
Institute of Mathematics and Statistics, University of São Paulo
Technical Report (written in Aug 2019) – RT-MAC-2022-01

cbnd 2022 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)

The Next-Generation OS Process Abstraction
Rodrigo Siqueira (Canada) • siqueirajordao@riseup.net
Advanced Micro Devices

Nelson Lago (Brazil) • lago@ime.usp.br
Institute of Mathematics and Statistics • University of São Paulo

Fabio Kon (Brazil) • fabio.kon@ime.usp.br
Institute of Mathematics and Statistics • University of São Paulo

Dejan Milojičić (USA) • dejan.milojicic@hpe.com
Hewlett Packard Labs

abstract Operating Systems are built upon a set of abstractions to provide resource management and
programming APIs for common functionality, such as synchronization, communication, protection, and
I/O. The process abstraction is the bridge across these two aspects; unsurprisingly, research efforts pay
particular attention to the process abstraction, aiming at enhancing security, improving performance, and
supporting hardware innovations. However, given the intrinsic difficulties to implement modifications
at the OS level, recent endeavors have not yet been widely adopted in production-oriented OSes. Still,
we believe current hardware evolution and new application requirements provide favorable conditions
to change this trend. This paper evaluates recent research on OS process features identifying potential
evolution paths. We derive a set of relevant process characteristics, and propose how to extend them as to
benefit OSes and applications.

Keywords Operating System • OS design • OS process abstraction • Parallelism • Process isolation •
Hardware/Software co-design

Modern OS have a dual role: on the one hand, they provide a set of abstractions built on top of
hardware devices to offer features for user applications; on the other hand, they offer fundamental
programming APIs for common functionality, such as synchronization, communication, protection,
and I/O. Given these two central roles, it is not surprising that small improvements in OSes, including
non-functional aspects such as performance, fault tolerance, security and isolation, may result in
significant benefits for a large number of applications. Accordingly, there is significant pressure for
OSes to address both software and hardware evolution. New application areas such as Machine/Deep
Learning, Microservices, and Smart Cities require faster remote data accesses, new abstraction layers,
reduced complexity to use resources, and security improvements. At the same time, emerging hardware
trends such as the move from the current homogeneous and CPU-centric to a heterogeneous and
Memory-centric computing architecture, Non-volatile Memories, and FPGAs (Field-Programmable
Gate Arrays) show great promise, but only inasmuch as they are properly supported by the OS.

In most of the current production-oriented OSes (e.g., GNU/Linux Distributions, Windows, MacOS,
and others), the process abstraction is the meeting point of the hardware abstractions, the OS API
entry points, and the (often multiple) user applications. Virtually all hardware access and OS services

ar
X

iv
:2

20
5.

12
27

0v
1

 [
cs

.O
S]

 2
4

M
ay

 2
02

2

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-6879-1978
mailto:siqueirajordao@riseup.net
https://orcid.org/0000-0002-4306-8078
mailto:lago@ime.usp.br
https://orcid.org/0000-0003-3888-7340
mailto:fabio.kon@ime.usp.br
https://orcid.org/0000-0001-9830-8588
mailto:dejan.milojicic@hpe.com

The Next-Generation OS Process Abstraction Siqueira et al.

occur in response to process requests; at the same time, security, isolation, etc. are applied almost
entirely to processes. Therefore, it is a perfect target for improvements in OS design.

Despite their potential benefits, however, proposals of changes in the established OS mechanisms
are usually met with skepticism because, by the same measure, they may bring about instabilities,
security vulnerabilities, fragility, and backward compatibility issues. To make matters worse, many of
the current proposals of changes to the process abstraction are not yet mature, lacking robust imple-
mentations, and the ideas require refinements. Consequently, user applications create sophisticated
techniques to circumvent problems that could be simplified by updating the OS abstractions.

Over the years, a vast amount of research has been carried out in an attempt to expand the process
abstraction and exploit new features. Given the new hardware features and emerging applications that
shall dominate the computing field in the next few years, we believe it is time to rethink how processes
concepts work and review these proposals to find a tradeoff between the state-of-the-art of research
proposals and the state-of-the-practice. As the first step to this end, this article categorizes some of the
main properties of the process abstraction, examines previous works that propose extensions, discuss
potential for adoption, and present an outlook for the field.

New Hardware Features

Usually, changes in hardware are complicated and take a long time to develop, implement, and
deploy to the market. Still, advances in technology and new requirements are currently reshaping the
hardware landscape, enabling adoption of significant improvements in chip design. Given this fluidity,
hardware designers have the chance to revisit the vast research in the area for sources of inspiration.

Recent hardware vulnerabilities, such as Meltdown and Spectre, have pushed the industry to review
their processor design; it is convenient to inspect proposals for additional hardware mechanisms that
improve isolation and memory translation, either by fine-grained memory protection or virtualization
mechanisms. Technologies such as heterogeneous accelerators and the RISC-V project open new
venues for innovation; industry and academia alike have been conducting studies on accelerator
devices (GPUs, FPGAs, ASICs, DSPs, etc.) and how to effectively deploy heterogeneous computing
systems to users for improved performance and flexibility. Finally, emerging technologies have the
potential to drive the adoption of new programming paradigms. Thanks to NVM, we expect that
in a few years computers will be able to access petabytes of data by using rack-scale systems; such
availability of high-density NVMs shall change the way OSes are built.

Emerging Applications

Newer areas of application, such as machine & deep learning, microservices, big data, IoT, and
smart cities platforms, differ significantly from more traditional applications in their need for (1)
storage of vast amounts of data, (2) efficient local and wide area data sharing and communications, (3)
high processing throughput, and (4) power efficiency. These new demands may benefit from several
OS improvements and new programming models that enrich the palette of programming patterns
available to developers.

It is these new programming models that open countless opportunities for programmers, who
use their creativity to solve problems in new and unimagined ways. For example, when threads were

2

The Next-Generation OS Process Abstraction Siqueira et al.

first released just a few techniques existed but, after a few years, a vast number of threading patterns
became widespread.

One clear case of the demand for such new paradigms is the trend towards microservices. Microser-
vices are a modern approach to bring modularization, fault-tolerance, and scalability to large-scale
systems. Many microservices-based applications, such as Smart Cities platforms and applications,
require the intense use of Cloud Computing, Big Data, and IoT technologies to provide persistent
and real-time data. Their advantages, however, are coupled with integration, storage, and data shar-
ing challenges, increases in system complexity and communications overhead, and complex scaling
mechanisms. Accordingly, better support for new and legacy modularized applications may bring
immediate benefits for microservices.

New programming models also represent opportunities to renew user applications and continuously
optimize and improve them. Since there is also a vast amount of legacy applications that could be
reused in these new environments, provided they can incorporate security improvements, better
modularization mechanisms, runtime updating capabilities, and code simplification, mechanisms that
allow new paradigms to be easily incorporated into legacy code offer excellent opportunities for code
reuse.

1 Process Targeted Aspects

We believe that the process abstraction represents one of the main entry points for bringing
innovations that address the new demands imposed by new hardware and software trends. In this
section, we highlight the most visible parts of the process abstraction that have been the target of
recent explorations.

1.1 Programming Models

Besides the manipulation of hardware devices, OSes provide several additional features to user
applications, such as file locking and security primitives. To use any of them, the application should
be able to access it by means of a coherent programming model, i.e., a set of well established in-
terrelated abstractions. A given OS implements such programming models into its own, specific
APIs [1]. For example, both GNU/Linux and Windows provide different threading APIs (pthreads and
WindowsThreads), but both correspond to the same parallel programming model.

Currently, most OSes support several widely used programming models and their corresponding
APIs. Nevertheless, user applications have been changing over the years, and demands for improve-
ments in areas such as better security layers, optimization options, and code simplification are a real
issue. In this sense, proposals for expanding the process abstraction by means of new programming
models represent an interesting innovation path to support modern user space applications.

The execution flow of a process is controlled by its Program Counter (PC), and the OS Scheduler
is responsible for retrieving its execution context before the next instructions, as indicated by the
PC, can be executed. Accordingly, both the PC and the rest of the kernel level data about the process
(memory map, file descriptor table, etc.) are kept together and manipulated by the Scheduler as a
single entity (the task).

3

The Next-Generation OS Process Abstraction Siqueira et al.

Departing from this idea, Litton et al. propose to decouple the PC and the Scheduler from the rest
of the process context data: with Lightweight Contexts (lwC), a single process (with a single PC) may
have multiple different internal contexts [2]. This allows us to perform interesting manipulations,
such as creating a snapshot of the current process state and, later on, reverting to this previous state.
Another possibility is switching to a new process context with restricted access to memory regions
before the execution of security-sensitive code. This is not unlike using independent processes or
threads but, instead of relying on the Scheduler to swap the process context (which is reasonably
expensive), it is the application itself that chooses when and how to manipulate the context, bringing
finer control to the programmer along with better performance.

An lwC comprises a virtual memory mapping, a collection of page mappings, file descriptor
bindings, and a set of credentials; whenever a new process is created, the system creates a new lwC
for it. The application may access all lwC features directly from user space through system calls that
fine-tune its behavior. The most important ones are lwCreate and lwSwitch, which have semantics
similar to fork: after lwCreate returns, the current process has a new lwC (child) associated with
itself which is a snapshot of the caller process. This snapshot differs from fork because no new PID
or thread is created (because these only make sense to track different PCs). After the child is created,
the application is free to switch (lwSwitch) back to the snapshot at any given time.

Most of the OSes impose few security restrictions to processes by default. Process creation illustrates
this argument: when a parent process creates a child, all of its data reflects the parent data. Whenever
a programmer wants to restrict permissions, they must spend considerable effort due to the permissive
defaults of current OSes. Bittau et al. proposed a new approach named Wedge [3] to address these
issues; they introduced a model wherein the OS provides primitives that create compartments with
default-deny semantics.

While applications could be compartmentalized without OS support, most follow a monolithic
design, with no clear separation between elements, because it is much simpler to do so. Wedge
improves this scenario with three primitives: tagged memory, callgates, and sthreads. Tagged memory
is a mechanism to declare memory access privileges: the programmer creates a new tag (e.g., t=read-
write) and allocates memory (with the smalloc system call) using it as a parameter. Callgates are
responsible for executing code with different privileges on behalf of the caller. Sthreads are the central
component of Wedge, responsible for providing isolation units. They are composed of a control thread
and a security policy, which specifies information such as memory tags and permissions, file descriptor
access, and associated callgates.

The programming model used by Wedge enables programmers to easily compartmentalize legacy
applications using a simple set of operations in well-defined places. The authors also created a tool
named Crowbar to support developers in the use of the Wedge primitives by analyzing running code
and identifying potential places to create compartments. The authors modified Apache/OpenSSL and
OpenSSH using this approach and showed that many well-known vulnerabilities became ineffective.

Some researchers pointed to other problems associated with the process abstraction: the repre-
sentation of a pointer-based data structure outside the process limits, the annoyance associated with
the task of coordinating shared memory access by multiple processes, and the problem of addressing
high-density physical memory. While there are solutions for all of these problems, Hajj et al. argued

4

The Next-Generation OS Process Abstraction Siqueira et al.

for a new approach named SpaceJMP [4] that may solve part of them. Traditionally, processes have just
one associated Virtual Address Space (VAS); in contrast, SpaceJMP can detach VASes from processes,
enabling a single process to have multiple VASes – and, therefore, multiple execution contexts.

Consider a simple process that starts with a default VAS associated with it, as happens with
traditional processes. After the programmer invokes the vas_create system call, a new VAS is
created. Given such an existing VAS, the function vas_attach associates it with the current process; a
given VAS may be shared among processes, serving for inter-process communication, if they all attach
to the same VAS. Conversely, a single process may be associated with several VASes and switch among
them programmatically by calling the vas_switch function either to perform specific operations with
better isolation or to fluidly manage multiple execution flows.

1.2 Memory Access Control and Translation

Making memory available and usable for user applications represents one of the core OS duties,
and most OSes offer the illusion of full memory availability by decoupling the physical memory from
how processes see it. Processes only see a Virtual Address Space (VAS), which is mapped by the OS to
the physical memory, guaranteeing good isolation among processes. To handle VASes and offer useful
features for user applications, OSes have to adopt a specific memory model; currently, most of the
production-oriented OSes and hardware broadly support the page-based memory management model.
This model divides the VAS and the physical address space of each process into a set of pages, which
is a small range of contiguous addresses with a fixed size, start address, and permissions. The page
memory model has some attractive advantages: permission control at the page size level, mechanisms
for data sharing, fast protection checking, accurate notifications about protection violations, and the
possibility of mapping memory to disk.

The approach of using a single address space per process has proven efficient over the years but,
despite its success, it is not flawless and is still open for improvements. First, the single linear address
space approach isolates each process in memory, which enhances system reliability and security.
Nevertheless, the process has virtually no way to restrict its own access to some of its memory
segments, which might be useful to reduce the security risk of using third-party binary code. Second,
control of memory sharing is limited to the page size; this makes data sharing less efficient and reduces
the programming possibilities in user space. Finally, the coarseness of page-level protection creates
opportunities for malicious exploits, such as buffer and stack overflows or code execution in shared
libraries.

Motivated by the goal of providing fine-grained control over memory, Witchel et al. proposed the
addition of new hardware features and the development of the corresponding software abstractions.
This approach, called Mondriaan Memory Protection (MMP) [5], enables data access control at the
word size level by inspecting each load/store instruction made by a process to verify read/write,
ownership, and inter-process memory access. To minimize the overhead of such checks, the authors
proposed to extend processor architectures, adding this permission control at the hardware level. At its
core, the MMP implementation resembles the TLB mechanism of current hardware: a register named
Permission Table Entry (similar to the Page Table Entry) is responsible for keeping a reference to the
Permission Table (similar to the Page Table). At the OS level, MMP adds data structures that hold
the permission information of each process and a new subsystem named Memory Supervisor, which

5

The Next-Generation OS Process Abstraction Siqueira et al.

is responsible for enforcing the policy and for maintaining low-level data structures. The authors
demonstrated the concept by using simulated hardware and a customized version of GNU/Linux.

While the mechanism has broad applications, their experimentation with that approach focused on
showing the improvements in system reliability brought by the isolation of modules in kernel space, a
benefit that may extend to dynamic loaded plugins in user space. The main limitation of this approach
is the dependency on new hardware. In contrast, Swift et al. propose Nooks [6], a software-only system
that implements memory access control to more thoroughly isolate the kernel from its extensions
(modules), improving OS reliability. Since it cannot make use of hardware-based access control, Nooks
is a best-effort system: it tries to handle programming errors and provide recovery mechanisms during
runtime, but it cannot protect against malicious code nor every possible coding mistake.

Nooks has two isolation mechanisms: Lightweight Kernel Protection Domain (LKPD) and Extension
Procedure Call (XPC). LKPD is an execution context with kernel privileges, but with write permission
limited to its memory region; whenever a kernel module is loaded, it is encapsulated in a new LKPD.
XPC is the mechanism used to mediate communication among LKPDs (including the kernel itself). A
function call originating in an LKPD context aimed at a different LKPD context is first handed to XPC,
which performs the necessary checks before finishing the call (XPC has semantics similar to that of
Remote Procedure Calls). Together, these two mechanisms reduce the risk that memory faults in a
given module (in an LKPD) propagate to other areas of kernel memory.

To implement Nooks in a production-oriented OS, a one-time effort to modify the kernel functions
that interact with extensions in order to add support for XPC is necessary. Since this does not impose
changes to their API, few or no changes to the modules are necessary. The exception are extensions
that export data structures; Nooks tracks all data structures used in the communication between the
kernel and its extensions to handle this particular scenario.

While Nooks is mostly concerned with kernel-level code, it is relevant to process abstraction
because it also implements a user space recovery mechanism. Typically, a kernel-level failure causes
any process interacting with the failed module to crash. In Nooks, the system may communicate with
the application, which in turn directs Nooks on how to proceed. For example, the application may
request Nooks to reload the failed module with different parameters and retry the failed operation, or
it may abandon the operation altogether and pursue an alternative execution path.

1.3 Hardware Access Control

The process abstraction is the focal point in OS design, mapping other abstractions to it; hence,
other components of the OS exist to provide the required mechanisms for orchestrating all processes
operations (e.g., schedulers and memory management). All needed structures for managing processes
have the side effect of utilizing CPU (overhead); to try to mitigate this situation, OSes employ a vast
number of hardware and software optimizations.

Changes in the process abstraction commonly have impacts on performance, and the consequences
vary according to the proposal. For example, an additional verification layer can raise the system
overhead due to the new feature. However, while process extensions may degrade performance, they
might enhance overall system performance by exploiting modern hardware features.

6

The Next-Generation OS Process Abstraction Siqueira et al.

An obvious mechanism to improve performance is to shorten the distance between kernel and
user space, providing lower-level access to the application. Engler et al. introduced a new OS design
named exokernel [7], famous for its bold decision of completely removing all abstractions from the
OS core, including processes, and managing hardware access via an OS library. One advantage of this
approach is the offer of multiple different abstractions for each resource, allowing the application to
select the best one for a given task. This means processes in exokernel can be deeply customized: for
example, it is possible for processes with and without VASes to coexist.

The exokernel approach represents a radical innovation in OS design, especially in niche appli-
cations, but has huge obstacles for adoption by general purpose OSes. Belay et al. proposed a less
radical approach named Dune [8], which brings performance improvements by exploiting hardware
virtualization features in the Linux Kernel. They used Intel VT-x [9] technology to provide direct, safe,
and secure application access to low-level processor features such as exceptions, virtual memory, priv-
ilege modes, and segmentation. The authors experimented with these mechanisms by implementing
three different types of application: a sandbox for untrusted code, a privilege separation facility, and a
garbage collector. They reported simplified development and significant performance improvements.
Dune makes few changes in the OS and provides a straightforward usage mechanism with as little
impact as possible to user applications.

1.4 Resource Management

Every application running in the OS consumes system resources. Often, they perform most of
the work in user space, requiring little or no intervention of the OS. For example, an application that
performs complex calculations does not need much OS intervention. Nonetheless, there is software
that demands significant OS participation to fulfill their goals, extending its consumption of system
resources to the kernel. For example, a network application has part of its activity conducted by the
OS on its behalf when a packet arrives. This situation may generate problems due to the indirect and
uncontrolled use of resources by activities entrusted to the kernel. Denial-of-service attacks represent
a real-life example of the unrestrained rise in resource consumption at the OS level.

Banga et al. proposed an OS abstraction named Resource Container (RC) [10], which manages
resource consumption by applications bound to it and exports resource information for both the
applications and the scheduler; the latter can use this information to adapt its algorithm. Processes are
bound to a given RC at startup but may switch to a different one during execution. To manipulate the
RC, the application has an API that defines operations for container creation, release, and adjustment,
thread binding, socket and file binding, and others.

2 Potential and Difficulties for Adoption

Operating Systems researchers produce a vast set of innovations with the intention of pushing
forward the boundaries of the field; however, production-oriented OSes and research projects have
different constraints. The implementation of new proposals that expand the process abstraction has to
address issues related to compatibility, better use of current hardware resources, reliability, and be
general enough to support multiple programming languages.

Production-oriented OSes demand strong validation to maintain system reliability at a variety
of scalable configurations: preventing illegal memory access, API violations, excessive resource

7

The Next-Generation OS Process Abstraction Siqueira et al.

consumption, and synchronization or locking errors are features taken for granted by OS users [11].
This makes it hard to adopt research proposals no matter how well they solve any single specific
aspect.

There is a significant set of existing user applications that perform essential tasks; for example,
both web servers and browsers are vital players in the Internet context. For a new OS feature to be
adopted, it is important to guarantee that such applications will not suffer in performance or ease of
use.

Hardware manufacturers continuously develop new features that, once implemented in servers
or niche devices, swiftly spread among end users. An example of this fast evolution is hardware
virtualization: once a server-only capability, it is now available on most computers. Such new hardware
features present additional unintended opportunities to improve the process abstraction. Nonetheless,
such proposals may have problems related to the dependency on some specific features which may not
be available for all users. For this reason, any change to processes that require specialized hardware
must handle all sorts of corner cases. Conversely, proposals for improvements in the process abstraction
that suggest changes to hardware could be helpful in pushing chip design forward. Of course, hardware
evolution should take care not to break binary compatibility with legacy applications. Unfortunately,
this may make the ample adoption of some ideas impractical.

Some of the new process abstraction proposals have dependencies on other innovative technologies.
While this can bring advantages for both the new process concept and the related technology, it also
reduces the chances of the new abstraction to get adopted in production-oriented OSes due to this
dependence on another potentially unstable technology.

A new proposal of change to the process abstraction has to carefully analyze the mentioned
tradeoffs to achieve production quality. Academia and industry have to find an equilibrium between
research and development to bring benefits for end users in a timely fashion.

3 Towards the Next Generation Process Abstraction

As we examined the works on this field, we recognized a general pattern: most research on the
process abstraction attempts to reduce coupling in one or more of its elements. It is possible to find
radical proposals such as exokernel that completely decouple the entire OS abstractions; however, most
of the studies adopt a less drastic approach, such as lwC, SpaceJMP, Wedge, and Resource Containers.

Accordingly, we believe that the decoupling of VAS, memory isolation, execution state, privilege sep-
aration, resource management, and maybe others could bring substantial improvements to production-
oriented OSes in terms of performance, features, security, and simplicity required by next generation
hardware and applications. For example, decoupling such abstractions can become an excellent option
for sharing data and providing integration for microservices. However, the challenges to mature these
ideas are equally enormous. As a first step to this end, current OSes should move towards reducing
the excessive dependence between its internal elements (e.g., the Linux process abstraction currently
depends on memory management and on the scheduling interface). This rework in the OS internal
components would facilitate embracing the techniques suggested by different researchers.

While most research proposals implement a single new specific feature and rarely integrate with

8

The Next-Generation OS Process Abstraction Siqueira et al.

Live-Patching

Recovery

Optimizations

Threads

Virtualization

VAS

Memory
Isolation

??

Resource
Access
Control

Fine-Grained
Memory
Control

Process Abstraction

Stack

PC

IO
Context

Figure 1. Process Decoupling

previous work, it is possible to merge key traits of each one into a unified model, pointing to a new
and improved process abstraction. Figure 1 provides a view of a process abstraction with different
elements loosely coupled. Note that some decoupling has already happened; for example, threads were
created by decoupling the Program Counter and the Stack from the rest of the process components.
The figure illustrates a combined view of the many previously discussed decomposed elements that
may form a new process abstraction. Drawing from the aspects highlighted in Section “Potential and
Difficulties for Adoption”, we now discuss how their adoption might offer benefits in at least one
relevant area.

3.1 System Reliability and Security Layers

Industry and Academia agree on the importance of improving system security at many different
levels; as a result, researchers and engineers continuously work to refine OS security layers. From the
process abstraction perspective, such endeavors focus on enhancing memory access control. Works
such as Mondrix, Nooks, and Wedge have two significant features in common: they all create a
new security level and propose operations to manage the interaction between layers with different
access permissions, controlling the shift in the execution flow from one layer to the other. Among the
proposals discussed, the approach implemented by Nooks is perhaps the most interesting because it
has a well-defined protocol based on a model that resembles the well-known RPC pattern. How to
create this communication system together with memory isolation in a production-oriented OS is an
engineering and research challenge for the next generation of the process abstraction.

System reliability is a constant challenge, particularly in user space, and it is desirable to keep
critical applications working for a long time without human interference. The decoupling of resources
may bring benefits in this regard, by enabling more secure and efficient forms of data sharing, creating
recovery mechanisms in the face of failures, and improving load balancer algorithms. Nooks, for
example, promotes advances in this area by detecting problems and handling them in tandem with
the application.

3.2 Performance

The demand for ever higher performance is constant. We should not rely only on hardware
improvements to supply such performance; new software mechanisms are required. This, in turn,

9

The Next-Generation OS Process Abstraction Siqueira et al.

puts additional constraints on the development of better isolation mechanisms, which should impose
minimal performance overhead. Decoupling some elements of the process abstraction could bring
new programming APIs and features that can deliver these performance improvements.

One major common characteristic of many current and future applications is the need for parallel
or distributed large-scale computing. Memory management decoupling, as seen in Mondriaan and
SpaceJMP, allows for word-sized data sharing with minimal data copying and reduces interprocess
communication overhead by using shared memory segments with unified pointer addresses.

Areas such as microservices and machine learning can benefit from software mechanisms for fast
initialization and efficient process migration. Decoupling the VAS, as in SpaceJMP, and the process
state (PC), as in lwC, makes it possible to copy the global state of a given application right after
startup and directly load it at initialization in future executions instead of proceeding with the full
initialization routine every time. If the application is deployed inside replicable containers, their life
cycle management may become significantly faster.

Finally, the shift of virtualization techniques to the process level, as in Dune, enables performance
gains in userspace, by allowing direct lower-level hardware access, while improving security. This, in
turn, obviates the need for convoluted userspace code aimed at improving performance.

3.3 Hardware Support

New hardware trends represent another aspect that processes have to be adapted for in order to
provide new capabilities to user space; additionally, new hardware could change the way OSes are
designed. Fine-grained hardware-assisted memory access control, as proposed by Mondrix, may boost
security in shared or limited trust environments such as cloud computing. In a different vein, the
current process abstraction is unprepared to handle large-scale, non-volatile, distributed memory.
SpaceJMP tried to anticipate a solution for this problem by decoupling the VAS and using persistent,
shared memory segments.

3.4 Support for Modernizing Applications

As previously mentioned, there is a large number of monolithic and legacy applications that should
be updated if they are to fit new paradigms or provide increased modularization. However, current
OSes provide little support to simplify this task. The combination of live-patching in user space and
low-cost compartmentalization, both made possible by lwC, SpaceJMP, Wedge, and Mondrix, emerges
as an alternative to modernize such applications while keeping backward compatibility. Live-patching
in user space could be enabled by the combination of multiple VASes and fine-grained control over
the PC, but that adds security concerns; to address these, low-cost compartmentalization offers the
necessary fine-grained memory access control. Compartmentalization techniques may also facilitate
the migration of legacy applications to microservices.

4 Future Directions

The characteristics and challenges presented throughout this paper, in our view, outline the
research opportunities for industry and academia to push forward production-oriented OSes design.
These improvements may bring security benefits, provide new user space features, offer optimizations,
among countless other possibilities both to future and legacy applications.

10

The Next-Generation OS Process Abstraction Siqueira et al.

Benefits /
Decoupling
strategy

New
Programming

models

Process
Persistence

Fine-grained
privileges
control

Security
Improvements

Recovery
Mechanisms

Performance

PC ✔✔✔ ✔ ✔✔

VAS ✔✔ ✔✔ ✔✔

Resource
Management

✔ ✔✔✔ ✔

Memory
Isolation

✔✔✔ ✔✔

Virtualization ✔ ✔✔✔

Privileges ✔✔ ✔✔✔ ✔✔

Table 1. Property and Potential Improvements. We use a range of zero to three checks to
highlight the relevance of each process abstraction advancement for each user space application.

In general, the evolution of the process abstraction should go towards the decoupling of several
components; such decoupling could open new and exciting opportunities for OS design and user space
applications, as summarized on Table 1.

References

1 Cardoso, J. M. P.; Diniz, P. C. Compilation techniques for reconfigurable architectures. Boston: Springer,
2009. ISBN 978-0-387-09670-4. DOI: 10.1007/978-0-387-09671-1.

2 Litton, J. et al. Light-Weight Contexts: an OS abstraction for safety and performance. In: PROCEEDINGS
of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI’16). USENIX
Association, 2016. p. 49–64. ISBN 9781931971331. Available from: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/litton.

3 Bittau, A. et al. Wedge: splitting applications into reduced-privilege compartments. In: PROCEEDINGS
of the 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI’08). USENIX
Association, Apr. 2008. p. 309–322. Available from: https://www.usenix.org/conference/nsdi-08/wedge-
splitting-applications-reduced-privilege-compartments.

4 El Hajj, I. et al. SpaceJMP: programming with multiple virtual address spaces. SIGPLAN Notices, ACM,
New York, v. 51, n. 4, p. 353–368, Apr. 2016. ISSN 0362-1340. DOI: 10.1145/2954679.2872366.

5 Witchel, E.; Cates, J.; Asanović, K. Mondrian memory protection. SIGPLAN Notices, ACM, New York, v. 37,
n. 10, p. 304–316, Oct. 2002. ISSN 0362-1340. DOI: 10.1145/605397.605429.

6 Swift, M. M.; Bershad, B. N.; Levy, H. M. Improving the reliability of commodity operating systems.
SIGOPS Operating Systems Review, ACM, New York, v. 37, n. 5, p. 207–222, Dec. 2003. ISSN 0163-5980.
DOI: 10.1145/1165389.945466.

7 Engler, D. R.; Kaashoek, M. F.; O’Toole, J. Exokernel: an operating system architecture for application-
level resource management. SIGOPS Operating Systems Review, ACM, New York, v. 29, n. 5, p. 251–266,
Dec. 1995. ISSN 0163-5980. DOI: 10.1145/224056.224076.

11

https://doi.org/10.1007/978-0-387-09671-1
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://doi.org/10.1145/2954679.2872366
https://doi.org/10.1145/605397.605429
https://doi.org/10.1145/1165389.945466
https://doi.org/10.1145/224056.224076

The Next-Generation OS Process Abstraction Siqueira et al.

8 Belay, A. et al. Dune: safe user-level access to privileged CPU features. In: PROCEEDINGS of the 10th
USENIX Conference on Operating Systems Design and Implementation (OSDI’12). USENIX Association,
2012. p. 335–348. ISBN 9781931971966. Available from: https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/belay.

9 Uhlig, R. et al. Intel Virtualization Technology. Computer, IEEE Computer Society Press, Washington,
v. 38, n. 5, p. 48–56, May 2005. ISSN 0018-9162. DOI: 10.1109/MC.2005.163.

10 Banga, G.; Druschel, P.; Mogul, J. C. Resource containers: a new facility for resource management in
server systems. In: PROCEEDINGS of the Third Symposium on Operating Systems Design and Imple-
mentation (OSDI ’99). USENIX Association, 1999. p. 45–58. ISBN 1880446391. Available from: https :
//www.usenix.org/conference/osdi-99/resource-containers-new-facility-resource-management-server-
systems.

11 Witchel, E.; Rhee, J.; Asanović, K. Mondrix: memory isolation for linux using Mondriaan Memory Protec-
tion. SIGOPS Operating Systems Review, ACM, New York, v. 39, n. 5, p. 31–44, Dec. 2005. ISSN 0163-5980.
DOI: 10.1145/1095809.1095814.

12

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://doi.org/10.1109/MC.2005.163
https://www.usenix.org/conference/osdi-99/resource-containers-new-facility-resource-management-server-systems
https://www.usenix.org/conference/osdi-99/resource-containers-new-facility-resource-management-server-systems
https://www.usenix.org/conference/osdi-99/resource-containers-new-facility-resource-management-server-systems
https://doi.org/10.1145/1095809.1095814

The Next-Generation OS Process Abstraction Siqueira et al.

About the Authors

Rodrigo Siqueira is a Linux kernel developer at Advanced Micro Devices (AMD) and has a Masters’s
degree in Computer Science from the Institute of Mathematics and Statistics of the University of São
Paulo (IME-USP). His research interests include Operating System, GPU, Software Engineering, and
Free Software. Additionally, he contributes to free software communities, such as Linux Kernel and
Debian.

Nelson Lago has a Masters degree in Computer Science and is the technical manager for the CCSL
at IME-USP, where he regularly participates in public debates on issues such as software patents,
privacy, and copyright. His research interests gravitate around Free Software, Computer Music, and
Distributed Systems.

Fabio Kon is a Full Professor of Computer Science at the University of São Paulo and Special Advisor
to the Scientific Director at the São Paulo Research Agency. His research interests gravitate around
the design, implementation, and assessment of Complex Software Systems.

Dejan Milojičić is a distinguished technologist at Hewlett Packard Labs. His research interests include
OSes, distributed systems, and systems management. Milojičić received a PhD from University of
Kaiserslautern.

13

	1 Process Targeted Aspects
	1.1 Programming Models
	1.2 Memory Access Control and Translation
	1.3 Hardware Access Control
	1.4 Resource Management

	2 Potential and Difficulties for Adoption
	3 Towards the Next Generation Process Abstraction
	3.1 System Reliability and Security Layers
	3.2 Performance
	3.3 Hardware Support
	3.4 Support for Modernizing Applications

	4 Future Directions

