 4], we can limit
virtual NIC (VNIC) access to only a subset of the RMT
table space and assign an ID to this subset. For each
VNIC, the OS is then free to insert ingress rules to tag a
packet flow with the VNIC ID. FlexNIC should then en-
sure that VNIC rules have to first match their VNIC ID to
restrict VNIC access to OS-defined network flows and to
prevent conflicting rules from being inserted. VNICs can
be safely exposed to applications by providing separate
PCI virtual functions as enabled by SR-IOV [20].

Software interface. As a software interface to
FlexNIC, we intend to use a modified version of the
P4 language [6] proposed for configuring programmable
switches that matches closely with the RMT model.
Our modifications to P4 are minimal. An extension
is required for handling modifiable memory in M+A
stages, which requires additional actions for accessing
this memory. Integration of the DMA controller, the
other major change from RMT switches, does not require
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Figure 2: RMT-enhanced NIC DMA architecture.

Field Description

offset Byte offset in the packet
length Number of bytes to transfer
direction From/To memory
memBase Start address in memory
cache Cache level to send data to
core Core Id, if data should go to cache
atomicOp PCIe atomic operation [27]

Table 1: Header format for DMA requests.

language extensions, but we intend to add action verbs
to simplify programming (cf. Figure 3). Communica-
tion with the DMA controller is implemented by adding
a header to the packet, as shown in Table 1. P4 already
includes the necessary support for doing so.

3 Application Integration
To demonstrate the benefits of FlexNIC, we show its inte-
gration with the popular Memcached key-value store [1].
Memcached is typically used to accelerate common web
requests. In these scenarios, service latency and through-
put are of utmost importance.

To scale request throughput, NICs offer receive-side
scaling (RSS), an offload feature that directs incoming
packets to descriptor queues based on client connection
information. These queues are then dedicated to indi-
vidual CPU cores to eliminate concurrent data access
and scale performance with the number of clients. How-
ever, this approach suffers from a number of performance
drawbacks [21]: 1) Hot items are likely accessed not just
by one, but by all clients of the store, resulting in reduced
cache utilization by replicating these items into all CPU
caches. 2) When a hot item is frequently modified, global
cache invalidations cause large cache traffic overheads.

FlexNIC allows us to tailor RSS to Memcached. In-
stead of assigning clients to server cores, we can partition
the key space and use a separate key space request queue
per core. We can install rules that steer client requests
to appropriate queues, based on a hash of the requested
key in the packet. The hash can be provided by the client
or computed in the NIC. This approach maximizes cache
utilization and minimizes cache coherence traffic. If a
single core is not enough to serve a frequently accessed
item, we can use FlexNIC to balance the load over avail-

able cores in a way we define. For example, two cores
sharing a cache can benefit from low latency sharing.

Even if most client requests arrive well-formed at the
server and are of a common type—say, GET requests—
network stacks and Memcached have to inspect each
packet to determine where the client payload starts, to
parse the client command, and to extract the request ID.
This incurs extra memory and processing overhead as
the NIC has to transfer the headers to the host just so
that software can check and then discard them. Measure-
ments using the Arrakis OS showed that, assuming ker-
nel bypass, network stack processing takes about a quar-
ter of the total server processing time. Another quarter
is spent in request/response processing in Memcached.
The rest is to compute the hash function.

Using FlexNIC, we can check and discard Memcached
headers directly on the NIC before any transfer takes
place and eliminate up to half of the required server pro-
cessing latency. To do so, we install a rule that identi-
fies GET requests and transfers only the client ID and
requested key to a dedicated fast-path request queue for
GET requests. If the packet is not well-formed the NIC
can detect this and instead transfer it in the traditional
way to a slow-path queue for software processing.

To support all client hardware architectures Mem-
cached has to convert certain packet fields from network
to host byte order. We can instruct FlexNIC to carry out
these simple transformations for us, while transferring
the packets into host memory.

Finally, we can reduce memory system utilization due
to NIC descriptor fetch and write-back by tailoring the
data path interface to Memcached. For example, we can
program a circular queue of fixed-size client read re-
quests by allocating a range of memory for the queue
inside Memcached with head and tail pointers. A rule
can instruct the DMA controller to use a fixed stride over
the memory range, computing the difference between the
head and tail pointers to determine how much space is
left in the queue. Head and tail pointers would only need
to be accessed when we are low on queue space, instead
of for every packet.

Figure 3 shows the resulting key-value store design,
including a set of simplified FlexNIC rules that encap-
sulate these enhancements to steer GET requests for a
range of keys to a specific core. The example excludes
queue flow control for brevity.
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Figure 3: FlexNIC receive fast-path for Memcached: A
rule matches GET requests for a particular key range, and
then writes only the key together with a client identifier
to a circular queue in memory.

4 OS Integration
So far we discussed our approach in the context of a sin-
gle application with exclusive access to the NIC. In this
section, we present two examples demonstrating that our
approach can be efficiently integrated with the OS and
that further benefits can arise when doing so.

Resource virtualization. Cloud services can be con-
solidated on a single server using resource virtualiza-
tion. This allows the sharing of common hardware re-
sources using techniques such as memory overcommit to
save cost. However, traditional DMA operations require
the corresponding host memory to be present, which
is achieved by pinning the memory in the OS. With
multi-queue NICs, kernel-bypass [29, 4], and RDMA,
the amount of memory pinned permanently can be very
large (cf. FaRM [9]), preventing effective server consol-
idation. Even without pinning, accesses to non-present
pages are generally rare, so all that’s required is a way
to gracefully handle faults when they occur. Using
FlexNIC, the OS can insert a rule that matches on DMA
accesses to non-present regions and redirects them to a
slow-path that implements these accesses in software. In
this way these faults are handled in a manner fully trans-
parent for applications.

Fast failover. User-level services can fail. In that case
a hot standby or replica can be an excellent fail-over
point if we can fail-over quickly. Using FlexNIC, an OS
detecting a failed user-level application can insert a rule
to redirect traffic to a replica, even if it resides on another
server. Redirection can be implemented by a simple rule
that matches the application’s packets and then forwards
incoming packets by rewriting the headers and enqueu-
ing them to be sent out through the egress pipeline. No

application-level modifications are necessary for this ap-
proach and redirection can occur with minimal overhead.

5 Further Use Cases
Beyond improving the performance of request-response
applications, several further use cases emerge when us-
ing FlexNIC.

Consistent RDMA. RDMA provides low latency ac-
cess to remote memory. However, it does not sup-
port consistency of concurrently accessed data struc-
tures. This vastly complicates the design of applica-
tions sharing memory via RDMA (e.g., self-verifying
data structures in Pilaf [22]). FlexNIC can be used to en-
hance RDMA with simple application-level consistency
properties. For example, when concurrently writing to a
hashtable, FlexNIC could check whether the target mem-
ory already contains an entry by atomically [27] testing
and setting a designated memory location and, if so, ei-
ther defer management of the operation to the CPU or
fail it.

Resource isolation. The ability to isolate and prioritize
network flows is important in a range of load conditions
[3]. A server receiving more requests than it can handle
could decide to only accept specific request types, for ex-
ample based on a priority specified in the request header.
On servers that are not fully saturated, careful schedul-
ing can reduce the average latency, for example by pri-
oritizing cheap requests over expensive requests in a cer-
tain ratio and thereby reducing the overall tail latency.
Achieving isolation implies minimizing the required pro-
cessing resources, CPU cycles as well as memory, that
need to be invested before a priority can be assigned or a
request can be dropped [10, 23]. As network bandwidth
increases, the cost of classifying requests in software can
quickly become prohibitive. FlexNIC can be used to pri-
oritize requests in hardware, and enqueue requests in dif-
ferent software queues based on priorities, or even reject
requests, possibly after notifying the client.

Cache flow control. A common problem when stream-
ing data to caches (found in DDIO-based systems) is that
the limited amount of available host cache memory can
easily overflow with incoming network packets if soft-
ware is not quick enough to process them. In this case,
the cache spills older packets to DRAM causing cache
thrashing and performance collapse when software pulls
them back in the cache to process them. To prevent
this, we can implement a simple credit-based flow con-
trol scheme: The NIC can increment an internal counter
for each packet written to a host cache. If the counter
is above a threshold, the NIC instead writes to DRAM.
Software acknowledges finished packets by sending an
application-defined packet via the NIC that decrements
the counter. This ensures that packets stay in cache for
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as long as software accesses them to keep performance
stable.

Virtual switch. Data center network functions are in-
creasingly migrating to the edge [31]. Formerly special-
ized services, such as load balancing, firewalling, and
network analytics, are carried out on commodity servers
using virtual software switches [2, 30]. This ensures per-
formance scalability for the core of the network, while
allowing innovation at software timescales at the edge.
However, network processing is taking away an increas-
ing number of server cores and memory bandwidth from
virtual machines. While this is tenable at 10G speeds, it
can quickly become prohibitive at 40G to 100G. FlexNIC
can allow virtual switching to be offloaded to the NIC,
while retaining the flexibility of software development
cycles.

GPU networking. General purpose computation capa-
bilities on modern GPUs are increasingly being exploited
to accelerate network applications [13, 17, 36, 19]. So
far all these approaches require CPU involvement on the
critical path for GPU-network communication. GPUnet
[19] exploits P2P DMA to write packet payloads directly
into GPU memory from the NIC, but the CPU is still re-
quired to forward packet notifications to/from the GPU
using an in-memory ring buffer. Further, GPUnet relies
on RDMA for offloading protocol processing to mini-
mize inefficient sequential processing on the GPU. With
FlexNIC, notifications about received packets can be
written directly to the ring buffer because arbitrary mem-
ory writes can be crafted, thereby removing the CPU
from the critical path for receiving packets. In addition
FlexNIC’s offload capabilities can enable the use of con-
ventional protocols such as UDP, by offloading header
verification to hardware.

6 Related Work
NIC-Software co-design. Previous attempts to im-
prove NIC processing performance used new software
interfaces to reduce the number of required PCIe tran-
sitions [12] and to enable kernel-bypass [32, 37, 11].
RDMA goes a step further to provide remote direct mem-
ory access, entirely bypassing the remote CPU. Scale-
out NUMA [26] extends the RDMA approach by inte-
grating a remote memory access controller with the pro-
cessor cache hierarchy that automatically translates cer-
tain memory accesses into remote memory operations.
sNICh [33] accelerates switching of packets among vir-
tual machines and the network by caching flow forward-
ing assignments in the NIC. Our approach builds upon
these ideas to provide a more flexible application-level
networking interface.

Programmable network hardware. In the wake of
the software-defined networking trend, a rich set of cus-

tomizable switch data planes have been proposed. For
example, the P4 programming language proposal [6]
allows users rich switching control based on arbitrary
packet fields, independent of underlying switch hard-
ware. We adapt this idea to provide similar functionality
for the NIC-host interface.

Direct cache access. Data Direct I/O (DDIO) [15] at-
taches PCIe directly to an L3 cache. DDIO is software-
transparent and as such does not easily support the inte-
gration with higher levels of the cache hierarchy. Prior to
DDIO, direct cache access (DCA) [14] supported cache
prefetching via PCIe hints sent by devices and is now
a PCI standard [28]. With FlexNIC support, DCA tags
could be re-used by systems to fetch packets from L3
to L1 caches. While not yet supported by commodity
servers, tighter cache integration has been shown to be
beneficial in systems that integrate NICs with CPUs [5].

7 Conclusion
As multicore servers scale, the boundaries between NIC
and switch are blurring: NICs need to route packets to
appropriate cores, but also transform and filter them to
reduce software processing and memory subsystem over-
heads. FlexNIC provides this functionality by extending
the NIC DMA interface.

FlexNIC also integrates nicely with current software-
defined networking trends. For example, by offloading
fine-grained server control, such as load balancing to in-
dividual server cores, to a programmable core network
switch when this is more efficient: Core switches can tag
packets with a decision that can be executed by FlexNIC.

We intend to demonstrate FlexNIC’s efficacy by im-
plementing a full prototype using a programmable NIC,
such as the NetFPGA SUME [38].
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