
Barrelfish Project
ETH Zurich

Capability Management in Barrelfish

Barrelfish Technical Note 013

Akhilesh Singhania, Ihor Kuz, Mark Nevill, Simon Gerber

2.06.2017

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

1.0 08.03.2011 AS Initial version
2.0 27.1.2012 MN New capability system design
2.1 8.7.2013 SK Updates
2.2 1.12.2013 TR Fixed missing references/citations
3.0 2.06.2017 SG Update to new CSpace design and remove outdated info

Capability Management - 2 Barrelfish TN-013

Chapter 1

Introduction

This document discusses the state of capabilities in the Barrelfish operating system.

Chapter 2 lists the currently known issues with capability management and 3 discusses the type system.

Chapter 4 discusses the current state of the implementation in Barrelfish, chapter 5 discusses differ-
ent approaches for maintaining a multicore mapping database of capabilities, chapter 6 discusses the
requirements from a correct solution and discusses four different solutions, chapter 7 discusses some
Barrelfish specific challenges in implementing the solutions, and chapter 8 highlights issues not yet
covered in this document.

Barrelfish TN-013 Capability Management - 3

Chapter 2

Known Issues

• Kernel operations should not take longer than O(1). Some capability operations are not constant
time but can take O(logn) where n is the size of the mapping database. Spending so much time in
the kernel is detrimental for good scheduling as when in the kernel, interrupts are disabled. All
non constant time operations should be punted to the monitor.

• When the last copy of a lmp capability or frame capability backing ump channels is deleted,
should it initiate a connection tear down?

• Fragmentation of memory. Example: a ram capability of 4GB is retyped into two capabilities of
2GB each. One of the 2GB capability is deleted. The only way to get a capability to that 2GB back
is to also delete the other 2GB capability and then retype the 4GB capability again.

• IO space can be treated in a same way as physical memory. So instead of using mint operations to
update ranges, we use retype operations. This is useful as different IO capabilities will have the
ancestor, descendant, and copy relationships rather than just a copy relationship. The former is
richer and can offer improved maintenance.

• When a new capability is introduced in a core via cross-core send, the kernel must walk the entire
mapping database to find the appropriate place to insert the capability. The operation is logarith-
mic time in the size of the mapping database. This operation must either happen in the monitor
or must be made more efficient. If we move the mapping database into the monitor, we think that
this should at worse become a performance issue and not a correctness one.

Capability Management - 4 Barrelfish TN-013

Chapter 3

Type system

In this chapter, we cover the type model of capabilities and the supported types in Barrelfish.

3.1 Type Model

[We do not implement capability rights yet.]

Name Each type has a unique name.

Origin A capability type is either primitive, which means that capabilities of the type may be created
only through a special process (e.g. at boot time), or derived, which means that capabilities of the
type may be created by retyping an existing capability. For primitive types, we specify how the
capabilities of that type are created; for derived types, we specify which capability types may be
retyped to yield a capability of the given type.

Retypability Some types of capability may be retyped to create one or more new capabilities of the same
or different type. If this is the case, we specify for each type from what other types of capability it
may be retyped.

Mint parameters It is possible to specify type-specific parameters when minting capabilities. We spec-
ify for each type the interpretation of the type-specific parameters. When not specified, they are
ignored.

Interpretation of rights The interpretation of the primitive capability rights is type-specific. A capabil-
ity type defines the interpretation of these rights, usually in the specification of the legal invoca-
tions.

Transferability to another core Depending on its type, it may or may not be possible to transfer a ca-
pability to another core.

Last copy deleted The type specific operations to perform when the last copy of a capability is deleted.
For capability types that refer to actual memory, if the last reference to a piece of memory is
deleted, then the memory must be garbage collected.

Concrete representations Each capability type has one or more representations: in the memory of each
core on which it may appear, and in a canonical serialised representation used for transferring it
in a message between cores. These are specified as Hamlet[3] data types.

Invocations Most capability types support one or more type-specific operations through the use of the
invoke system call. (documented in 4.2).

Barrelfish TN-013 Capability Management - 5

3.2 Types

3.2.1 CNode

A CNode refers to an array of capabilities of some power-of-two size. CNodes are used to hierarchically
construct the CSpace of a domain, as described in 4.1. All capability management is performed through
invocations on CNodes.

CNodes are organized as a two-level table with distinct capability types for the root or L1 CNode (which
can be dynamically enlarged), and L2 or leaf CNodes which have a fixed size of 256 capability slots. The
two-level CNode table forms a 32-bit capability address space for each dispatcher. User space refers to
entries in that address space with a 32-bit capability address. The high 24 bits of the capability address
are used as an index into the L1 CNode. The L1 CNode index can be too large for a given L1 CNode
that has not been enlarged to it’s maximum size of 224 slots. A user space operation referring to an L1
slot that is not allocated will fail with SYS_ERR_L1_CNODE_INDEX. The CPU driver then uses the L1 index
to perform a lookup for the L2 CNode. If an L2 CNode exists for the given L1 index, the low 8 bits of
the supplied capability address are used as an index into the L2 CNode. The CPU driver then uses the
L2 index to perform a lookup for the requested capability.

Many CNode invocations require that the caller provide both a CSpace address and the number of levels
to resolve. This allows the invocations to refer to a L2 CNode capability that is located in a L1 slot, and
thus would usually be recursed through by the address resolution algorithm.

Origin Retyping from RAM type capabilities

Retypability No

Mint parameters No

Interpretation of rights [Explain rights and rights mask. Capability rights and rights masks are currently not
implemented. This means that every user domain holding a capability has full rights to it.]

Transferability to another core Yes. When transfered to another core, capability is implicitly retyped
to a Foreign CNode type. [We currently allow CNode type caps to be transferred without doing the type
conversion, which is extremely risky, but does not break the system if the receiver only ever tries to copy
capabilities out of the received CNode.]

Last copy deleted When the last copy is deleted, all capabilities stored within it are also deleted.

Concrete representations The in-memory representation is as follows:

datatype L1CNode ”L1 CNode c a p a b i l i t y ” {
cnode 64 ” Phys ica l base address of CNode” ;
s i z e 64 ” Allocated s i z e of CNode in bytes ” ;
rightsmask 8 ” C ap a bi l i t y r i g h t s mask” ;

} ;

datatype L2CNode ”L2 CNode c a p a b i l i t y ” {
cnode 64 ” Phys ica l base address of CNode” ;
rightsmask 8 ” C ap a bi l i t y r i g h t s mask” ;

} ;

Note that L2 CNodes have a fixed size of 16384 bytes, which is not stored in their in-memory
representation.

Mint invocation

Argument 1: Capability of the source cspace root CNode to invoke

Argument 2: Destination cspace cap address relative to source cspace

Capability Management - 6 Barrelfish TN-013

Argument 3: Destination CNode address relative to destination cspace

Argument 4: Slot in destination CNode cap to place copy into

Argument 5: Address of cap to copy.

Argument 6: Level/depth of ’to’.

Argument 7: Level/depth of ’from’.

Argument 8: 1st cap-dependent parameter.

Argument 9: 2nd cap-dependent parameter.

The Mint invocation creates a new capability in an existing CNode slot, given an existing capability. The
new capability will be a copy of the existing capability, except for changes to the type-specific parameters.

The use of the two type-specific parameters is described along with the description of the relevant type.

Copy invocation

Argument 1: Capability of the source cspace root CNode to invoke

Argument 2: Capability address of destination root cnode relative to our cspace

Argument 3: CNode address to place copy into relative to destination cspace.

Argument 4: Slot in CNode cap to place copy into.

Argument 5: Capability address of source root cnode relative to our cspace

Argument 6: Address of cap to copy.

Argument 7: Level/depth of ’to’.

Argument 8: Level/depth of ’from’.

This invocation is similar to Mint, but does not change any type-specific data. In fact, the CPU driver
currently uses the same code path for copy and mint, and a mint with both cap-dependent parameters
set to zero will behave exactly like a Copy invocation.

Retype invocation

Argument 1: Capability of the source cspace root CNode to invoke

Argument 2: Source cspace cap address in our cspace.

Argument 3: Address of cap to retype in source cspace.

Argument 4: Offset into cap to retype

Argument 5: Kernel object type to retype to.

Argument 6: Size of created objects, for variable-sized types

Argument 7: Number of objects to create

Argument 8: Destination cspace cap address in our cspace

Argument 9: Address of CNode cap in destination cspcae to place retyped caps into.

Argument 10: Level/depth of CNode cap in destination cspace

Argument 11: Slot in CNode cap to start placement.

Barrelfish TN-013 Capability Management - 7

Table 3.1: Permissible types for the Retype invocation

Source Destination Variable size?

Physical address range Physical address range Yes
Physical address range RAM Yes
Physical address range Device frame Yes
RAM RAM Yes
RAM CNode Yes
RAM VNode No
RAM Dispatcher No
RAM Frame Yes
Dispatcher IDC endpoint No

PhysAddr

RAM DevFrame

Frame CNode VNode Dispatcher

EndPoint

Figure 3.1: Valid capability retyping paths

This invocation creates one or more new descendant capabilities of the specified type in the specified
slots, given a source capability and a destination type. It will fail if the source or destination are invalid,
or if the capability already has descendants which overlap the requested region (some capability types,
currently only the dispatcher type can be retyped even if it already has descendants). The destination
slots must all occupy the same CNode. The permissible source/destination pairs are shown in 3.1 and
3.1. The number of new capabilities created is given as an argument. The invocation can fail if the
retype region, which is defined as a pair of base address and size does not fit into the source capability.
The retype region’s base address is given as an offset into the source capability, and it’s size is given as
the number of capabilities to create multiplied by the requested size for the new capabilities.

[check tables and figure for validity in 2017]

Delete invocation

Argument 1: Capability of the CNode to invoke

Argument 2: Address of cap to delete.

Argument 3: Level/depth of ’cap’.

This invocation deletes the capability at the given address, freeing the associated CNode slot.

Capability Management - 8 Barrelfish TN-013

Revoke invocation

Argument 1: Capability of the CNode to invoke

Argument 2: Address of cap to delete.

Argument 3: Level/depth of ’cap’.

This invocation revokes the capability at the given address.

The capability itself is left untouched while all its descendants and copies are deleted.

3.2.2 Foreign CNode

[This has not been implemented yet]

The foreign CNode capability gives a domain on a core the ability to specify a capability that actually
resides on another core. This capability allows for the holder to create local copies of the capabilities
stored in the actual CNode modulo rights as can be implemented. The capability tracks on which core
the actual CNode resides. [Full implementation and discussion pending]

Origin When a CNode capability are copied to another core.

Retyability No

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core Yes

Last copy deleted [NYI]

Concrete representations The in-memory representation on x86-64 is as follows:

datatype fcnode cap ” Foreign CNode c a p a b i l i t y ” {
cnode 64 ” Phys ica l base address of CNode” ;
b i t s 8 ”Number of b i t s t h i s CNode r e s o l v e s ” ;
rightsmask 8 ” C ap a bi l i t y r i g h t s mask” ;
c o r e i d 8 ”Core id of the core the a c t u a l CNode c a p a b i l i t y

r e s i d e s in ” ;
guard s ize 8 ”Number of b i t s in guard word” ;
guard 32 ” Bitmask already resolved when reaching t h i s CNode” ;

} ;

[This should not be used as-is, as we have changed the CNodes themselves significantly in 2016.]

[Discussion pending on invocations]

3.2.3 Physical address range

Most domains will generally not handle capabilities of this type. They are introduced because the kernel
relies on the user-space software to decide the location of RAM.

By retyping physical address range capabilities to RAM, the caller guarantees that the underlying region
does contain RAM that can safely be used for storage of kernel objects. Any domain with access to
physical address range capabilities is therefore a critical part of the trusted computing base.

Origin Created at boot time in the bsp core based on the multiboot info.

Mint parameters None

Retyability To Physical address range, RAM or DevFrame type.

Barrelfish TN-013 Capability Management - 9

Interpretation of rights [Explain rights]

Transferability to another core Yes

Last copy deleted [NYI, maybe inform some special dispatcher like memory server]

Concrete representations The in-memory representation is as follows:

datatype physaddr cap ” Phys ica l address range c a p a b i l i t y ” {
base 64 ” Phys ica l base address of region ” ;
bytes 64 ” S ize of region ” ;

} ;

3.2.4 RAM

A RAM capability refers to a naturally-aligned power-of-two-sized region of kernel-accessible memory.

Origin Retyping from physical address range capabilities.

Retyability To RAM, Frame, CNode, VNode, or Dispatcher types.

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core Yes

Last copy deleted [NYI, maybe inform some special dispatcher like memory server]

Concrete representations The in-memory representation is as follows:

datatype ram cap ”RAM c a p a b i l i t y ” {
base 64 ” Phys ica l base address of region ” ;
bytes 64 ” S ize of region ” ;

} ;

3.2.5 Dispatcher

This capability type refers to the kernel object associated with a user-level dispatcher.

Origin Retyping from RAM capabilities.

Retyability To IDC Endpoint type

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core No

Last copy deleted [NYI, maybe inform some special dispatcher like spawn daemon]

Concrete representations The in-memory representation on x86-64 is as follows:

datatype dcb cap ” Dispatcher c a p a b i l i t y ” {
dcb 64 ” Pointer to the in kernel r e p r e s e n t a t i o n of

the dispatcher c o n t r o l block ” ;
} ;

Capability Management - 10 Barrelfish TN-013

Setup invocation

Argument 1: Address of dispatcher capability relative to dispatchers caller’s cspace

Argument 2: Address of existing dispatcher for domain ID relative to caller’s cspace

Argument 3: Root of CSpace for new dispatcher relative to caller’s cspace

Argument 4: Root of VSpace for new dispatcher relative to cspace for new dispatcher.

Argument 5: Frame capability for dispatcher structure relative to cspace for new dispatcher.

Argument 6: Make runnable if true

This invocation sets any of the above parameters on a dispatcher object. If any of the CSpace addresses
are null, they are ignored. Additionally, once all of the parameters are set (either in a single invocation,
or after multiple invocations), and if the runnable flag is set, the dispatcher is made runnable. [There are
additional invocations in the code that we have not discussed yet.]

3.2.6 IDC Endpoint

Every IDC endpoint refers both to a dispatcher and an endpoint buffer within that dispatcher. The end-
point buffer is specified as an offset from the start of the dispatcher frame, and is the location where
the kernel delivers IDC messages. It is also delivered to the user with an LRPC message. The initial
endpoint offset of an IDC endpoint capability when it is retyped from a dispatcher capability is zero; the
capability cannot be used to send IDC until the the offset is specified changed by minting an endpoint
to another endpoint.

Origin Retyping Dispatcher type capabilities.

Mint parameters The mint parameters can be used to change the badge on the capability

• Parameter 1: The endpoint offset to set on the capability.

• Parameter 2: The endpoint buffer size to set on the capability.

Retyability No

Interpretation of rights [Explain rights]

Transferability to another core No

Last copy deleted [NYI, inform some entity to initiate connection teardown]

Concrete representations The in-memory representation on x86-64 is as follows:

datatype idc cap ”IDC endpoint c a p a b i l i t y ” {
l i s t e n e r 64 ” Pointer to the in kernel r e p r e s e n t a t i o n of the

r e c e i v e r ’ s d ispatcher c o n t r o l block ” ;
e p o f f s e t 64 ” O f f s e t of endpoint b u f f e r within dispatcher

s t r u c t u r e ” ;
buflen 32 ”Length of endpoint b u f f e r in words” ;

} ;

Invocation Any invocation of an endpoint capability causes the entire message to be delivered to the
dispatcher to which the endpoint refers.

3.2.7 VNode

A VNode capability refers to a hardware page table and is used to manage a domain’s virtual address
space. Frame and device frame capabilities can be copied or minted into them or deleted from them by

Barrelfish TN-013 Capability Management - 11

invoking the VNode. The architecture may impose limitations on the capabilities that may be copied
into a VNode, or may allow extra attributes to be set when minting.

We define one VNode capability type per hardware page table type per architecture. We currently
define the following VNode types:

• VNode_x86_64_pml4

• VNode_x86_64_pdpt

• VNode_x86_64_pdir

• VNode_x86_64_ptable

• VNode_ARM_l1

• VNode_ARM_l2

• VNode_AARCH64_l0

• VNode_AARCH64_l1

• VNode_AARCH64_l2

• VNode_AARCH64_l3

Origin Retyping from RAM type capabilities.

Retyability No

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core [Discussion pending]

Last copy deleted Delete all the mapping capabilities associated with mappings contained in the VN-
ode.

Concrete representations The in-memory representation on x86-64 is as follows:

datatype vnode cap ”VNode c a p a b i l i t y ” {
base 64 ” Base address of the page t a b l e ” ;

} ;

Map invocation

Argument 1: VNode entry at which to create mapping

Argument 2: CSpace address of the root (L1) CNode of the capability to map

Argument 3: CSpace address of the capability to map

Argument 4: Level of the capability to map

Argument 5: (Architecture-dependent) Flags for the mapping

Argument 6: Offset in bytes into the source capability of the region to map

Argument 7: Size of the region to map in VNode entries

Argument 8: CSpace address of the root (L1) CNode of the capability slot in which to create the
mapping capability

Argument 9: CSpace address of the CNode of the capability slot in which to create the mapping
capability

Argument 10: Level of the CNode of the capability slot in which to create the mapping capability

Capability Management - 12 Barrelfish TN-013

Argument 11: Slot in the CNode in which to create the mapping capability

This invocation maps a region of memory at the given offset and of the given size1 into the VNode start-
ing at the given entry. The invocation may fail if the source capability cannot be found, the requested
mapping region is not entirely covered by the source capability, the source capability does not have a
type which is mappable into the VNode, given it’s type, one or more of the VNode entries covering the
requested mapping are already occupied, or the slot of the mapping capability cannot be found or is
occupied.

Unmap invocation

Argument 1: CSpace address of the mapping to remove

Argument 2: Level of the mapping capability

This invocation unmaps the region identified by mapping from the VNode, if said region is actually
mapped in the VNode.

Identify invocation This invocation returns the physical address (and size) of the VNode.

3.2.8 Frame

A frame capability refers to a page-aligned2 region of physical memory with a size that is a multiple of
4096 bytes. A frame capability may be mapped into a domain’s virtual address space (by copying it to
a VNode). When a frame capability is created (ie. retyped from RAM), the kernel zero-fills the frame.
[Is this a good idea? Shouldn’t we be able to pre-zero frames? -AB]

Origin Retyping from RAM type capabilities.

Retyability To Frame type

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core Yes

Any copy deleted Look up any Mapping capabilities associated with this Frame and use information
stored in those mappings to remove any page table entries that exist for this copy of the frame
capability.

Last copy deleted Check whether there are any other capabilities that refer to the region, or a superset
of the region, referred to by this capability. If not, return create a new RAM capability and return
it to a specially identified “memory server” dispatcher.

Concrete representations The in-memory representation is as follows:

datatype frame cap ”Frame c a p a b i l i t y ” {
base 64 ” Phys ica l base address of mappable region ” ;
bytes 64 ” S ize of the region ” ;

} ;

Identify invocation This invocation returns the physical address and size (in bytes) of the frame.

1we give the size in VNode entries, in order to easily reuse the invocation when e.g. creating superpages on x86-64
2We coloquially refer to 4kB pages as pages

Barrelfish TN-013 Capability Management - 13

3.2.9 Device frame

A device frame capability refers to a page-aligned region of physical address space, with a size that is a
multiple of 4096, that may be mapped into a domain’s virtual address space (by copying it to a VNode).
Unlike frame capabilities, the kernel does not zero-fill device frame capabilities upon mapping. As the
name implies, device frames are typically used for access to memory-mapped devices.

Origin Retyping Physical address range type capabilities.

Retyability To Device frame type

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core Yes

Any copy deleted Look up any Mapping capabilities associated with this Frame and use information
stored in those mappings to remove any page table entries that exist for this copy of the frame
capability.

Last copy deleted Check whether there are any other capabilities that refer to the region, or a superset
of the region, referred to by this capability. If not, return create a new RAM capability and return
it to a specially identified “memory server” dispatcher.

Concrete representations The in-memory representation is as follows:

datatype device cap ” Device Frame c a p a b i l i t y ” {
base 64 ” Phys ica l base address of region ” ;
bytes 64 ” S ize of the region ” ;

} ;

Identify invocation This invocation returns the physical address and size (in bytes) of the frame.

3.2.10 Mapping

After an attempt to store shadow page table entries in the Frame/DevFrame capability copies that are
mapped in a VNode, which led to a lot of unnecessary heavy-weight Frame capability copies in the
system, we redesigned the shadow page table implementation to use additional capability types, one
for each capability type that can be copied to a VNode type.

We define one mapping type per mappable capability type. We currently define the following mapping
types:

• Frame_Mapping

• DevFrame_Mapping

• VNode_x86_64_pml4_Mapping

• VNode_x86_64_pdpt_Mapping

• VNode_x86_64_pdir_Mapping

• VNode_x86_64_ptable_Mapping

• VNode_ARM_l1_Mapping

• VNode_ARM_l2_Mapping

• VNode_AARCH64_l0_Mapping

• VNode_AARCH64_l1_Mapping

Capability Management - 14 Barrelfish TN-013

• VNode_AARCH64_l2_Mapping

• VNode_AARCH64_l3_Mapping

Origin Created when copying a mappable capability to a VNode.

Retyability None.

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core No.

Any copy deleted Use information stored in capability to delete that mapping that caused this capa-
bility to be created.

Last copy deleted Same as for any other copy deleted.

Concrete representations The in-memory representation is as follows:

datatype mapping ”Mapping c a p a b i l i t y ” {
cap 64 ” Kernel address of c a p a b i l i t y t h i s mapping t r a c k s ” ;
pte 64 ” Kernel address of VNode entry t h i s mapping t r a c k s ” ;
o f f s e t 32 ” O f f s e t i n t o c a p a b i l i t y f o r the mapped region ” ;
pte count 16 ”Number of VNode e n t r i e s of the mapped region ” ;

} ;

Modify flags of mapping invocation

Argument 1: CSpace address of mapping capability

Argument 2: Offset (in pages) of the first page to get new set of flags from the first page in the
mapping identified by the mapping capability.

Argument 3: Number of pages that should get new set of flags

Argument 4: New set of flags

Argument 5: Hint for selective TLB flushing

Invocation that uses mapping capability to efficiently find relevant VNode entries to modify a map-
ping’s flags.

Destroy mapping invocation

Argument 1: Cspace address of mapping capability

This invocation is not yet implemented.

3.2.11 IO

An IO capability gives the holder the ability to read and write to IO ports. IO capabilities are currently
only supported on x86-64.

Origin A single IO capability covering the whole IO region created at boot time in the BSP core.

Retyability No

Mint parameters Used to specify the region of io space the capability can access.

• Parameter 1: Start of the region

• Parameter 2: End of the region

Barrelfish TN-013 Capability Management - 15

Interpretation of rights [Explain rights]

Transferability to another core Yes

Last copy deleted [NYI]

Concrete representations The in-memory representation on x86-64 is as follows:

datatype io cap ”IO c a p a b i l i t y ” {
s t a r t 16 ” S t a r t of the granted IO range ” ;
end 16 ”End of the granted IO range ” ;

} ;

Outb invocation

Argument 1: IO port number

Argument 2: Output data

This invocation writes a byte to the the specified IO port

Outw invocation

Argument 1: IO port number

Argument 2: Output data

This invocation writes a two byte word to the the specified IO port

Outd invocation

Argument 1: IO port number

Argument 2: Output data

This invocation writes a four byte to the the specified IO port

Inb invocation

Argument 1: IO port number

This invocation returns a byte read from the specified IO port.

Inw invocation

Argument 1: IO port number

This invocation returns a 16-bit word read from the specified IO port.

Ind invocation

Argument 1: IO port number

This invocation returns a 32-bit doubleword read from the specified IO port.

Capability Management - 16 Barrelfish TN-013

3.2.12 IRQ table capability

The IRQ table capability allows the holder to configure the user-level handler dispatcher that will be
invoked when the kernel receives device interrupts.

[Discuss new IRQSrc and IRQDest capabilities]

Origin Given to the first domain spawned on a core.

Retyability No

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core No

Last copy deleted [NYI]

Concrete representations This capability type has no representation associated with it as it is used to
simply give permissions to the holders and does not refer to any kernel data structure.

Set invocation

Argument 1: IRQ number

Argument 2: CSpace address of asynchronous endpoint capability

This invocation sets the user-level handler endpoint that will receive a message when the given inter-
rupt occurs. While a handler is set, interrupts will be delivered as IDC messages.

Delete invocation

Argument 1: IRQ number

This invocation clears the handler for the given IRQ.

3.2.13 Kernel Capability

This capability is used to confer authority to the user-space part of the Barrelfish kernel, the “monitor”.
Some other privileged domains also receive a copy of the kernel capability, but we should factor those
operations out and create different capability types that give those dispatchers only the right to invoke
the operations they actually need. One example of such a dispatcher is the dispatcher that brings up
new cores.

Origin Given to the first domain spawned on a core.

Retyability No

Mint parameters None

Interpretation of rights [Explain rights]

Transferability to another core No

Last copy deleted [NYI]

Concrete representations The in-memory representation is as follows:

datatype kerne l cap ” Kernel c a p a b i l i t y ” {
} ;

The kernel capability does not convey any information, it is simply a token of authority.

Barrelfish TN-013 Capability Management - 17

Spawn core invocation

Argument 1: Apic ID of the core to try booting

Argument 2: CSpace address of the RAM capability to use to relocate the new kernel

Argument 3: CSpace address of the Dispatcher capability of the first domain to run

Argument 4: Number of valid bits for the root CNode to associate with the Dispatcher capability

Argument 5: CSpace address of the root CNode to associate with the Dispatcher capability

Argument 6: CSpace address of the VNode to associate with the Dispatcher capability

Argument 7: CSpace address of the dispatcher frame to associate with the Dispatcher capability

The invocation requests the kernel to try booting another core. The kernel is to be relocated into the
given memory region and to run the the given domain.

Get core ID invocation

Argument 1: None

The invocation returns the APIC ID of the core.

Identify capability invocation

Argument 1: CSpace address of the capability to identify

Argument 2: Level of the capability to identify

Argument 3: Location of buffer to hold capability representation

The invocation stores the kernel’s in-memory representation of the capability into the given buffer. j

Identify another dispatcher’s capability invocation

Argument 1: CSpace address of the dispatcher’s L1 cnode capability

Argument 2: Level in our CSpace of the L1 cnode capability

Argument 3: CSpace address relative to the dispatcher’s CSpace of the capability to identify

Argument 4: Level in the dispatcher’s CSpace of the capability to identify

Argument 5: Location of buffer to hold capability representation

The invocation stores the kernel’s in-memory representation of another dispatcher’s capability into the
given buffer.

Create capability invocation

Argument 1: In memory representation of a capability

Argument 2: CSpace address of the CNode the place the created capability in

Argument 3: Level of the CNode in the CSpace

Argument 4: Slot number to place the capability in

Argument 5: Owning core of the new capability

Creates the given capability in the given slot in the given CNode with the given Owner.

[TODO: KernelCmd Copy existing]

Capability Management - 18 Barrelfish TN-013

Set capability’s remote relations invocation

Argument 1: CSpace address of CSpace (L1 CNode) in which to look for capability

Argument 2: Level of root capability.

Argument 3: CSpace address of capability

Argument 4: Level of capability

Argument 5: Remote relations to set.

Argument 6: Mask: bitmask to show which remote relations to set.

If mask is not zero, set remote relations according to the bits set in the expression remote_relations & mask.
Always returns the remote relations bitmask after potentially setting new remote relations.

Read capability’s remote relations invocation

Argument 1: CSpace address of capability

Argument 2: Level of capability

Returns bitmask of currently set remote relations on capability.

Further Kernel capability invocations that we will have to document:

• KernelCmd_Get_arch_id: Returns arch id of caller’s core

• KernelCmd_Nullify_cap: Set the capability to NULL allowed it to be reused

• KernelCmd_Setup_trace: Set up trace buffer

• KernelCmd_Register: Register monitor notify endpoint

• KernelCmd_Domain_Id: Set domain ID of dispatcher

• KernelCmd_Get_cap_owner: Get capability’s owning core

• KernelCmd_Set_cap_owner: Set capability’s owning core

• KernelCmd_Lock_cap: Lock capability when performing distributed operation.

• KernelCmd_Unlock_cap: Unlock capability when distributed operation done.

• KernelCmd_Delete_last: Instruct CPU driver to perform operations necessary – as outlined in
this section – when deleting last copy of a capability.

• KernelCmd_Delete_foreigns: Delete non-owned copies when processing a revoke request from
another core.

• KernelCmd_Revoke_mark_target: Mark a capability for revocation.

• KernelCmd_Revoke_mark_relations: Mark a capability’s relations for revocation.

• KernelCmd_Delete_step: Instruct the CPU driver to perform a delete step in the distributed
delete protocol.

• KernelCmd_Clear_step: Instruct the CPU driver to perform a clear step in the distributed delete
protocol.

• KernelCmd_Retype: Perform a retype for a capability with remote relations.

• KernelCmd_Has_descendants: Check whether a capability has descendants.

• KernelCmd_Is_retypeable: Check whether a requested retype is valid.

• KernelCmd_Sync_timer: Synchronize hardware timers.

• KernelCmd_IPI_Register: Register a handler for an IPI (?).

Barrelfish TN-013 Capability Management - 19

• KernelCmd_IPI_Delete: Delete a handler for an IPI (?).

• KernelCmd_GetGlobalPhys: Get global physical address corresponding to a local physical ad-
dress?

• KernelCmd_Add_kcb: add extra KCB to be scheduled.

• KernelCmd_Remove_kcb: remove KCB from scheduling ring.

• KernelCmd_Suspend_kcb_sched: suspend/resume KCB scheduler.

• KernelCmd_Get_platform: Get architecture platform.

3.2.14 Kernel Control Block

A kernel control block capability captures all the state for a single CPU driver. This allows us to do
interesting operations such as rebooting a core at runtime [5]. A kernel control block is structured
according to the struct kcb defined in the CPU driver code.

Origin Retyping from RAM type capabilities

Retypability No

Mint parameters No

Interpretation of rights [Explain rights and rights mask. Capability rights and rights masks are currently not
implemented. This means that every user domain holding a capability has full rights to it.]

Transferability to another core Yes, between cores that share memory. When transferred to another
core, can be scheduled on that core.

Last copy deleted [NYI]

Concrete representations The in-memory representation is as follows:

datatype KernelControlBlock ” Represents a CPU driver ’ s s t a t e ” {
kcb 64 ” Kernel address of the KCB represented by t h i s c a p a b i l i t y ”

} ;

[Need to discuss invocations on KCB]

Capability Management - 20 Barrelfish TN-013

Chapter 4

Current State

This chapter will cover how capabilities are stored and what happens on capability invocation.

4.1 Storage

For security reasons, capabilities are stored in kernel-space and users are given pointers to them. Each
capability is stored in two separate databases:

• Each dispatcher has an associated capability space that holds all the capabilities it has. The capa-
bility space of a dispatcher is implemented using the CNode type capability. Each dispatcher is
associated with a “root CNode” that contains all capabilities the dispatcher has.

• Each core has a mapping database that holds all the capabilities on the core. The mapping
database is implemented using a tree of the capabilities. As discussed later in the chapter, the
mapping database stores the capabilities in a particular order to facilitate different capability op-
erations.

4.2 Capability invocation

When a dispatcher invokes a capability, it passes the kernel an address of the capability in the CSpace
it wishes to invoke. The kernel locates the capability starting from the dispatcher’s root CNode (walks
the capability space), verifies that the requested operation can indeed be performed on the specified
capability and then performs the operation.

4.3 Data structures

Capabilities in Barrelfish are represented by the following data structures:
struct mdbnode {

struct cte *left, *right; // Links to the mapping database
...

};

struct CNode {
paddr_t cnode; // Base address of CNode
uint8_t bits; // Size in number of bits
...

};

union capability_u { // Union of all types of capabilities
...

Barrelfish TN-013 Capability Management - 21

struct CNode cnode;
...

};

struct capability {
enum objtype type; // Type of capability
union capability_u u; // Union of the capability

};

struct cte {
struct capability cap; ///< The actual capability
struct mdbnode mdbnode; ///< MDB node for the cap

};

A capability, cte, consists of the actual capability represented by the “capability” structure and an entry
in the mapping database represented by the “mdbnode” structure. The capability structure contains
the type specific information and the mdbnode contains pointers for the tree representing the mapping
database.

Capabilities can be looked-up in two ways.

• All capabilities on a core are stored in a mapping database. It is possible to reach any capability
on the core by traversing from any other capability on the core.

• Capabilities are also stored in the CNode type capability. The area of memory identified by the
CNode structure is actually an array of capabilities. Starting from the “root CNode” of a dis-
patcher, it is only possible to reach any capability the dispatcher holds.

4.4 Terminology

This section discusses some terminology to facilitate the discussion of capability management.

4.4.1 Copy

A capability X is a copy of a capability Y if:

• X was copied from Y

• or Y was copied from X

• or X was copied from Z and Z was copied from Y

4.4.2 Descendants

A capability X is a descendant of a capability Y if:

• X was retyped from Y

• or X is a descendant of Y1 and Y1 is a copy of Y

• or X is a descendant of Z and Z is a descendant of Y

• or X is a copy of X1 and X1 is a descendant of Y

4.4.3 Ancestor

A is a ancestor of B if B is a descendant of A.

Capability Management - 22 Barrelfish TN-013

4.5 CNode invocations

Most Capabilities have type specific invocations. Operations on the CNode capability modifies the
capability space of the system. We discuss how these operations are implemented for a single core
system here.

[Invocations on other capability types will probably also modify the capability space but alas we don’t know how
those will work yet.]

4.5.1 Retype

Retyping a capability creates one or more descendants of the capability. This operation will fail if
the capability already has descendants. The descendants are inserted into a CNode specified by the
operation and into the mapping database right after the retyped capability.

When a dispatcher issues the retype invocation, the kernel must traverse the mapping database to
ensure that the capability has no descendants, create the descendants capabilities, insert them in the
specified CNode and in the mapping database.

4.5.2 Copy

Copying a capability creates a new copy of it. The kernel walks the capability space to find the capability
to be copied, creates the copy, and inserts it into the specified CNode and mapping database.

4.5.3 Delete

Delete removes the specified capability from the CNode in which it resides and from the mapping
database. This operation cannot fail.

The kernel first walks the capability space to locate the capability to delete. It then walks the mapping
database to check if there still exist copies of the deleted capability. If no copies are found, then it
performs certain operations based on the capability type.

4.5.4 Revoke

Revoking a capability calls delete on all copies and descendants of it. When the operation returns, the
capability will not have any copies or descendants.

The kernel walks the capability space to find the specified capability, uses the mapping database to find
all copies and descendants of the specified capability and deletes them.

4.5.5 Looking up local copies and descendants

Due to the capability ordering used by the mapping database, copies are located adjacent to a capability
and descendants immediately thereafter. Therefore, it is easy to look up all related copies of a capability
on the same core. This facilitates revocation by looking up all copies and descendants, retypes by
checking for existing descendants, and deletes by checking for copies.

The following pseudo-code looks up all descendants and copies of a capability given the existence of
type specific is copy and is descendant functions.

Barrelfish TN-013 Capability Management - 23

// Traverse forward
mdbnode *walk = successor(cap);
while (walk) {

// Check if descendant
if (is_descendant(cap, walk)) {

// Found a descendant
goto increment;

}

// Check if copy
if (is_copy(cap, walk)) {

// Found a copy
goto increment;

}

// Cap is not a descendant or copy
break;

increment:
walk = successor(walk);

}

// Traverse backwards
mdbnode *walk = predecessor(cap);
while (walk) {

// Predecessors cannot be descendants

// Check if copy
if (is_copy(cap, walk)) {

// Found a copy
goto increment;

}

// Cap is not a copy
break;

increment:
walk = predecessor(walk);

}
}

4.6 Multicore extensions

The model above works for a single core system. We have already extended it to work on multiple
cores. Here we discuss these extensions.

We implement the multi-core extension based on the system discussed in detail in chapters 2 and 3 of
Mark Nevill’s master’s thesis, “An Evaluation of Capabilities for a Multikernel” [4].

4.6.1 Cross-core transfer

This is a special operation available only to the monitors. This sends a capability from one core to
another.

4.7 Summary

In this chapter, we presented a background and the current state of capabilities management in Bar-
relfish. We can now discuss different designs for multicore capability management.

Capability Management - 24 Barrelfish TN-013

Chapter 5

Maintaining the database

We consider the following approaches for managing the mapping database.

[Use diagrams to better illustrate the discussion below.]

• No partition: The mapping database and capability space for all cores is maintained on a single
centralized coordinator. Accessing either the capability space or the mapping database on any
core requires communication with the coordinator.

• Partitioned data structure: The mapping database for all cores is maintained on a single central-
ized coordinator and the capability space is maintained on the local cores. This implies that the
cte structure is split between the coordinator and the local cores. Cores can access the capability
space locally and have to message the coordinator to access the mapping database. Note that split
“capability” and “mdbnode” structures need to maintain references to each other.

• Centrally replicated space: The mapping database and the capability space is replicated between
a single coordinator and the local cores. This implies that two copies of each “cte” structure exist
in the system, one on the local core and one on the coordinator. Both local core and the coordinator
can access the mapping database and the capability space.

• Partitioned space: The mapping database and the capability space are maintained on the local
cores. The entire “cte” structure can be accessed locally but capability operations will require
coordination and communication with remote cores.

• Minimal replication: The database is partitioned between local cores as in the above approach
and additionally for each capability the cores maintain a cache of its remote relations. This is
discussed in more detail in section 5.2.

We qualitatively compare the above approaches and why the partitioned space and minimal replication
is the best.

5.1 Comparison

We compare the above approaches in this section.

5.1.1 Efficiency of capability invocations

When a dispatcher invokes a capability, the kernel has to look it up in the capability space starting from
the dispatcher’s “root” CNode. If the capability space is not local, then the core has to message the
coordinator to perform the look up. A round trip with the coordinator is more expensive than a local
look up and can become a scalability bottleneck if we use a single coordinator.

Barrelfish TN-013 Capability Management - 25

Cap invocation Local operations
No partition - -

Partitioned data structure + -
Centrally replicated space + -

Partitioned space + +
Minimal replication + +

Table 5.1: Summary of the different approaches.

The no partition approach does not maintain a local capability space and therefore may suffer from
poor performance. All other approaches maintain the capability space locally.

5.1.2 Local operations

Approaches that enable more pure local operations will perform better as they will reduce the amount
of cross-core communication. In the no partition, partitioned data structure, and replicated space ap-
proaches, no operation can be performed locally. In the partitioned and minimal replication approaches,
certain operations such as copying capabilities is purely local.

5.1.3 Discussion

Table 5.1 summarizes our comparison of the five approaches. A (+) indicates that the approach performs
relatively well on the given metric and a (-) indicates that the approach performs relatively poorly.
Based on the results, we choose to implement the partitioned space and minimal replication approaches.

5.2 Caching

The minimal replication approach is characterized as the partitioned approach with caching the state
of remote relations. Capabilities without remote relations are marked as such and when performing
operations on these no remote communication is required.

When tracking remote relations, three types of relations must be tracked: copies, descendants, and
ancestors. Tracking of remote copies and descendants is required so that revoke, retype, and delete
operations can be correctly implemented. And capabilities must track their remote ancestors so if they
are deleted, the remote ancestors can be informed to update the state about their remote descendants.

5.2.1 How to maintain the cache?

[Once I discuss total order broadcast with caching, this discussion will be revamped.]

There are two ways of maintaining the cache:

• Single bit: A bit each for the three types of remote relations is used. The bits merely indicate
the presence of remote relations but provide no further information such as which cores have the
remote relations.

• List: A list each for the three types of remote relations is used. The list contains exact information
about which cores the remote relations exist on. Uhlig et al [?]’s core mask technique can be used
to maintain the lists with fixed space requirement.

Capability Management - 26 Barrelfish TN-013

Comparison

Informing existing relations: When a capability that already has remote relations is sent to another
core, with the single-bit approach, none of the existing cores with relations have to be informed, but
with the list approach, cores with existing relations must be informed so they can update their lists.

With both approaches when the last local copy of a capability is deleted, its remote relations should be
informed. This is required in the list approach so that the cores can update their list and is required in
the single-bit approach so that the cores can determine if the last remote relation has been deleted and
it can mark the capability as not having the remote relation anymore.

Number of cores communicated: With the single bit approach, all cores in the system must be con-
tacted, while with the list approach, just the cores of interest must be contacted.

Discussion: The single-bit approach will probably be more efficient if the system has few cores and the
capabilities that have remote relations, tend to have them on many cores. The list approach will have
better performance if there are lots of cores in the system and typically a capability only has relations
on a few cores.

5.2.2 Where to maintain the cache?

Imagine that there exists a capability with only local relations. Then cross-core transfer it applied to
it. Should we only mark that capability as having a remote copy or should we mark all impacted
capabilities accordingly? This section will discuss and compare these two approaches.

Mark all

When cross-core transfer is applied to a capability, it is marked has having remote copies and all its local
relations are also marked as having the appropriate remote relations. Its local copies will be marked
as having remote copies, its local descendants will be marked as having remote ancestors, and its local
ancestors will be marked as having remote descendants.

All capabilities maintain complete state of their remote relations at all times.

Mark just individual capability

When cross-core transfer is applied to a capability, it is marked has having remote copies and none of
its local relations are updated.

Capabilities do not maintain the complete state of their remote relations. Their local relations must be
looked up to build the complete state of their remote relations.

Comparison

Both approaches have their specific strengths and weaknesses discussed here.

Cost of cross-core transferring: When applying cross-core transfer to a capability, in the mark all ap-
proach, all local relations must be updated whereas in the mark just individual capability approach,
the local relations do not have to be updated. However, the cross-core transfer operation needs to send
full information about the state of local relations so that the newly created remote capability can setup
its cache properly. Gathering this information will require accessing all local relations so the mark all
approach represents a small in the operation that must be performed anyways.

Cost of building state of remote relations: Any capability operation that requires information on the
current state of remote relations will have to build the full state of remote relations for the capability.

Barrelfish TN-013 Capability Management - 27

This is done trivially in the mark all approach as each capability maintains the full state. In the mark
just individual capability approach, all local relations must be accessed to build the state.

Discussion: Given that the state of remote relations is trivially constructed in the mark all approach and
the cost of cross-core transfer is only marginally higher than the bare minimum cost already required,
we conclude that the mark all approach is superior to the mark just individual capability approach.

5.2.3 Summary

In summary, we have come up with two approaches for the type of cache: single-bit and list, and we
have concluded that the mark all approach is superior for maintaining the cache.

Maintaining a cache will require the following adjustment to the capability operations presented above.

• When cross-core transfer is applied to a capability, it is marked as having remote copies. The
operation sends information on the state of the capability’s local and remote relations.

• When a capability is created due to the cross-core receive operation, it incorporates the informa-
tion about relations sent with the cross-core transfer operation.

• When a copy of a capability is marked as having remote relations, the capability is marked as
having the same remote relations.

• When a descendant of a capability is marked as having remote relations, the capability is marked
also marked as having remote relations based on the following rules:

– If the descendant has a remote copy, then capability has a remote descendant.

– If the descendant has a remote descendant, then capability has a remote descendant.

– If the descendant has a remote ancestor, then capability either has a remote copy or an an-
cestor depending on the outcome from the type-specific is descendant function.

• When an ancestor of a capability is marked as having remote relations, the capability is marked
also marked as having remote relations based on the following rules:

– If the ancestor has a remote copy, then capability has a remote ancestors.

– If the ancestor has a remote descendant, then capability either has a remote copy or a remote
descendant depending on the outcome from the type-specific is descendant function.

– If the ancestor has a remote ancestor, then capability has remote ancestors.

• When a capability is retyped:

– Its remote copies are marked as having remote descendants

– The descendants are marked as having remote ancestors if the capability has remote copies.

• When a capability is copied, the copy is marked as having the same remote relations that the
capability has.

• When the last copy of a capability on the core is deleted, its remote copies, descendants, ancestors
are informed.

We now discuss some implications of maintaining a cache.

Drawbacks: Caching introduces the following drawbacks that the non-caching approach does not suf-
fer from.

• The application dispatchers must first try to perform the capability operations locally and if that
fails, then communicate with the monitors. If no caching were used, the application dispatchers
can always directly communicate with the monitor saving one superfluous trip into the kernel.

• As discussed above, caching requires additional overhead in keeping the cache consistent.

Capability Management - 28 Barrelfish TN-013

• Caching increases the space requirement for maintaining the mapping database.

Caching can work if typically few capabilities are shared between cores and can hurt if many capabilities
are shared.

Decide dynamically: It is clear that application scenarios will actually dictate if caching can help and if
it does, which type of caching helps. To support this, Barrelfish can allow applications to specify which
type of caching is well suited for it or the OS can gather appropriate metrics on application execution
and based on that dynamically update the type of caching used. For this, we need to identify the cross-
over point where one approach is preferred over the other.

5.3 Implementation

As summarized, the current implementation uses a partitioned database which caches remote relations
of capabilities with three bits, one each for remote copies, ancestors, and descendants.

Each database partition is associated with a kernel control block, and keeps track of all the capabilities
in the CSpaces of all the dispatchers associated with that kernel control block. The database is imple-
mented as a binary search tree. We chose the AA tree [1], which is a variation of the red-black tree where
red nodes can only be added as right subchildren. This results in a greatly simplified implementation
of the maintenance operations while conserving the red-black tree’s invariants.

The particular variation we implement for the capability database is an interval tree as described by
Cormen et al. [2, section 14.3, pp 348-354] which uses the AA tree as its basis.

It is noteworthy that we embed the tree nodes into each kernel capability object to avoid any dynamic
allocations in the CPU driver.

The choice of tree, the database implementation and its performance are more extensively discussed in
chapter 4 of Mark Nevill’s master’s thesis [4].

Barrelfish TN-013 Capability Management - 29

Chapter 6

Solutions

In this chapter, we discuss mechanisms for implementing the capability operations. In section 6.1, we
will first discuss the challenges in correctly implementing the operations by discussing how executing
multiple related operations in parallel can lead to conflicts and by discussing how an intuitive solution
of using acknowledgments fails to resolve the conflicts. We then present the requirements from a correct
solution in section 6.2 and compare four different correct solution in section 6.3.

6.1 Challenges

We first discuss the conflicts that can arise if two or more related operations execute in parallel and then
discuss an intuitive but incorrect solution of using acknowledgments to resolve the conflicts.

6.1.1 Conflicts

Performing overlapping operations on related capability can lead to conflicts. This section discusses
the different types of conflicts that can arise.

Conflicts between two retypes, deletes, or revokes: If two different cores are trying to retype, delete,
or revoke related capabilities, then they can conflict. If two different cores try to retype two copies of
a capability, the correct behavior is for one to succeed and for one to fail. If two cores try to delete the
last two copies of a capability, the correct behavior is for one to just delete locally and for the other to
perform type-specific operations required when deleting the last copy of a capability. If two cores try
to revoke the same capability, one should succeed, the other should fail and the capability it was trying
to revoke should also be deleted.

Conflict between revoke and cross-core transfer: If a core is trying to revoke a capability, a copy or
descendant of which another core is trying to transfer, the revoke operation should only finish when
the in-flight capability is also deleted.

Conflict between revoke and retype: If a core is trying to revoke a capability, a copy or descendant of
which another core is trying to retype, then the retype should either succeed and the new capabilities
be deleted before revoke finishes or the retype should fail.

6.1.2 Non-conflicts

This section discusses why it is safe to perform other operations in parallel.

Capability Management - 30 Barrelfish TN-013

A B C

Revoke

R
evoke

Reply

Reply

Reply

Cap

Figure 6.1: Problem with using acknowledments

Delete and revoke: Delete at least deletes one capability and potentially more. If a revoke for a re-
lated capability is issued at the same time, they will overlap and potentially try to perform redundant
operations but these are safe.

Delete and transfer: Delete will delete one capability and perform a check for copies. The in-flight
capability already has a copy that can satisfy the requirements of delete. If the capability is also being
deleted, it is the same two deletes overlapping which indeed is a conflict.

Retype and delete: A delete will not conflict with retypes because it checks for the existence of copies
which a successful retype cannot possibly create. A retype will not conflict with deletes because no
matter when it performs the check for descendants, it will either see descendants that are about to be
deleted or not see them at all, either of the outcomes is correct.

Retype and transfer: Retype cannot conflict with transfers because in order to transfer a capability
because the capability being transferred is a copy of an existing capability which does not change the
existing descendants relationships.

6.1.3 Incorrect solution

Since the essential issue with the relation with cross-core transfer operation is that in-flight capabilities
do not exist anywhere, the sending core can maintain a list of in-flight capabilities which are garbage
collected when the receiver acknowledges the reception of the capability. This allows the sending core
to include the in-flight capabilities in the search for copies and descendants. As shown below, this
intuitive solution is actually incorrect.

Consider the scenario shown in figure 6.1. The system consists of three cores {A, B, C}, A is trying
to revoke a capability and B is trying to send a copy of the capability to C. A sends a revoke request
to B, C and waits for their acknowledgments. B sends the capability to C and adds it to its list of
in-flight capabilities. C sees the revoke request first, performs the operation locally and replies to A.
Then it sees the capability sent from B, inserts it locally and send an acknowledgment to B. B sees
the acknowledgment from C first garbage collecting its list of in-flight capabilities and then sees the
revoke request from A, performs the revoke locally, and replies to A. A receives replies from both B
and C concluding the revoke operation. The revoke operation has finished and C still has a copy of the
revoked capability.

Barrelfish TN-013 Capability Management - 31

6.2 Requirements from a correct solution

A correct solution will enforce the following transactional like and ordering properties.

6.2.1 Transactional properties

Atomic: If one part of a capability operation fails, then the entire operation must fail. For example,
in a retype operation, the descendant capabilities can be created in parallel with the check for existing
descendants. If existing descendants are found, then the newly created descendants must be removed.

Consistent: Every capability operation must leave the system in a consistent state. For example, if
caching is used an operation deletes the last copy of a capability on a core, then all its remote relations
should be informed and updated before the operation finishes.

Isolation: The data that has been modified during a capability operation must not be accessible by other
operations till the operation finishes. For example, if a retype operation has eagerly created descendants
while checking for existing descendants in parallel, no other capability operation should be able to
access the descendants created eagerly till the retype operation finishes.

6.2.2 Ordering

Section 6.1.1 discusses the two types of conflicts that can arise when multiple cores try to perform oper-
ations on related capabilities at the time. Correctness can be ensured if the individual steps (messages)
in operations must be executed in some order. We provide some background on ordering messages
before discussing the actual ordering requirements.

Background on ordering: Four types of ordering are possible. We discuss them from the cheapest to
the most expensive.

• No order: Messages can be delivered in any order. This cannot happen on Barrelfish.

• Single Source FIFO (SSF): Messages from the same sender are delivered in the order they were
sent. This is what currently is available on Barrelfish by default.

• Causal: Messages are delivered based on their partial order given by the happens-before relation-
ship. Vector clocks [?] can be used to provide causal delivery of messages.

• Total order: All receivers receive messages in the same order. Note that any ordering function can
be used to order the messages. Further, total order does not imply causal order but if the ordering
function respects SSF, then total order does imply causal order.

6.2.3 Conflicts with each-other

The minimum ordering required for resolving conflicts between retype, delete, and revoke operations
is total order. Figure 6.2 illustrates the reason causal ordering does not work. Nodes {A,B,C,D} each
contain copies of the same capability that {A,D}wish to retype at the same time. B receives the message
from A before the message from D, and C receives the D’s message before A’s. The messages were
delivered in causal order, C will refuse to A, B will refuse to D not allowing either retype operation to
succeed. Similar examples can be constructed for the delete and revoke operations as well.

Total order delivery will deliver the messages to B and C in the same order allowing just one and only
one retype to succeed.

Capability Management - 32 Barrelfish TN-013

D

A

B

C

Figure 6.2: Problem with using causal order delivery

6.2.4 Conflict between revoke and transfer

Figure 6.1 illustrates the conflict between revoke and cross-core transfer operation. C sees the message
from A before the message from B. Hence any message it sends to B causally depend upon the message
from A. If this was reflected in the message C sent to B, then B could delay handling the message till
it sees the revoke request from A. When B receives the revoke request from A, it will realize that A is
trying to revoke an in-flight capability and take appropriate actions to resolve the issue. The delaying
of the message can be guaranteed by enforcing causal delivery of messages.

6.2.5 Conflict between revoke and retype

The minimum ordering requirement is total. With less stricter ordering, different cores might see the
revoke request and retype requests in different orders. The retyping core might delete the source capa-
bility but end up creating descendants later.

6.3 Solutions

We will discuss and compare the following four solutions.

• Locks

• Total order broadcast

• Two phase commit

• Sequencer

• Hybrid implementation with locks and 2PC

6.3.1 Locks

Locks can be used to enforce the above transactional and ordering policies. Critical sections can be used
to resolve the conflicts ensuring that Time-of-check-to-time-of-use is not violated.

Below, we provide pseudo-code for how capability operations will be implemented when using a cen-
tralized lock and not caching information about remote relations.

Copying a capability: This operation is safe to be performed without holding a lock.

Barrelfish TN-013 Capability Management - 33

cap_copy(struct cte *cte) {

create_copies();

}

Retyping a capability: Holding the lock is required to prevent multiple cores from trying to retype
copies of the same capability. Acquiring the lock is a blocking call during which the capability might
have been deleted so it is important to check that the capability still exists after the lock is acquired.

cap_retype(struct cte *cte) {

errval_t err = success;

acquire_lock();

if (cap_exists(cte) == false) {

err = fail;

goto done;

}

if (has_descendants(cte) == true) {

err = fail;

goto done;

}

create_descendants(cte);

done:

release_lock();

return err;

}

Deleting a capability: If the capability has local copies, the operation is purely local. Otherwise, hold-
ing the lock is required to ensure that if the last copy of the capability in the system is being deleted,
then the type-specific cleanup operations are executed.

cap_delete(struct cte *cte) {

remove_cap(cte);

if (!requires_typed_ops(cte)) {

return success;

}

if (has_local_copies(cte)) {

return success;

}

errval_t err = success;

acquire_lock();

if (!cap_exists(cte) {

goto done;

}

if (!has_copies(cte) {

type_specific_ops(cte);

}

done:

release_lock();

return err;

}

Revoking a capability: Holding the lock is required to ensure that if multiple cores are trying to revoke
related capabilities, only one succeeds. This is why the code below ensures that the capability still exists
after acquiring the lock.

Capability Management - 34 Barrelfish TN-013

cap_revoke(struct cte *cte) {

errval_t err = success;

acquire_lock();

if (!cap_exists(cte) {

err = fail;

goto done;

}

while(has_descendants(cte) {

struct cte *dest = get_next_descendant(cte);

remove_cap(dest);

}

while(has_copies(cte) {

struct cte *dest = get_next_copy(cte);

remove_cap(dest);

}

done:

release_lock();

return err;

}

Cross-core transferring a capability: Holding the lock is required to conflicts between the above capa-
bility operations and cross-core transfer operation. The sender acquires the lock and sends the capabil-
ity. The receiver creates the capability and releases the lock.

cap_send(struct cte *cte, coreid_t dest) {

acquire_lock();

if (cap_exists(cte) == false) {

return fail;

}

send_cap(cte, dest);

}

cap_receive(struct cte *cte) {

create_cap(cte);

release_lock();

return_success_to_app();

}

Caching remote relations

If remote relations are cached, then the cache has to be kept consistent when capability operations
change the state of relations. Below we describe the modifications that will be required in the above
pseudo-code to keep the cache consistent. Note that our cache can be seen as eager replication. As
discussed in section 5.2.2, we will be using the mark all approach to maintain the cache.

Copying a capability: When the new copy is created, its cache of remote relations is set equal to the
cache from the capability it was copied from.

Retyping a capability: If the capability does not have remote copies and descendants, the operation is
purely local and the lock is not required. If the operation is not local, then the lock is acquired, checks for
existence of capability and for descendants and is made, the capability is retyped, and remote relations
are updated based on the rules presented in section 5.2.3.

cap_retype(struct cte *cte) {

if (has_local_descendants(cte) == true) {

Barrelfish TN-013 Capability Management - 35

return fail;

}

if (!has_remote_copies(cte) && !has_remote_descendants(cte)) {

create_descendants(cte);

return success;

}

if (has_remote_descendants(cte)) {

return fail;

}

errval_t err = success;

acquire_lock();

if (!cap_exists(cte)) {

err = fail;

goto done;

}

if (has_remote_descendants(cte)) {

err = fail;

goto done;

}

if (has_local_descendants(cte)) {

err = fail;

goto done;

}

create_descendants(cte);

update_relations(cte);

done:

release_lock();

return err;

}

Deleting a capability: If the capability has local copies or no remote relations, the operation is purely
local. Otherwise, the lock is required and the remote relations must be updated.

cap_delete(struct cte *cte) {

remove_cap(cte);

if (!requires_typed_ops(cte)) {

return success;

}

if (has_local_copies(cte)) {

return success;

}

if (!has_remote_relations(cte)) {

type_specific_ops(cte);

return success;

}

acquire_lock();

if (!cap_exists(cte)) {

Capability Management - 36 Barrelfish TN-013

goto done;

}

if (!has_copies(cte) {

type_specific_ops(cte);

}

update_remote_relations(cte);

remove_cap(cte);

release_lock();

done:

return success;

}

Revoking a capability: If the capability has no remote relations, the operation is purely local. Other-
wise, the lock is required.

cap_revoke(struct cte *cte) {

if (!has_remote_relations(cte)) {

while(has_descendants(cte) == true) {

struct cte *dest = get_next_descendant(cte);

remove_cap(dest);

}

while(has_copies(cte) == true) {

struct cte *dest = get_next_copy(cte);

remove_cap(dest);

}

return success;

}

errval_t err = success;

acquire_lock();

if (!cap_exists(cte)) {

err = fail;

goto done;

}

while(has_descendants(cte) == true) {

struct cte *dest = get_next_descendant(cte);

remote_cap(dest);

}

while(has_copies(cte) == true) {

struct cte *dest = get_next_copy(cte);

remote_cap(dest);

}

release_lock();

done:

return err;

}

Cross-core transferring a capability: The remote relations cache on local and remote capabilities is
updated as presented in section 5.2.3.

Multiple locks

[NYI] If a single lock for the entire system is used, only one capability operation can be performed at
any given moment limiting the available potential for parallelism. By using different locks for unrelated
capabilities, multiple capability operations can proceed in parallel. Using multiple locks will increase

Barrelfish TN-013 Capability Management - 37

the space requirement but will also improve parallelism.

[Multiple locks are not straight-forward. Ancestors reference more memory than descendants do.]

[Can a copy lock for delete, a descendant lock for retype, and both for revoke work?]

6.3.2 Total order broadcast

[Use a single data structure for all pending cap operations.]

The required transactional and ordering guarantees can be provided by ensuring that messages for
related capabilities are delivered in the same order on all cores. Note that causal order delivery resolves
the conflict between retype, delete, revoke and cross-core transfer operation but not within the retype,
delete, revoke operations.

Below we present pseudo-code for how the capability operations will be implemented when not caching
information about remote relations.

Copying a capability: This operation is safe to be performed without any ordering requirements.

Deleting a capability: If the capability does not require type-specific operations or has local copies, the
operation succeeds. Or else, local state is created and a message is broadcast to all cores.

cap_delete(struct cte *cte) {

if (!requires_typed_ops(cte) || has_local_copies(cte)) {

remove_cap(data->cte);

return success;

}

struct delete_data *data = malloc(sizeof(struct delete_data));

delete_data_initialize(data, cte);

outstanding_delete_list->add(data);

send_delete_request_bcast(TOTAL_ORDER, data);

}

If a core receives a delete request broadcast and it was the sender of the message, it removes the capa-
bility and returns. If the core was not the sender of the message, then it replies with the state of local
copies of the specified capability.

delete_request_bcast(coreid_t from, struct delete_request *data) {

if (from == my_core_id) {

remove_cap(data->cte);

return;

}

send_delete_reply(from, data, has_local_copies(data->cte));

}

Finally, when a core receives a reply from a delete request, if a remote copy is found, no type-specific
cleanup is required and the operation finishes. If all replies have been aggregated and no copies were
found, then the type-specific cleanups are performed and then the operation finishes.

delete_reply(coreid_t from, bool has_copies) {

struct cte *my_data = outstanding_deletes_list->get(data);

if (!my_data) {

return;

}

if (has_copies) {

outstanding_deletes_list->remove(my_data);

Capability Management - 38 Barrelfish TN-013

return;

}

increment_replies(my_data);

if (seen_all_replies(my_data)) {

type_specific_ops(cte);

outstanding_deletes_list->remove(my_data);

}

}

Since the deleting cores remove the capability when they receive the broadcast, when multiple cores are
trying to delete copies, the last core’s broadcast will see no copies while other cores will see copies.

[Malloc probably means unbounded memory requirement.]

Retyping a capability: If the capability has local descendants, then the operation fails. Else, a retype
request broadcast is sent.

cap_retype(struct cte *cte) {

if (has_local_descendants(cte)) {

return fail;

}

struct retype_data *data = malloc(sizeof(struct retype_data));

retype_data_initialize(data, cte);

outstanding_retypes_list->add(data);

send_retype_request_bcast(data);

}

When a core receives a retype request broadcast and it was the sender of the message, one of two things
may have happened. Either the core had already received a broadcast from another core trying to retype
the same capability in which case the receiver’s operation has failed and the state for the request has
been removed or the core can succeed in retyping the capability and updates its state accordingly. If
the core was not the sender of the broadcast, it sends a reply to the sender with the state of its local
descendants. Then the core checks if it has an outstanding retype request for the capability. If it does
and its request has not been delivered yet, its retype fails. An error is sent to the application and the
state is garbage collected.

retype_request_bcast(coreid_t from, struct retype_request *data) {

if (from == my_core_id) {

struct cte *my_data = outstanding_retypes_list->get(data);

if (!my_data) {

return;

}

my_data->can_succeed_flag = true;

return;

}

send_retype_reply(from, data, has_local_descendants(data->cte));

struct cte *my_data = outstanding_retypes_list->get(data);

if (!my_data) {

return;

}

if (!my_data->success_flag) {

outstanding_retypes_list->remove(my_data);

return_failure_to_app();

}

Barrelfish TN-013 Capability Management - 39

}

When a core receives a reply to the retype request broadcast, the operation may already have been
failed, in which case the reply is ignored. If the operation has not been canceled yet, then if the reply
indicates no descendants, the operation can still succeed. If all replies are seen then the retype operation
succeeds.

retype_reply(struct retype_request *data, bool has_descendants) {

struct cte *my_data = outstanding_retypes_list->get(data);

if (!my_data) {

return;

}

if (has_descendants) {

outstanding_retypes_list->remove(my_data);

return_failure_to_app();

return;

}

increment_replies(my_data);

if (seen_all_replies(my_data)) {

create_descendants();

outstanding_retypes_list->remove(my_data);

return_success_to_app();

}

}

This resolves the conflicts between two retypes. The conflict between retype and revoke are discussed
below.

[Malloc probably means unbounded memory requirement.]

Revoking a capability: The core initializes some local state and then broadcasts a revoke request to all
cores in the system.

cap_revoke(struct cte *cte) {

struct revoke_data *data = malloc(sizeof(struct revoke_data));

revoke_data_initialize(data, cte);

outstanding_revokes_list->add(data);

send_revoke_request_bcast(TOTAL_ORDER, data);

}

When a core receives a revoke request broadcast, if the core was trying to retype a related capability,
then it fails the retype operation. If it is not trying to revoke the capability itself, it simply revokes the
capability locally and sends a reply. If the core is trying to revoke the same capability but it was not the
sender of the broadcast, then this core’s revoke operation fails.

revoke_request_bcast(coreid_t from, struct revoke_request *data) {

if (related_retype_in_progress(data->cte)) {

outstanding_retypes_list->remove(data);

return_fail_to_app();

}

struct cte *my_data = outstanding_revokes_list->get(data);

if (!my_data) {

revoke_locally(data->cte);

send_revoke_reply(from, data);

return;

Capability Management - 40 Barrelfish TN-013

}

if (from != my_core_id && !my_data->success_flag) {

outstanding_revokes_list->remove(my_data);

send_revoke_reply(from, data);

return_failure_to_app();

return;

}

my_data->success_flag = true;

}

When a core receives a reply from the broadcast, it aggregates them till it has heard back from all cores
in the system and then sends a success to the application.

revoke_reply(struct revoke_request *data) {

struct cte *my_data = outstanding_revokes_list->get(data);

if (!my_data) {

return;

}

increment_replies(my_data);

if (seen_all_replies(my_data) && !my_data->sent_transfer_cap_delete_flag) {

outstanding_revokes_list->remove(my_data);

return_success_to_app();

}

}

cross core transfer: When sending a capability to another core, the sending core creates local states and
broadcasts the send message to all cores in the system.

cap_transfer(struct cte *cte, coreid_t to) {

struct transfer_data *data = malloc(sizeof(struct transfer_data));

transfer_data_initialize(data, cte);

outstanding_transfers_list->add(data);

send_transfer_request_bcast(TOTAL_ORDER, data, to);

}

When a core receives the capability transfer broadcast, it checks against the state of current capability
operations in progress and takes appropriate actions if they are related.

If a revoke operation is in progress that is trying to revoke a copy or an ancestor of the capability being
transferred, the broadcast will indicate that the system indeed has more copies and descendant of the
capability being revoked which must be deleted. If the receiver was also the recipient of the capability, it
does not create it and returns an error to the sender of the capability or else the receiver sends a message
to the core to which the capability is being transferred to requesting it to delete the capability.

transfer_request_bcast(coreid_t from, struct transfer_data *data, coreid_t to) {

struct cte *my_data;

my_data = outstanding_revokes_list->get(data);

if (my_data) {

if (to == my_core_id) {

send_transfer_reply(from, FAILURE_REVOKED, data);

return;

}

my_data->sent_transfer_cap_delete_flag = true;

send_delete_transferred_cap_request(to, data);

}

Barrelfish TN-013 Capability Management - 41

if (to != my_core_id) {

return;

}

my_data = pending_delete_for_transferred_cap_list->get(data);

if (my_data) {

pending_delete_for_transferred_cap_list->remove(my_data);

send_delete_transferred_cap_reply(my_data->from);

send_transfer_reply(from, FAILURE_REVOKED, data);

}

cap_create(data->cte);

send_transfer_reply(from, SUCCESS);

}

When the sender of the capability gets a reply from the receiver, it forwards the error code to the appli-
cation and garbage collects its state.

transfer_reply(errval_t err, struct transfer_request *data) {

my_data = outstanding_transfers_list->get(data);

outstanding_transfers_list->remove(data);

return_err_to_app(my_data->app, err);

}

If a revoke was in progress during the transfer of the capability, the core revoking the capability sends
a message to the receiver of the transferred capability to delete it. When the receiver receives this
message, it may or may not have received the capability yet. If it has already received the capability, it
deletes or else it establishes some state to delete when it is later received.

delete_transferred_cap_request(coreid_t from, struct data *data) {

if (cap_exists(data->cte)) {

remove_cap(cte);

send_delete_transferred_cap_reply(from);

return;

}

struct pending_delete_for_transferred_cap *my_data =

malloc(sizeof(struct pending_delete_for_transferred_cap));

pending_delete_for_transferred_cap_initialize(my_data);

pending_delete_for_transferred_cap_list->add(my_data);

}

delete_transferred_cap_reply(struct data *data) {

my_data = outstanding_revokes_list->get(data);

if (my_data) {

return;

}

my_data->sent_transfer_cap_delete_flag = false;

if (seen_all_replies(my_data)) {

outstanding_revokes_list->remove(my_data);

return_success_to_app();

}

}

[Caching NYI]

Capability Management - 42 Barrelfish TN-013

6.3.3 Two phase commit

Use two-phase commit to synchronize operations that would otherwise conflict. We do not discuss this
solution in detail, as we incorporate two-phase commit into the delete and revoke operations for the
hybrid solution discussed in section 6.3.5.

6.3.4 Sequencer

Use a sequencer. This will order whole operations. We do not discuss this solution in depth, as the
sequencer idea is incorporated into the hybrid solution in section 6.3.5.

6.3.5 Hybrid

We can, of course, combine facets of each of the previously discussed approaches to build a hybrid
approach which combines some (or all) of them.

The solution discussed in chapters two and three of Mark Nevill’s master’s thesis [4], is one such hybrid
approach, which combines locking, per capability sequencing, and two-phase commit. Additionally,
Mark’s solution does not require any additional requirements on Barrelfish’s message channels, and
works flawlessly with SSF message semantics.

We only give a brief overview of the solution here, and refer to Mark’s thesis which discusses the solu-
tion in depth, giving invariants, pre- and post-conditions, and algorithm sketches for each operation.

The key concept for this solution is that, for each capability, of which there can exist arbitrarily many
copies, one core in the system is chosen as the capability’s owner, or sequencer. All operations on any
copy of a capability that need synchronization have to be proxied through the capability’s owner – this
is the sequencer aspect of the solution.

We use locks to eliminate possible conflicts between operations, and merge overlapping deletes and
revokes to avoid deadlocks.

Delete and revoke employ a form of two-phase commit, which is implemented as a mark and sweep
algorithm. Other operations treat capabilities that have been marked for deletion as already deleted,
which avoids many otherwise conflicting operation sequences.

Caching

Caching for this solution is implemented using a bitfield which has one bit each indicating the presence
of remote copies, descendants, and ancestors respectively.

6.3.6 Multicast vs Broadcast

To implement two-phase commit, this solution could use multicast messages to all cores that have
remote copies/descendants/ancestors or simply use broadcast and have cores that do not have any
copies reply with a success reply for the mark phase.

6.3.7 Comparison

[TODO: Compare the approaches]

Barrelfish TN-013 Capability Management - 43

6.3.8 Implementation

Currently, the capability operations are implemented using the hybrid technique outlined above. The
implementation uses broadcasts to implement 2PC, because the this way, the implementation does not
have to keep, and update, a list of remote cores that have copies, descendants or ancestors for each
capability.

Capability Management - 44 Barrelfish TN-013

Chapter 7

Implementation details

• Using THC

• Using RPC between app and monitor

• Using RPC between monitors

• Everything having ancestors on memserv

• Optimization: monitor caches root cnodes

• Bootstrap

• How to put enum objtype in interface file?

• Two types of ifdefs: type of caching (none, list, or bits) and type of mgmt

7.1 Performing capability operations

If caching is not used, then the application knows for which operations it must contact the monitor and
does so directly without requesting the kernel to try to perform the operation first.

If caching is used, then the application should try to perform the operation via the kernel first. If
the capability does have remote relations, the kernel returns an appropriate error to the application in
which case it contacts the monitor.

7.2 Sharing mdb between kernel and monitor

When the application wants the monitor to perform an operation for it, it passes the monitor its root
CNode and all the required parameters.

Barrelfish TN-013 Capability Management - 45

Chapter 8

Not Yet Discussed

Things that I know that I need to discuss.

• The OS does not guarantee which order the operations will be performed in. The user must
enforce the ordering herself.

• Partitioned approach with caching is eager replication. Consider lazy replication.

Capability Management - 46 Barrelfish TN-013

References

[1] Arne Andersson. Balanced search trees made simple. In Proceedings of the Third Workshop on Algo-
rithms and Data Structures, WADS ’93, pages 60–71, London, UK, UK, 1993. Springer-Verlag.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms. MIT Press and McGraw-Hill, 3 edition, 2009.

[3] Pierre-Evariste Dagand, Andrew Baumann, and Timothy Roscoe. Filet-o-Fish: practical and de-
pendable domain-specific languages for OS development. In Proceedings of the 5th Workshop on Pro-
gramming Languages and Operating Systems (PLOS), October 2009.

[4] Mark Nevill. An evaluation of capabilities for a multikernel. Master’s thesis, ETH Zrich, May 2012.

[5] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe. Decoupling cores, kernels,
and operating systems. In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 17–31, Berkeley, CA, USA, 2014. USENIX Association.

Barrelfish TN-013 Capability Management - 47

