
Barrelfish Project
ETH Zurich

Device Queues in Barrelfish

Barrelfish Technical Note 26

Barrelfish project

24.10.2017

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

http://www.barrelfish.org/


Revision History

Revision Date Author(s) Description

0.1 24.10.2017 RH Initial Version

DeviceQueues - 2 Barrelfish TN-26



Contents

1 Introduction 6
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Function Definitions and Semantics 8
2.1 Registering Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Deregister Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Enqueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Dequeue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Notify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Formal Model 14

4 Implementation 18
4.1 Implementation Debug Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Implementation Solarflare Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Implementation IDC Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Interface Usage 24

Barrelfish TN-26 DeviceQueues - 3



DeviceQueues - 4 Barrelfish TN-26



color

Barrelfish TN-26 DeviceQueues - 5



Chapter 1

Introduction

In this document we describe a queue based interface that unifies communication for devices
like network cards and block devices but also between processes. The interface should fit to as
many devices as possible while still being efficient. The goal is similar to Virtio [5], Portals [1]
or MPI [4], but we want to take a more formal approach and define pieces that are ambiguous.
These interface do not define a memory model or what preconditions/postconditions an inter-
face function has. For example, what happens when a guest accesses a memory buffer that is
handed off to the host? These interfaces are clearly implementation driven where we want to
document the interface as clearly as possible, and see the implementation and its code as two
separate things.

1.1 Terminology

In this section, we explain the terms and the meaning of them as they are used in the following
sections.

• Region: A Region is a chunk of memory that is registered to the Devif interface. From
the memory of the region, buffers can be allocated.

• Buffer: A buffer is a chunk of memory within a region.

• Endpoint: An endpoint is a processes or devices.

• Ownership: An endpoint can own a buffer and transfer ownership of a buffer to another
endpoint or device. If an endpoint owns a buffer, it can alter it. If an endpoint alters a
buffer that is not owned, the result is undefined and it is considered a bug.

1.2 Functionality

The basic functionality of our queue based device interface (from now on called Devif ) should
be transferring ownership of buffers between two endpoints of a queue. A buffer is a variable
sized piece of memory within a previously to the Devif interface register region of memory.
We exclude managing the buffers themselves i.e. allocating and deallocating buffers to keep
the interface and the underlying protocol simple. If we manage the variable sized buffers, we

DeviceQueues - 6 Barrelfish TN-26



would have to implement a dynamic memory allocator which increases the complexity of the
Devif interface.
Another important aspect is the idea of ”stacking” queues. In this manner each queue on the
stack can do an arbitrary transformation on the buffer that was enqueued and hand it down to
the queue lower in the stack.

1.3 Memory Model

When implementing a backend for the Devif interface, the underlying memory model has to
be considered. In certain cases, a write to a buffer might not have been written back to memory
before the buffer is processed by a device.
There are several memory models that are used in current hardware but none of them are
sequential consistent (SC). The memory models relax sequential consistency to allow instruction
reordering and other optimizations. Currently X86 and Sparc can be modelled using Total Store
Ordering (TSO) [6]. TSO relaxes SC so that local writes are visible locally before they are visible
to all other hardware threads (multi-copy atomic). In most cases this is because of a write
buffer that is introduced to buffer stores and the local request are satisfied by the contents of the
buffer. TSO is still a very strict memory model and only allows limited instruction reordering.
Our aim with Devif is that the backends support the even more relaxed model of ARM [2, 3]
(and IBM Power). In the memory model of ARM the processor can reorder instructions very
generously. Stores as well as loads and other instructions (even atomic instructions) can be
reordered. The goal of Devif is to support the weakest memory model so it runs on the
most common hardware, but can still increase the strictness of the memory model to improve
performance.

Barrelfish TN-26 DeviceQueues - 7



Chapter 2

Function Definitions and Semantics

In this section we describe the functions of the Devif interface in detail. Not only do we define
the functions itself, but the give additional information to the semantics. We use the term
undefined behaviour for calls on the interface that we consider bugs and that must not happen.
The creation and destruction of queues are device specific and are not part of the interface
itself.

2.1 Registering Region

Adds a region of memory to the active set of this queue. The queue has to be properly initialized
beforehand. The memory region has to be owned by the endpoint trying to register the region.
If the region is not owned by the endpoint, the behaviour is undefined. If a region is added that
is already registered or overlaps with another region, an error must be returned. The returned
region id must be unique for this queue and larger than or equal to 0. After the function returns,
buffers from the just registered region can be enqueued and the ownership can be transferred.

errval_t devq_register(struct devq *q,

struct capref cap,

regionid_t* region_id);

Arguments

• devq *q: handle to the device queue.

• struct capref cap: the capability representing the memory region to register.

• regionid t* region: return pointer to the region id of the newly registered region.

Preconditions

• The device queue is initialized

DeviceQueues - 8 Barrelfish TN-26



• The memory has to be allocated

• Memory of the region must be owned by endpoint

• The region must not be currently registered

• Region must not overlap with other already registered regions

Postconditions

On success, the following conditions on the returned value hold

• region idmust be unique for this queue and larger or equal to 0

Reasons for Failure

• Register function of backend fails.

• Region to register is already registered.

2.2 Deregister Region

Removes a memory region from the registered regions of a queue. If a region is deregisterd
that was not registered before, an error is returned. To deregister a region, every buffer of the
region i.e. the whole region has to be owned by the endpoint making the call to the interface.
If a region is deregistered and the region is not fully owned by the endpoint, the behaviour is
undefined.

errval_t devq_deregister(struct devq *q,

regionid_t region_id ,

struct capref* cap);

Arguments

• devq *q: handle to the device queue

• regionid t region id: the id of the region to deregister

• struct capref cap: return pointer to the cap of the deregistered region

Preconditions

• The device queue is initialized

• Region must currently be registered (i.e. valid region id that is currently registered)

Barrelfish TN-26 DeviceQueues - 9



Postconditions

On success, the following conditions on the returned value hold

• capmust not be NULL

• cap is a capability referencing a memory region that was once registered.

Reasons for Failure

• Backend deregister function fails.

• Region was not registered beforehand.

2.3 Enqueue

Enqueues a buffer of a region for ownership transfer. The buffers offset into the memory region
has to be within the preregistered memory region matching the region id, otherwise an error
is returned. The region id provided has to be valid i.e. larger or equal than 0 and is already
registered. The length of the buffer must be large than 0 and must not exceed the region size
minus the offset of the start address of the buffer within the region. The valid data offset has
to be within the buffer and its length may not exceed the buffers length. The buffer has to
be currently owned by the client i.e. a buffer can not be enqueued twice without dequeuing
it beforehand, otherwise the behaviour is undefined. Enqueueing a buffer does not directly
transfer the ownership, but the client enqueueing the buffer has given up ownership on the
buffer. Eventually the ownership of the buffer will be transferred but there is no guarantee
when this happens. All the changes to the buffer have to be written back to memory and
not only reside in the cache. Altering a buffer that a client has no ownership over, will result
in undefined behaviour. Multiple buffers can be chained by using the argument misc flags.
When chaining multiple buffers, the last buffer of the chain must have the misc flags set to
DEVQ FLAG LAST.

errval_t devq_enqueue(struct devq *q,

regionid_t region_id ,

genoffset_t offset,

genoffset_t length,

genoffset_t valid_data ,

genoffset_t valid_length ,

uint64_t misc_flags);

Arguments

• devq *q: handle to the device queue.

• regionid t region id: the id of a memory region the enqueued buffer belongs to.

• genoffset t offset: the offset within the memory region where the buffers starts.

DeviceQueues - 10 Barrelfish TN-26



• genoffset t length: the length of the enqueued buffer.

• genoffset t valid data: the offset within the buffer where the valid data starts.

• genoffset t valid length: the length of the valid data within the buffer.

• uint64 t flags: flags of the buffer.

Preconditions

• The device queue is initialized

• The region id must match with an already registered region

• The buffer must be owned by the client of the interface

• The offset must be within the bounds of a memory region

• The length must not exceed the region size minus the offset of the buffer within the region

• The valid data offset must be within the buffers bounds

• The valid length must not exceed the length minus the valid data offset

• Changes to the buffer are written back to memory

Postconditions

After a successful enqueue, the following conditions hold

• -

Reasons for Failure

• Backend enqueue function fails (e.g. when the queue is full)

• Region id is not valid.

• Bounds check for buffer fails

• Bounds check for valid data fails

2.4 Dequeue

Dequeues a buffer from the queue. After a buffer is dequeued, the client takes ownership of
the buffer. As long as the client owns a buffer, the client can alter the contents of this buffer.
Dequeue can be called any time, and even when a notification is received there is no guarantee
that the queue contains any buffers to receive. If there is nothing to dequeue, the call will return
an error. When an endpoint dequeues a buffer, it has to invalidate its cache of the received
buffer when the weaker memory model is assumed (ARM, IBM Power). The dequeued values
have to represent a valid buffer as well as point to valid data. If nothing is known about the
validity of the data with the buffer, the whole buffer is considered as valid data.

Barrelfish TN-26 DeviceQueues - 11



errval_t devq_dequeue(struct devq *q,

regionid_t* region_id ,

genoffset_t* offset,

genoffset_t* length,

genoffset_t* valid_data ,

genoffset_t* valid_length ,

uint64_t* flags);

Arguments

• devq *q: handle to the device queue.

• regionid t* region id: return pointer to the region id of the dequeued buffer.

• genoffset t* offset: return pointer to the offset within the memory region where the
buffers starts.

• genoffset t* length: return pointer to the length of the enqueued buffer.

• genoffset t* valid data: return pointer to the offset within the buffer where the valid
data starts.

• genoffset t* valid length: return pointer to the length of the valid data within the
buffer.

• uint64 t flags: flags of the buffer.

Preconditions

• The device queue is initialized

Postconditions

The returned pointer have to contain valid information about a buffer. After a successful
dequeue, the following conditions on the returned values hold

• region idmust be larger or equal to 0

• offset is not equal to NULL

• length is not equal to NULL

• valid data is not equal to NULL

• valid length is not equal to NULL

• offset does not exceed region length

• length + offset do not exceed region length

• valid data does not exceed the buffer size

• valid length does not exceed buffer size minus valid data offset

DeviceQueues - 12 Barrelfish TN-26



Reasons for Failure

• Backend dequeue function fails (e.g. when the queue is empty)

• Buffer returned by the backend is not valid.

2.5 Notify

Notify informs the client on the other side of the queue that there might be buffers buffers in
the queue that are ready for processing. There is no guarantee that there is actually a buffer in
the queue. When a buffer is enqueued, there is no guarantee to when the buffer is processed.
Notify ensures, that all the buffers that are enqueued to this point will eventually processed
and the ownership is transferred. Notify is a performance optimization mechanism and not
strictly necessary.

errval_t devq_notify(struct devq *q);

Arguments

• devq *q: handle to the device queue.

Preconditions

• The device queue is initialized

Postconditions

–

Reasons for Failure

• Backend notify function fails

Barrelfish TN-26 DeviceQueues - 13



Chapter 3

Formal Model

In this section we model the system as a transfer of ownership of sets of addresses. We model
it as a transition system by first defining the agents, the structures, and the operations used
to do the transfer. We do not model notifications since they are strictly optional and mainly
a performance optimization. We abstract the buffers of the ownership transfer protocol as a
simple set of addresses. Consequently, we do not need to define what a buffer is. This means
in our model the smallest unit resource we transfer ownership of is a single memory address.

Definition 1: Memory Address

A Memory Address A is an identifier (or a name) that abstracts an addressable byte of a
machine.

To go any further, we have to define on what sets an agent can operate on. In the following
if we write about a set, this means a set of addresses i.e. if we mention set S it is defined as
S = {A0, ...,An}. In our transition system we only have two agents X and Y.

Definition 2: Agent State

Our model consists of two Agents X and Y. The sets an Agent can operate on are Sx for
agent X and Sy for agent Y and each of these sets consists of memory addresses.

The ownership in our model is transferred between the two agents X and Y. If an agent
takes ownership of an address, this means that the agent can operate on these addresses. For
example, it can read the contents of the memory address or write to the memory address.

Definition 3: Ownership

Agent X and Y can take ownership of an address A by adding the memory address to the
set Sx or Sy respectively.

ownership(S,A)⇔ A ∈ S

where S is either the state of agent X or Y and A is any address that can be used in the
transition system.

DeviceQueues - 14 Barrelfish TN-26



To prevent two agents owning the same address, we define the following invariant that has to
hold for all operations on the transition system.

Invariant 1

At any point in time an address A can only be owned by one Agent at a time

Sx ∩ Sy = ∅

With the current definitions, we could model the transfer of ownership by simply removing
from one set and adding it to the other (Sx to Sy and vice versa) but this model would not entail
correctly how the transfer of an address happens. An address that is enqueued might not be
immediately dequeued by the other agent which means that we require another mechanism:
the queue itself. In essence, we need to store the addresses that are currently in transfer in
another set associated with a queue.

Definition 4: Queue

A bidirectional queue Q between the two agents X and Y consists of two sets of addresses
called Txy and Tyx where Txy is the set of addresses that is in transfer from agent X to agent
Y and Tyx vice versa.

Q = (Txy,Tyx)

Having defined basic agents and structures of our model, but we are missing operations on the
transition system to actually transfer the ownership of addresses. To transfer ownership over
a queue from agent X to Y and vice versa, we define the operations enqueue and dequeue.

Operation 1: Enqueue

Enqueue: initiates a transfer of ownership of a set of addresses B from agent X to Y and
vice versa. Enqueue removes B from either agent X or Y’s state (Sx and Sy) and adds it to
the queue Q (Q.Txy in case of agent X and Q.Tyx in case of agent Y). Enqueue requires a
set of addresses to transfer B. The function enqueue from agent X is defined as

enqueuex(B) Sx := Sx − B
Txy := Txy ∪ B

and for Agent Y

enqueuey(B) Sy := Sy − B
Tyx := Tyx ∪ B

Barrelfish TN-26 DeviceQueues - 15



Operation 2: Dequeue

Dequeue: completes a transfer of ownership of a set of addresses B from agent X to Y and
vice versa. Dequeue removes B from the queue state Q (Q.Txy in case of Y and Q.Tyx in
case of X) and adds it to the agents state S (Sx in case of X and Sy in case of Y). Dequeue
requires the set of addresses to transfer B, the agents state S and the queue state Q. The
function enqueue from agent X is defined as

dequeuex(B) Tyx := Tyx − B
Sx := Sx ∪ B

and for Agent Y

dequeuey(B) Txy := Txy − B

Sy := Sy ∪ B

Further to add and remove Addresses from the closed system, we defined register and deregister.

Operation 3: Register

Register: adds a set of addresses R that are not yet in the system to the agent state S. To
be more precise R is defined as

R ⊆ (Sx ∪ Sy ∪Q.Txy ∪Q.Tyx)c

The addresses in the system can be used for the transfer of ownership to a second agent.
The function takes the set of addresses R as an argument

The behaviour of the function register is shown below

registerx(R) Sx := Sx ∪ R

registery(R) Sy := Sy ∪ R

Operation 4: Deregister

Deregister: removes a set of memory addresses R from an agents state S. After deregis-
tering the addresses of R can no longer be transfer on the queue. The function takes the
set of addresses R. The addresses of R will be no longer in the system i.e.

R ∈ (Sx ∪ Sy ∪Q.Txy ∪Q.Tyx)c

The behaviour of the function deregister is shown below

deregisterx(R) Sx := Sx − R

deregistery(R) Sy := Sy − R

DeviceQueues - 16 Barrelfish TN-26



The transition system that we defined up to now can be seen in the picture below.

Figure 3.1: Buffer transfer protocol sets and the operations
(Sx ∪ Sy ∪ Txy ∪ Tyx)c

__

registery

deregistery

��

??

deregisterx

registerx

��

Txy
dequeuey

))Sx

enqueuex

55

Sy

enqueuey
uu

Tyx

dequeuex

ii

The invariant we described before, only captures part of the constraint that we require so we
extend it to also address the sets Txy and Tyx.

Invariant 2

At any point in time an address A can only be in one set at the tame

Sx ∩ Sy ∩ Txy ∩ Tyx = ∅

We can show that this holds for all the operations we defined. We omit the proof in this
document. The formal specification should make the main concepts of the Devif Interface
more clear and remove more ambiguities of the function specifications and semantics of the
previous chapter.

Barrelfish TN-26 DeviceQueues - 17



Chapter 4

Implementation

The building blocks of the Devif interface are the different library backends for the devices and
a small generic library implementing the bookkeeping of region and buffer ids. The backend
libraries implement a few well defined functions that are installed as function pointers for
the generic library during the creation of a queue. Creating and destroying a queue is device
specific and is not part of the interface between library backends and the generic library. A
high level overview of how to use the Devif interface is shown in Figure 4.1. The creation of a
queue yields a handle that contains all the state for a device queue and as a first member, the
general struct for the Devif queue state. An example of the data structures for a device and the
devq struct is shown in Figures 4.2, 4.3, 4.4.

Figure 4.1: High level overview

Solarflare specific:
Register/Deregister

Control/Notify
Enqueue/Dequeue

e1000 specific:
Register/Deregister

Control/Notify
Enqueue/Dequeue

e1000 Create / Destroy

IDC specific:
Register/Deregister

Control/Notify
Enqueue/Dequeue

D
ev

if
Li

b
ar

ar
y

Solarflare Create / Destroy

IDC Create / Destroy

1. Create device specific queue

2. Cast to generic queue

3. Use Devif library calls

4. Destroy device specific queue

Destroy

Devif

Backend function pointers

Create 

Install function pointers

The example shown in Figure 4.2 is the device specific struct for a Solarflare NIC queue. The
struct contains as a first member the devq struct (Figure 4.3) so it can be cast to a devq struct.

DeviceQueues - 18 Barrelfish TN-26



Figure 4.2: Device Specific Queue Struct

struct sfn5122f_queue {

struct devq q;

union {

sfn5122f_q_tx_user_desc_array_t* user;

sfn5122f_q_tx_ker_desc_array_t* ker;

} tx_ring;

struct devq_buf* tx_bufs;

uint16_t tx_head;

uint16_t tx_tail;

size_t tx_size;

...

};

Figure 4.3: General Devif struct

struct devq {

// Region management

struct region_pool* pool;

// Funciton pointers

struct devq_func_pointer f;

...

};

The rest of the struct contains the pointers to the descriptor rings (and the state associated with
a descriptor for the Devif interface). Further the bindings for the communication channel to
the card driver. In Figure 4.4 the functions which have to be implemented by a library backend
are shown. In certain cases some of these functions can be a NOP, but the function pointers
still have to be set.

4.1 Implementation Debug Backend

This is a debugging interface for Devif interface that can be used with any existing queue. It can
be stacked on top to check for non valid buffer enqueues/deqeues that might happen and that
lead to undefined behaviour. With other queues, the undefined behaviour might go unnoticed
where the debug queue certainly returns an error. An example of a not valid enqueue of a
buffer is when the endpoint that enqueues the buffer does not own the buffer.
We keep track of the owned buffers as a list of regions which each contains a list of memory
chunks. Each chunk specifies a offset within the region and its length. When a region is
registered, we add one memory chunk that describes the whole region i.e. offset=0 length =
length of region
If a buffer is enqueued, it has to be contained in one of these memory chunks (otherwise the
endpoint does not own the buffer). The memory chunk is then altered according how the
buffer is contained in the chunk. If it is at the beginning or end of the chunk, the offset/length

Barrelfish TN-26 DeviceQueues - 19



Figure 4.4: Backend Function Pointers

typedef uint64_t genoffset_t;

errval_t (*devq_notify_t) (struct devq *q);

errval_t (*devq_register_t)(struct devq *q,

struct capref cap,

regionid_t region_id);

errval_t (*devq_deregister_t)(struct devq *q,

regionid_t region_id);

errval_t (*devq_control_t)(struct devq *q,

uint64_t request,

uint64_t value

uint64_t result*);

errval_t (*devq_enqueue_t)(struct devq *q,

regionid_t region_id ,

genoffset_t offset,

genoffset_t length,

genoffset_t valid_data ,

genoffset_t valid_offset ,

uint64_t misc_flags);

errval_t (*devq_dequeue_t)(struct devq *q,

regionid_t* region_id ,

genoffset_t* offset,

genoffset_t* length,

genoffset_t* valid_data ,

genoffset_t* valid_offset ,

uint64_t* misc_flags);

struct devq_func_pointer {

devq_register_t reg;

devq_deregister_t dereg;

devq_control_t ctrl;

devq_notify_t notify;

devq_enqueue_t enq;

devq_dequeue_t deq;

};

DeviceQueues - 20 Barrelfish TN-26



of the chunk is changed accordingly If the buffer is in the middle of the chunk, we split the
memory chunk into two new memory chunks that do not contain the buffer. Simply put, the
list contains the parts of the region which this endpoint owns.
If a buffer is dequeued the buffer is added to the existing memory chunks if possible, otherwise
a new memory chunk is added to the list of chunks. If a buffer is dequeued that is in between
two memory chunks, the memory chunks are merged to one big chunk. We might fail to find
the region id in our list of regions. In this case we add the region with the deqeued offset+length
as a size. We can be sure that this region exists since the devq library itself does these checks if
the region is known to the endpoint. The debugging queue on top of the other queue does not
have allways have a consistent view of the registered regions (but the Devif library part does)
When a region is deregistered, the list of chunks has to only contain a single chunk that descirbes
the whole region. Otherwise the call will fail since some of the buffers are still in use and are
not owned by the endpoint.
Additionally, we added two calls to help debug errors that arise. The function signatures are
shown below in Listing 4.6

Figure 4.5: Additional functions of the Debug Queue

errval_t debug_dump_region(struct debug_q* que,

regionid_t rid);

void debug_dump_history(struct debug_q* q);

With these two functions, the history of operations (to a certain limit) and the list of currently
owned memory chunks can be printed on the console.

4.2 Implementation Solarflare Backend

The solaflare backend mainly deals with getting the resources to access hardware register
and then handling the receive, transmit, and event queue of a VNIC. On the create call, the
resources for a VNIC are allocated. A VNIC (Not to be confused with Virtual Functions) has
three queues receive, transmit, and event queue that are represented in software by ringbuffers.
After allocating the memory for the queues, a communication channel to the driver is set up
and the information to set up the queue on the card is propagated to the driver by an RPC call.
The RPC returns a capability to the hardware registers of the queue and a queue id. With the
received cap, the registers of the queue can be mapped into the vspace of the current running
program and as of that moment, the user-space program can access a hardware queue directly.
The signature of the create call is shown in Listing ?? The event callback in the signature is

Figure 4.6: Additional functions of the Debug Queue

errval_t sfn5122f_queue_create(struct sfn5122f_queue** q,

sfn5122f_event_cb_t cb,

bool userspace ,

bool interrupts ,

bool default_q);

Barrelfish TN-26 DeviceQueues - 21



called when the queue receives an interrupt. The different booleans are for enabling/disabling
the userspace networking feature and interrupts. Further the default queue where all the
unmatched packets (i.e. not matched by any hardware filtering) are received can be requested,
otherwise one of the 1024 VNICs will be used.
When a VNIC is created, it can be instantiated with user-level networking enabled or disabled.
If user-level networking is enabled, mappings from of buffers that can be used to send/receive
data have to be installed on the card. When register is called, it executes an RPC to the card
driver which adds the required mappings to a hardware register table (shown in Figure 4.7).
The mappings are removed by a deregister call. Each of these entries represents a 4k page that
can be used as buffers. Note: the number table entries is limited (≈140000) so registering big
amount of memory with the solarflare card might lead to problems. To send data using such
a buffer, we need to know for a region id the corresponding first entry of the buffer table. Since
the buffer id is the offset within the region, we can directly compute the buffer table entry if
we store the index of the first entry of the region. Further with the buffer id being the offset in
the region, we can compute offsets within a 4k buffer entry (supported by the NIC). If a buffer
crosses a 4k buffer entry boundary, the packet has to be fragmented into two descriptors in the
ringbuffers.

Figure 4.7: Translation from region id + buffer id to buffer table entry of the solarflare card

4k Buffer

4k Buffer

4k Buffer

4k Buffer

….

4k Buffer

Idx 1

Idx 2

Idx 3

Idx 4

….

Idx n

Region ID x

Buffer ID (offset in Region)

Buffer ID (offset in Region)

4k Buffer

…

4k Buffer

Offset 2048

Idx 1

…

Idx 42

Idx 58

Region ID 1234

Buffer ID 67584

After the setup, we can directly access the hardware registers for managing the VNIC. If we
call devq enqueue() now, the region and buffer id are translated to an buffer table entry and
an offset which can be used to build a descriptor. The flags of the devq enqueue() function
are used to define if the buffer we enqueue is a receive or send buffer. Additionally to the
descriptor, we also write the buffer id, region id and other information alongside the descriptor
so a second translation of buffer table index to region and buffer id is not necessary on devq -
dequeue(). Since both devq enqueue and devq dequeue directly access hardware registers,
devq notify is a NOP. Here we use the semantics, that enqueing/dequeueing on a queue is
possible before receiving a notify.

DeviceQueues - 22 Barrelfish TN-26



4.3 Implementation IDC Backend

The IDC backend facilitates communication between two processes on either the same core or
two different cores. The communication channel is based on Flounder interfaces. To set up
such a channel, one of the endpoints exports the interface while the other simply connects to
the endpoint that exports functionality. The flounder interfaces are shown in Figure 4.8. On

Figure 4.8: Flounder Interface

interface descq "Devif communication queue" {

// create and destroy a queue

rpc create_queue(in uint32 slots,

in cap rx,

in cap tx,

in bool notifications ,

out errval err);

rpc destroy_queue(out errval err);

// add a memory region to the buffer table

rpc register_region(in cap cap,

in uint32 rid,

out errval err);

rpc deregister_region(in uint32 rid,

out errval err);

rpc control(in uint64 cmd,

in uint64 value,

out errval err);

};

the remote side, the functions pointers that are given during creation are called. Using these
function pointers, two queues can be connected (e.g. solaflare queue and IDC queue to support
software filtering). If the endpoint simply connects to a remote endpoint, the local endpoint
sets up memory for the receive/send queue that reside in shared memory between the two
endpoints. The shared memory is established by the create queue RPC call. There are no
flounder RPC calls for enqueue and dequeue as they are handled through either a notification
sent to the other endpoint or the remote endpoint can simply poll the queue by trying to
dequeue a descriptor from the queue.

Barrelfish TN-26 DeviceQueues - 23



Chapter 5

Interface Usage

The usage in both cases, if the datapath is in a single domain or across domains is the same. In
the case of a single domain, the notify can be dropped since it is a NOP. In a single domain the
control plane, i.e. setting up the queue and registering memory regions to the interface, can
involve another process but not on the data plane. In the following we make a small example
of how to use the queue interface and a queue backend.

errval_t err;

struct queue* q;

struct descq* queue;

struct capref memory;

regionid_t regid;

// Create queue, specific to the queue backend.

// In this case simple channel between two processes

err = descq_create(&queue, notify_cb , ...);

if (err_is_fail(err)){

// error handling

}

// Cast to queue interface struct. Used for methods

// that are not

q = (struct queue*) queue;

// Allocate memory (returns a capability to the memory)

err = frame_alloc(&memory, MEMORY_SIZE , NULL);

if (err_is_fail(err)){

//error handling

}

// Register the memory we are going to use

err = queue_register(q, memory, &regid);

if (err_is_fail(err)){

// error handling

}

DeviceQueues - 24 Barrelfish TN-26



At the point of the queue creation, we still have to know what the queue represents. In this
case we create a queue to connect two processes. Following the creation, we cast the device
specific to a more general queue. Now, we can use the queue interface to register the memory
from which we want to carve out our variable sized buffers. At this stage, the datapath is set
up and buffers can be transferred.

// Modify buffers in some way

// ...

// Enqueue buffers (2KB size for now, but can be variable size)

for (int i = 0; i < MEMORY_SIZE/2048; i++){

err = queue_enqueue(q, regid_rx, i*2048, 2048, 0, 2048, 0);

if (err_is_fail(err)){

// Can do a notify if the queue is full

if (err == QUEUE_ERR_QUEUE_FULL) {

err = queue_notify(q);

if (err_is_fail(err)) {

// error handling

}

// there was an error i.e. retry enqueueing buffer

i--;

} else {

// there was an error i.e. retry enqueueing buffer

i--;

}

}

}

In the example above, fixed sized buffers are enqueued and transferred to another process. The
process on the other end of the queue can dequeue the buffers at any time but the queue itself
has a size limit (as many most other queues). When the other process does not dequeue from
the queue, at some point the queue will be full. As an optimization, the function notify sends
a message to the other process to inform it that there might be buffers in the queue.
The teardown of the queue is using the function deregister and destroy

// Make sure this process owns all the memory of the region

// ...

// Remove region from the active set

err = queue_deregister(q, regid, &memory);

if (err_is_fail(err)){

// error handling

}

// Cleanup resources of the queue

err = queue_destroy(q);

if (err_is_fail(err)){

// error handling

}

Barrelfish TN-26 DeviceQueues - 25



Before a region can be deregistered, the process has to make sure that all the memory of the
region is owned by the process. If the process does not fully own the region, deregister
returns an error. Similar, destroy fails if there are still regions registered.
For the receiving part, the process simple has to dequeue from the queue

regionid_t rid;

genoffset_t offset;

genoffset_t length;

genoffset_t valid_data;

genoffset_t valid_length;

uint64_t flags;

err = queue_dequeue(q, &rid, &offset, &length, &valid_data ,

&valid_length , &flags);

if (err_is_fail(err)) {

//error handling ,

}

Additionally in the case of the queue for inter process communication during creation a noti-
fication handler can be given as an argument. An example of such a handler is shown below.
This handler is called whenever a notify from the other process is received.

static void notify_cb(void* q)

{

errval_t err = SYS_ERR_OK;

struct queue* queue = (struct queue*) q;

regionid_t rid;

genoffset_t offset;

genoffset_t length;

genoffset_t valid_data;

genoffset_t valid_length;

uint64_t flags;

while(err_is_ok(err)) {

err = queue_dequeue(queue, &rid, &offset, &length,

&valid_data ,

&valid_length , &flags);

}

}

Some other examples are shown in Figures 5.1 and 5.2

DeviceQueues - 26 Barrelfish TN-26



Figure 5.1: Usage example with datapath in a single domain

Figure 5.2: Usage example with datapath across domains

Barrelfish TN-26 DeviceQueues - 27



References

[1] B. W. B. et. al. The Portals 4.0.2 Network Programming Interface. Online. http://www.cs.
sandia.gov/Portals/portals4-spec.html. Accessed 03/05/2017.

[2] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and P. Sewell.
Modelling the ARMv8 architecture, operationally: Concurrency and ISA. In Proceedings of
POPL: the 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2016.

[3] L. Maranget, S. Sarkar, and P. Sewell. A tutorial introduction to the ARM and POWER
relaxed memory models. 2012.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, September
2009. Version 2.2.

[5] R. Russell. Virtio: Towards a de-facto standard for virtual i/o devices. SIGOPS Oper. Syst.
Rev., 42(5):95–103, July 2008.

[6] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. X86-tso: A rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM, 53(7):89–97, July
2010.

DeviceQueues - 28 Barrelfish TN-26

http://www.cs.sandia.gov/Portals/portals4-spec.html
http://www.cs.sandia.gov/Portals/portals4-spec.html

	Introduction
	Terminology
	Functionality
	Memory Model

	Function Definitions and Semantics
	Registering Region
	Deregister Region
	Enqueue
	Dequeue
	Notify

	Formal Model
	Implementation
	Implementation Debug Backend
	Implementation Solarflare Backend
	Implementation IDC Backend

	Interface Usage

