
Barrelfish Project
ETH Zurich

Mackerel User Guide

Barrelfish Technical Note 2

Barrelfish project

11.03.2013

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

1.2 31.05.2010 TR Initial version under new formatting
1.3 15.08.2011 TR Added support for imports and new command-

line options
1.4 09.12.2011 TR New mapping for constants
1.5 11.03.2013 TR Added quick reference, corrected errors, and clar-

ified field insertions

Mackerel - 2 Barrelfish TN-2

Contents

1 Introduction and Usage 5
1.1 Command-line options . 5

2 Lexical Conventions 7

3 Declarations 9
3.1 Imports . 9
3.2 Devices . 9
3.3 Address spaces . 10
3.4 Constants . 12
3.5 Register types . 13
3.6 Registers . 14
3.7 Register Arrays . 16
3.8 Data types . 17
3.9 Field and register attributes . 18

4 C mapping for device drivers 20
4.1 Preamble . 20
4.2 Device-level declarations . 20
4.3 Constants . 21
4.4 Register types . 22
4.5 Data types . 22
4.6 Registers . 23
4.7 Register Arrays . 24
4.8 Address spaces . 25
4.9 Overall header file structure . 26

5 Bitfield C mapping for device drivers 27
5.1 Preamble . 27
5.2 Device-level declarations . 28
5.3 Constants . 28
5.4 Register types . 28
5.5 Data types . 29
5.6 Registers . 29
5.7 Register Arrays . 30
5.8 Address spaces . 31
5.9 Overall header file structure . 32

6 Migrating from the bit-field based version of Mackerel 33

Barrelfish TN-2 Mackerel - 3

7 Source code structure 35

8 Quick reference 36

Mackerel - 4 Barrelfish TN-2

Chapter 1

Introduction and Usage

Mackerel is a domain-specific language used to describe hardware devices and the in-memory
formats of registers and data structures like descriptor lists, page-table entries, etc.

The Mackerel language itself is designed to be easy to transcribe into from a hardware data
book or similar description - most of the constructs correspond to the kinds of concepts one
finds in hardware descriptions.

A feature of the Mackerel language is that, while traditional comments in Mackerel specifica-
tions are allowed, explanatory text in English is included as part of a Mackerel specification
itself, and used to generate debugging code which explains the meaning of register values.

Typically, it takes as input a specification written in the Mackerel language and outputs a C
header file consisting of a large number of C inline function definitions to access and manip-
ulate registers and in-memory data structures, format them for printing in human-readable
form, etc.

The Mackerel compiler is written in Haskell using the Parsec parsing library. A quick roadmap
of the source code files is provided in Chapter 7.

To manually invoke Mackerel, run:

> mackerel --shift-driver -c devFile.dev -o devFile.h

This will translate a device file into a single C header file containing all relevant functions for
accessing the device, as described in Chapter 4.

If you wish to use the (deprecated) bitfield-based back-end instead, you can use:

> mackerel --bitfield-driver -c devFile.dev -o devFile.h

This backend should not be used for new code, as it is not portable across compilers. It is
described in Chapter 5.

1.1 Command-line options

The complete list of comand-line options supported by the current Mackerel compiler is as
follows:

Barrelfish TN-2 Mackerel - 5

• -c filename or --input-file=filename: This option is mandatory and specifies the path-
name to be read. This pathname must specify the file: the main input file will not be
searched for along the search path.

• -I dir or --include-dir dir: this option can be supplied multiple times and specifies the
search path for imported files.

• -v or --verbose: Increases the verbosity level of the compiler.

• -o filename or --output-file filename: this option, if supplied, specifies the name of the
C header file which will be written by the compiler. If not given, the filename will be
derived from the input filename by removing all the directory components (i.e. it will
reside in the current working directory) and appending .h.

• -S or shift-driver: Specifies the shift driver backend; this is the default.

• -B or bitfield-driver: Specifies the bitfield driver backend; this is deprecated. Fur-
thermore, imports are (deliberately) not supported by the bitfield driver. If multiple -S

and -B options are specified, the last one determines the compiler output.

Mackerel - 6 Barrelfish TN-2

Chapter 2

Lexical Conventions

The following convention has been adopted for Mackerel. It is similar to the convention opted
by modern day programming languages like C and Java.

Whitespace: As in C and Java, Mackerel considers sequences of space, newline, tab, and car-
riage return characters to be whitespace. Whitespace is generally not significant.

Comments: Mackerel supports C-style comments. Single line comments start with // and
continue until the end of the line. Multiline comments are enclosed between /* and */;
anything inbetween is ignored and treated as white space.

Identifiers: Valid Mackerel identifiers are sequences of numbers (0-9), letters (a-z, A-Z) and
the underscore character “ ”. They must start with a letter or “ ”.

identifier → (letter |)(letter | digit |)*

letter → (A . . . Z | a . . . z)
digit → (0 . . . 9)

Note that a single underscore “ ” by itself is a special, “don’t care” or anonymous iden-
tifier which is treated differently inside the language.

Integer Literals: A Mackerel integer literal is a sequence of digits, optionally preceded by a
radix specifier. As in C, decimal (base 10) literals have no specifier and hexadecimal
literals start with 0x. Binary literals start with 0b.

In addition, as a special case the string 1s can be used to indicate an integer which is
composed entirely of binary 1’s.

digit → (0 . . . 9)1

hexadecimal → (0x)(0 . . . 9 | A . . . F | a . . . f)1

binary → (0b)(0, 1)1

allones → 1s

Reserved words: The following are reserved words in Mackerel:

Barrelfish TN-2 Mackerel - 7

addr also bytewise constants datatype device

io lsbfirst many msbfirst pci regarray

register regtype space stepwise type valuewise

import

Special characters: The following characters are used as operators, separators, terminators or
other special purposes in Mackerel:

{ } [] () + - * / ; , . _ =

Mackerel - 8 Barrelfish TN-2

Chapter 3

Declarations

A Mackerel source file must consist of zero or more import declarations, followed by a single
device specification, which itself consists of further specifications of registers, register types, etc.

3.1 Imports

An import declaration makes the definitions in a different device file available in the current
device definition, as described below. The syntax of an import declaration is as follows:

import device;

device is the name of a device from which to import definitions.

The Mackerel compiler will search for a file with the appropriate name and parse this at the
same time as the main file, along with this file’s imports, and so on. Cyclic dependencies
between device files will not cause errors, but at present are unlikely to result in C header files
which will successfully compile.

3.2 Devices

A device declaration in Mackerel specifies a particular type of hardware device (such as an
ioAPIC or a particular Ethernet controller). The syntax is as follows:

device name [lsbfirst|msbfirst] (args) "description"
{

declaration;
...

};

name is an identifier for the device type, and will be used to generate identifiers in the target
language (typically C). The name of the name of the device must correspond to the file-
name of the file, including case sensitivity: for example, the file xapic.dev will define a
device type of name xapic.

Barrelfish TN-2 Mackerel - 9

lsbfirst or msbfirst optionally specifies the bit order of the declarations inside the device file; if
specified, it must be lsbfirst (the default) or msbfirst.

Note that this does not say anything about the endianness of the hardware device, or the
host platform, or the execution environment. It simply says which order the bitfields in
particular registers are listed in the declarations which follow – least-significant bits first
or most-sigificant bits first.

The reason for this feature is that Mackerel specifications are typically transcribed from
chip datasheets, and while these are generally unambiguous there is no clear convention
on which order to list a hardware register bitfields in a datasheet. This feature means
that the Mackerel specification can more closely resemble to text in the datasheet.

When transcribing a datasheet into a Mackerel specification, if the fields in a register or
register type are listed starting with the one which includes bit 0, specify lsbfirst. If the
fields are listed starting with the one which includes the high bit in the register, specify
msbfirst. In both cases type the fields in the order they are printed in the datasheet.

args are the arguments that specify how to access the device. They are treated as base ad-
dresses in one of several address spaces supported by Mackerel (see Section 3.3 below).
Typical devices have a single base address in either memory or I/O space, though some
device types (of which only one instance ever exists, and at a fixed address) have no ar-
guments, and others may have more if they have multiple register sets which can appear
at different addresses.

The arguments will become arguments to the function that intializes the struct used to
represent the device in Mackerel-generated C. They are also used within the device dec-
laration to specify the locations of individual registers or groups of registers.

Arguments are declared in C-style type notation as either of type address (in memory
space) or io (in I/O space). By convention a single device argument is named base.

description is a string literal in double quotes, which describes the device type being speci-
fied, for example "AC97 Baseline Audio".

After the description string follows in curly brackets a series of declarations which specify
details of the device hardware. Each declaration must be one of the following:

• A space declaration, describing a device-specific address space for registers in addition
to the built-in address spaces.

• A constants list, analogous to a C enumeration type

• A register declaration, describing a particular hardware register or group of registers

• A regtype definition, giving the type and format of other hardware register values.

3.3 Address spaces

Registers defined in a Mackerel file reside at specified addresses in an address space (unless they
are specified as noaddr, see Section 3.6).

There are currently 3 built-in address spaces that Mackerel understands, and addresses in these
spaces require both a base and an offset. Base values are given as an arguments to the device

Mackerel - 10 Barrelfish TN-2

specification, and so each device argument must be declared as being of one of the following
types:

addr : Physical memory, for memory-mapped I/O. Register locations in physical address
space are given as offsets relative to a base address which is an argument to the device
definition.

io : I/O port space, for ia32 machines. An I/O address is a 16-bit port number, and register
locations in I/O port space are given as offsets relative to a base address which is an
argument to the device definition.

pci : PCI Configuration space. A PCI configuration space address is a 4-tuple of (bus, device,
function, offset), however, Mackerel only deals in integer offsets from an opaque “base”
address, allowing for different addressing schemes depending on hardware.

In addition, Mackerel allows the specification of per-device address spaces. This feature can
express a variety of hardware features, for example processor model-specific registers, co-
processor registers, device registers that must be accessed indirectly through another index
registers, etc.

The syntax for defining a new address space is:

space name(index) bytewise|valuewise|stepwise(step)|registerwise

"description";

name is an identifier for the address space, and is used in register declarations instead of a
builtin space such as addr or io.

index is an identifier for the argument giving the address for the registers

bytewise, valuewise or registerwise defines how registers in the new space are addressed.
Bytewise addresses are like conventional memory addresses, for example two adjacent
32-bit registers in a bytewise-addressed space will have offsets that differ by 4. All the
built-in address spaces (addr, pci, and io) are bytewise-addressed.

In contrast, registers in a valuewise-addressed space are indexed by a simple integer
regardless of size, meaning that two adjacent 32-bit registers will have addresses that
differ only by 1. A good example of a valuewise address space is the set of ia32 model-
specific registers (MSRs).

If neither of these is sufficient, stepwise allows you to explicitly specify how many bytes
are occupied by each address in the address space. bytewise is therefore a synonym
for stepwise(1), but stepwise(4) might be useful for devices (such as some IOAPICs)
where registers are indexed by 32-bit values but can be accessed as 64-bit quantities.

Alternatively, registerwise gives more freedom by calling a custom function to access
each register. For a 32-bit register R in the registerwise address space S, the read and
write functions are declared as follows:

uint32_t __DN(S_read_32_R)(void);

void __DN(S_write_32_R)(uint32_t _regval);

Barrelfish TN-2 Mackerel - 11

“description” is a string literal in double quotes, which describes the constant type being
specified, for example "PHY control registers".

Register addresses in user-defined address spaces are always given simply as offsets, since the
base is implicit in the device definition.

Mackerel files cannot currently say how registers in a particular space are accessed; this func-
tionality must be provided externally by the programmer (typically by short inline functions).

Here is how ia32 MSRs are defined:

space msr valuewise "Model-specific Registers";

register platform id ro msr(0x17) "Platform ID" {

50;

id 3 "platform id";

11;

};

...

As a second example, here is a set of space declarations (and associated index and data regis-
ters) from the legacy PC real-time clock (RTC) definition:

space std(idx) valuewise "Standard register space";

register ndx rw io(base, 0x70) "Standard index"

type(uint8);

register target rw io(base, 0x71) "Standard target"

type(uint8);

regarray standard rw std(0x00)[256] type(uint8);

space ext(idx) valuewise "Extended register space";

register endx rw io(base, 0x72) "Extended index"

type(uint8);

register etarget rw io(base, 0x73) "Extended target’’

type(uint8);

regarray extended rw std(0x00)[256] type(uint8);

3.4 Constants

A constant declaration defines a series of related values, for example, the possible values
of a given register field. Each constant type consists of an identifier for the type, a textual
description, and a series of possible values. Each value in turn consists of an identifier for the
value, the numerical value itself, and a textual description of its meaning.

The syntax is:

constants name [width(width)] "description" {

name1 = value1 ["description1"] ;

...

};

Mackerel - 12 Barrelfish TN-2

name is an identifier for the constant type, and will be used to generate identifiers in the target
language (typically C). The scope of this identifier is the enclosing device specification.

width is optional, and specifies the width of the constant value in bits. This is useful, for
example, when the type is used as the type of a register.

“description” is a string literal in double quotes, which describes the constant type being
specified, for example "Vector delivery mode".

Each constant value is given as follows:

namei is an identifier for the particular value of the constant type. The scope of this identifier
is the enclosing constant declaration, not the device declaration as a whole.

valuei is an expression giving the corresponding numerical value. This will usually be a literal
like 0b1101 or 0xf, though it can potentially be any arithmetic expression supported by
Mackerel.

“descriptioni” is an optional string literal in double quotes, which describes the meaning of
the value being specified, for example "Lowest priority". If not specified, it defaults to
the identifier namei.

Here is a complete example of a constants declaration, taken from the xAPIC definition:

constants vdm "Vector delivery mode" {

fixed = 0b000 "Fixed";

lowest = 0b001 "Lowest priority";

smi = 0b010 "SMI";

nmi = 0b100 "NMI";

init = 0b101 "INIT";

startup = 0b110 "Start Up";

extint = 0b111 "ExtINT";

};

Note that the collection of constant values does not have to be complete or contiguous.

3.5 Register types

A regtype declaration defines a data type corresponding to the format of one or more registers;
it can be thought of as a translation of the bitfield descriptions typically found in data sheets. A
regtype doesn’t define any particular hardware registers (see register declarations below),
merely a data type for representing their contents. The syntax is as follows:

regtype name ["description"] {

fieldname1 width [type(fieldtype)] [attr] ["description"];
...

};

name is an identifier for the register type. Its scope is the enclosing device declaration.

Barrelfish TN-2 Mackerel - 13

description is an optional string in double quotes, giving a description of the register type, for
example "LVT monitor". If not present, it defaults to the identifier.

The field descriptions declare the individual bitfields which make up the register type. The
order in which these are given is determined by the lsbfirst or msbfirst declaration in the
device specification: if lsbfirst, the first field given starts at bit 0, etc.

fieldname is an identifier for the bit field. It can be given as an underscore () to indicate
“don’t care” or “reserved” fields, in which case the field is assumed to have an attributed
of rsvd (see below), and no description is needed.

width is an integer giving the width of the field in bits.

fieldtype is an optional identifier giving the type of this field. This must be either the identifier
of a constants declaration somewhere in the enclosing device declaration, for example
type(vdm), or a qualified name of the form device.constdef, where device is the name of a
device definition previously imported.

attr is an optional field attribute. See section 3.9 for more information.

description is an optional string in double quotes, giving a description of the field, for exam-
ple "Logical APIC ID". If not present, it defaults to the identifier.

Here is a complete example of a regtype declaration, taken from the xAPIC definition:

regtype lvt_lint "LVT Int" {

vector 8 "Vector";

dlv_mode 4 type(vdm) "Delivery mode";

_ 1;

status 1 "Delivery status";

pinpol 1 "Pin polarity";

rirr 1 "Remote IRR";

trig_mode 1 "Trigger mode";

mask 1 "Mask";

_ 15;

};

3.6 Registers

A register declaration defines a particular hardware register on the device.

register name [attr] [also]

{ noaddr | space(address) } ["description"] type ;

name is an identifier for the register. Its scope is the enclosing device declaration.

attr is an (optional) attribute. See Section 3.9 for more information.

space gives the address space of this register (e.g. addr, io, pci, or a per-device user-defined
address space).

Mackerel - 14 Barrelfish TN-2

address gives the address of the register in the address space. For builtin address spaces this
is given as a comma-separated pair of (base, offset) where base is a device argument of
the correct type and offset is an integer-valued Mackerel expression. For user-defined
address spaces, the address is a single Mackerel integer expression giving the register
index.

By default, it is an error to specify more than one register at the same location, or at
locations which overlap. By preceding the address specifier with the also keyword, you
can allow registers to coexist at the same location.

noaddr is an alternative to the address space definition, and is used for registers which have
no address (or, alternatively, an implicit address). A good example of this kind of register
is a coprocessor register which requires custom assembler instructions to read and write.
Mackerel generates slightly different access code for this type of register, specified later
in this document, and requires the developer to supply the raw register access functions.

description is an optional string in double quotes, giving a description of the register, for
example "Error status". If not present, it defaults to the name identifier.

type gives the format of the register. It can consist of type(name), where name is either:

• the identifier of a register type previously declared with a regtype declaration;

• the identifier of a constants type previously declared with a constants declaration
which included an explicit width() specifier;

• one of the built in register types uint8, uint16, uint32, or uint64; or

• a qualified name of the form device.type, where device is the name of a device defi-
nition previously imported.

Alternatively, the type can be given as a sequence of fields in braces, exactly as in a
regtype declaration. In effect, this latter form defines both a register type and a register
at the same time, with the same name.

Here are some examples of register definitions:

register dfr rw at (base, 0x00e0) "Destination Format" {
_ 28 mb1;

model 4 type(model_type) "Model";

};

register apr ro at (base, 0x0090) "Arbitration priority" type(priority);

register isr0 ro at (base, 0x0100) "ISR bits 0-31" type(uint32);

Barrelfish TN-2 Mackerel - 15

register cr4 noaddr "Control register 4" {
_ 49 mbz;

smxe 1 "SMX enable";

vmxe 1 "VMX enable";

_ 2 mbz;

osxmmexcpt 1 "OS support for unmasked SIMD FP exceptions";

osfxsr 1 "OS support for FXSAVE and FXRSTOR instructions";

pce 1 "Performance-monitoring counter enable";

pge 1 "Page global enable";

mce 1 "Machine-check enable";

pae 1 "Physical address extensions";

pse 1 "Page size extensions";

de 1 "Debugging extensions";

tsd 1 "Time stamp disable";

pvi 1 "Protected-mode virtual interrupts";

vme 1 "Virtual 8086 mode extensions";

};

3.7 Register Arrays

A regarray declaration defines an array of hardware registers on the device, all of which have
the same type and attributes.

regarray name [attr] [also]

space(address) ["description"] type ;

All fields are as for register declarations, except:

address gives the address of the registers which form the array in the address space. This
is given as for a single register declaration, followed by an array specifier in square
brackets.

There are three forms of array specifier. The simplest looks like this:

regarray ier ro addr(base, 0x0480) [8]

"IER" type(uint32);

This specifies a contiguous array of 8 32-bit registers starting at base + 0x0480. This
example therefore occupies 32 bytes of IO space. Alternatively:

regarray ier ro addr(base, 0x0480) [8; 0x10]

"IER" type(uint32);

This second example specifies 8 32-bit registers, which occur every 16 bytes, starting at
base + 0x0480. Finally, one can explicitly list the individual locations for the array (note:
the back-end does not yet generate correct code for this case):

Mackerel - 16 Barrelfish TN-2

regarray ier ro addr(base, 0x0480) [0, 0x10, 0x18]

"IER" type(uint32);

This third example specifies 3 32-bit registers, at offsets of 0x480, 0x490, and 0x498 from
base.

3.8 Data types

A datatype declaration defines a data type corresponding to the format of a structure in mem-
ory; it can be used to represent in-memory hardware-defined datastructures like page table
entries or DMA descriptors.

The syntax is as follows:

datatype name [lsbfirst|msbfirst (wordsize)] ["descr"] {

fieldname1 width [type(fieldtype)] [attr] ["description"];
...

};

name is an identifier for the data type. Its scope is the enclosing device declaration.

lsbfirst or msbfirst together with a (required) word size specify how the fields in the specifi-
cation are ordered. This is described in more detail below.

description is an optional string in double quotes, giving a description of the register type, for
example "LVT monitor". If not present, it defaults to the identifier.

The field descriptions declare the individual bitfields which make up the data type.

The order in which these are given is determined by the lsbfirst or msbfirst declaration.
Data structures in memory are sometimes listed in data books as a sequence of words, each of
which is formatted into bit fields. In order for authors of device specifications to easily trans-
late these descriptions into Mackerel, one can specify the “word size” used in the description
along with the order in which bit fields within a word are listed. For example, “msbfirst(32)”
means that the bit fields are to be grouped into words of 32 bits each, and within each word
the fields are listed most-significant-bit (i.e. the field containing bit 31) first. On an Intel archi-
tecture machine, this will cause the resulting C declaration to be derived by taking the first set
of fields whose width adds up to 32, reversing their order in the struct declaration, then the
next group, etc.

Specifying a word size of 0 will cause the entire set of fields to be reordered (if necessary) in
one go. If no bit order and word size are specified, the default is that of the device itself, with
a word size of 0.

fieldname is an identifier for the bit field. It can be given as an underscore () to indicate
“don’t care” or “reserved” fields, in which case the field is assumed to have an attributed
of rsvd (see below), and no description is needed.

width is an integer giving the width of the field in bits.

Barrelfish TN-2 Mackerel - 17

fieldtype is an optional identifier giving the type of this field. This must be the identifier of
a constants declaration somewhere in the enclosing device declaration, for example
type(vdm).

attr is an optional field attribute. See section 3.9 for more information. The only field attributes
allowed for data types are rsvd, mbz, mb1, or rw. “Don’t care” fields default to rsvd; others
default to rw.

description is an optional string in double quotes, giving a description of the field, for exam-
ple "Command header". If not present, it defaults to the identifier.

Here is a complete example of a regtype declaration, taken from the a SATA AHCI port defi-
nition:

datatype cls msbfirst(32) "Command list structure" {

prdtl 16 "Physical region descriptor table length";

pmp 4 "Port multiplier port";

1;

c 1 "Clear busy upon R OK";

b 1 "BIST";

r 1 "Reset";

p 1 "Prefetchable";

w 1 "Write";

a 1 "ATAPI";

cfl 5 "Command FIS length";

prdbc 32 "Physical region descriptor byte count";

ctba 32 "Command table descriptor base addr";

ctbau 32 "Command table descriptor base addr upper";

32;

32;

32;

32;

};

3.9 Field and register attributes

This section lists the various attributes that can be applied to register fields or entire registers.
Some of these values can only be applied to register fields, and not to entire registers. Some of
these attributes are functionally equivalent from the point of view of client code generated by
Mackerel, but the aim is to facilitate typing in information from data sheets.

rw Read/write. The value is readable and writable. This is the default.

ro Read-only. The value is readable, but not writeable. No code will be generated to handle
writes to this value.

wo Write-only. The value is writable, but not readable. No code will be generated to handle
reads from this value, but generated code may keep a “shadow” copy of the last value
written to aid in debugging.

Mackerel - 18 Barrelfish TN-2

rc Read to clear. The value is readable, but not writeable, and a read operation will clear the
value (this is sometimes seen with statistical count registers, for example). Driver code
generated for registers will behave as if the register was ro, so care must be taken if
extra reads are inserted. In particular, remember that printing the value of the register in
debugging code will clear it.

rwzc Read/write zero to clear. The value is readable. A write of 0 clears (sets to 0) the corre-
sponding bit, and a write of 1 has no effect.

rw1c Read/write one to clear. The value is readable. A write of 1 clears (sets to 0) the corre-
sponding bit, and a write of 0 has no effect.

rwc Read/write clear. A synonmym for rw1c.

ros Read-only sticky. Value is readable and not writeable. In Intel nomenclature, the bits can
only be reset with a power cycle; in Mackerel this attribute is simply a synonym for ro.

rw1cs Read and write one to clear and sticky. In Intel nomenclature, this is equivalent to rwc

but bits can only be reset on a power cycle.

rwcs Read, write to clear and sticky. A synonym for rw1cs.

rwo Read/write once. Can be written to precisely once after reset, and thereafter is read-only.

rws Read/write and sticky. Software can read and write to this bit, but the bit can only be
reset after a power cycle.

rsvd Reserved. Mackerel generates code to allow clients to read reserved bits, but when writ-
ing a register value, code generated by Mackerel will ensure the bit values are preserved,
if necessary by performing a read before the write.

mbz Must be zero. Mackerel will generate no code to read the value, but will ensure that it is
always written as 0.

mb1 Must be one. Mackerel will generate no code to read the value, but will ensure that it is
always written as 1.

Register attributes can be rw, ro, or wo, and provide a default attribute for each field of the
register. If no attributes at all are specified, rw is assumed, except in the case of an anonymous
register field (denoted by an underscore “ ”), which defaults to rsvd regardless of the register
attribute. The motivation for this design choice is that unused fields of registers are frequently
“reserved” rather than “don’t care”. The default behaviour will therefore result in potential
inefficiency (due to reading the value before writing it), but never incorrect behaviour (due to
writing the wrong values to a reserved field).

Barrelfish TN-2 Mackerel - 19

Chapter 4

C mapping for device drivers

For each device specification, Mackerel generates a single C header file giving all the necessary
definitions and declarations. While developers are not expected to look at this file in normal
use, it is designed to be fairly readable to curious humans, and is worth examining to under-
stand what Mackerel is generating (and to find bugs in Mackerel).

The file for a device called, say, apic is conventionally named apic dev.h, and in Barrelfish
is usually found in the dev subdirectory of the main include directory; thus a C file would
include it with:

#include <dev/apic dev.h>

This chapter will describe the contents of this header file.

4.1 Preamble

The header file is protected by the customary macro to ensure that it is only included once -
for example, for a device called DEV this is “ DEV H”.

The file includes only one other header file: mackerel.h. This latter header file includes decla-
rations for the low-level read and write functions that Mackerel code requires, and some other
preprocessor macros to ensure correct C code generation.

In the rest of this chapter, we’ll use “DN ” as the device prefix that cannot be redefined in this
manner, and “DP ” as device prefix that can.

4.2 Device-level declarations

For the device, Mackerel generates:

1. a C structure type to represent what it knows about the device, called DN t. To access a
device from C via Mackerel, you first need to declare one of these, and then call a function
(see below) to initialize it.

The struct contains fields which correspond to each of the arguments which define the
addresses of the device, plus a “shadow” copy of every register on the device which has

Mackerel - 20 Barrelfish TN-2

at least one write-only field - this is used to keep track of the last value written to the
register.

2. The initialization function DN initialize. For a device type with an argment of “io
base”, the initialization function looks like:

void DN initialize(DN t * dev, mackerel io t base);

The idiom for accessing a device at IO address ia would be:

DN t dev;

DN initialize(&dev, ia);

. . .
code to access registers via dev

3. An enumeration declaration enum DN initials, with a field DN REG initial for each
register REG defined in the device. Currently, all these enumeration fields are set to 0x00,
and are used inside the generated initialization function to initialize any shadow copies
of registers in the device struct.

4. An snprintf-like function to pretty-print all the register contents of the device, with
prototype:

int DN pr(char *s, size t sz, DN t *v);

For a complex device, this is a lot of information, and may require a large buffer to fully
capture. This is also potentially a large function to inline. It will result in reads from all
readable device registers, including “read to clear” (rc) registers and fields. For write-
only registers, this function will print the shadow copy of the register maintained in the
device structure, which holds the last value written to the register (or 0 if the register has
not been written since the initialization function was called). The output identifies which
values are “real” and which are shadow copies, includes descriptions of all register fields,
and translates symbolic values into their names and descriptions.

4.3 Constants

For a constants declaration of type CNSTS, having fields FIELD1 and FIELD2, Mackerel will
generate the following:

1. A type definition which defines type DP CNSTS t to be an unsigned integer type (e.g.
uint8 t or uint64 t). The type is the smallest such type large enough to hold the largest
value in the constants declaration, or (if the width is explicitly given) the smallest such
type wider than the given width.

2. A set of CPP macro definitions DP FIELD1 and DP FIELD2, each of which expands to a C
expression consisting of the field value cast to type DP CNSTS t.

If the field value is specified as 1s, the macro will expand to the C value -1LL cast to type
DP CNSTS t.

Note that the field names are not prefixed by the constants name, only the device prefix.

The motivation for using CPP macros (rather than C enumerations, as in an earlier ver-
sion of Mackerel) is that enum types are only the size of C ints, whereas Mackerel can

Barrelfish TN-2 Mackerel - 21

specify values in constants declarations which are larger than this (such as 64-bit val-
ues).

The motivation for not using constant unsigned integer declarations is that macros allow
us to only generate a header file, without cluttering up the data segment with multiple
copies of constants if the generated header file is included more than once.

3. A function which takes an argument of type DP CNSTS t and returns a pointer to a string
containing the description of the field value, or NULL if the argument does not corre-
spond to a field value:

char *DP CNSTS describe(DP CNSTS t e);

Note that this function can also simply be used as a test of whether the value is valid.

4. An snprintf-like function to pretty-print values of type DP CNSTS t, with prototype:

int DP CNSTS prtval(char *s, size t sz, DP CNSTS t e);

4.4 Register types

.

For a regtype declaration REGTYPE, Mackerel will generate the following:

1. A type definition DP REGTYPE t, which is an unsigned integer of the same size as the
register.

2. A CPP macro DP REGTYPE default, which is an integer literal giving the “default” value
for the register type. Note that since this is a macro, the prefix of the name cannot be
overridden using the trick mentioned above.

3. An snprintf-like function to pretty-print values of the register type, with prototype:

int DP REGTYPE prtval(char *s, size t sz, DP REGTYPE t v);

4. For every field FLD (of type FLDTYPE t) of the register type, a function to insert a value
into that field of a value of type DP REGTYPE t:

DP REGTYPE t DP REGTYPE FLD insert(DP REGTYPE t r, FLDTYPE t val);

Note that this insertion is not in place, in contrast to the function generated for datatype
declarations (see below). Instead, this it returns a new value of the register type with the
specified field modified, and so is intended to be used in a “functional” style.

5. For every field FLD (of type FLDTYPE t) of the register type, a function to extract a single
field from a value of type DP REGTYPE t:

FLDTYPE t DP REGTYPE FLD extract(DP REGTYPE t r);

4.5 Data types

.

Mackerel - 22 Barrelfish TN-2

For a datatype declaration DATATYPE, Mackerel will generate the following:

1. A type definition DP DATATYPE t, which is of type uint8 t *. This is the canonical way
to refer to values of the datatype in memory.

2. A static const size t DP DATATYPE size, which is the size in bytes of the data type.
This should be used in place of sizeof(DP DATATYPE t), which will the wrong result in
general.

3. A type definition DP DATATYPE array t, which is of type uint8 t[sz], where sz is the
size in bytes of the datatype. This should be used sparingly, for example to allocate a
value of the datatype on the stack.

4. An snprintf-like function to pretty-print values of the datatype, with prototype:

int DP DATATYPE prtval(char *s, size t sz, DP DATATYPE t v);

5. For every field FLD (of type FLDTYPE t) of the datatype, a function to insert a value into
that field of a value of type DP DATATYPE t:

void DP DATATYPE FLD insert(DP DATATYPE t r, FLDTYPE t val);

Note that this insertion is in place, in contrast to the “functional” style used for register
types.

6. For every field FLD (of type FLDTYPE t) of the datatype, a function to extract a single field
from a value of type DP DATATYPE t:

FLDTYPE t DP DATATYPE FLD extract(DP DATATYPE t r);

4.6 Registers

For a register REG that defines its own type, Mackerel defines a register type with the same
name and generates the declarations defined in section 4.4.

For each register REG with type REGTYPE, Mackerel will generate some of the following:

1. If the register has fields which are readable, a function to read the contents of the register:

DP REGTYPE t DP REG rd(DN t *dev);

2. If the register address is not given as noaddr, a function to read the raw contents of the
register:

DP REGTYPE t DP REG rawrd(DN t *dev);

On the other hand, if the register address is given as noaddr, the developer is required to
supply this function herself – Mackerel-generated code will use it to access the register.

3. If the register has fields which are writeable, a function to write the contents of the regis-
ter:

void DP REG wr(DN t *dev, DP REGTYPE t val);

Note that this is not a simple write of the value: any fields which must be 1 or 0 are
set accordingly, and reserved fields are read from the register before writing back the
value. Therefore, this function will only write the bit fields of val which are meaningful

Barrelfish TN-2 Mackerel - 23

to write according to the register specification. However, this function will not perform
a read from the register unless the register contains reserved fields.

4. If the register address is not given as noaddr, a function to write raw values to the regis-
ter:

DP REGTYPE t DP REG rawwr(DN t *dev, DP REGTYPE t val);

This function is potentially dangerous, since it makes no guarantees that certain fields of
the register are set to zero or one, or preserves the contents of reserved fields. Use with
caution.

On the other hand, if the register address is given as noaddr, the developer is required to
supply this function herself – Mackerel-generated code will use it to access the register.
Again, in this case, the function should not try to preserve fields, since Mackerel will
make sure that the “sanitized” register and field writing functions will do this correctly.

5. For every readable field FLD (of type FLDTYPE) of the register, a function to read just that
single field from the register:

FLDTYPE DP REG FLD rdf(DN t *dev);

6. For every writeable field FLD of the register, a function to write just that single field to the
register:

void DP REG FLD wrf(DN t *dev, FLDTYPE val);

These functions should be used with care. It is of course impossible to write only one
field, hence a complete write to the register will occur. Furthermore, the values of the
other read/writeable or reserved register fields will be determined first by doing a hid-
den read from the register. Any write-only fields will then be initialized from the shadow
copy. Any “must be zero” or “must be 1” fields will be set to their respective values.

7. For every write-only field FLD (of type FLDTYPE) of the register, a function to read just
that single field from the shadow copy of the register contents:

FLDTYPE DP REG FLD rd shadow(DN t *dev);

8. An snprintf-like function to pretty-print the current value of the register, or its shadow
copy if the register is not readable, with prototype:

int DP REG pr(char *s, size t sz, DN t *dev);

4.7 Register Arrays

For a register array RARR that defines its own type, Mackerel defines a register type with the
same name and generates the declarations defined in section 4.4.

For each register array RARR with type REGTYPE, Mackerel will generate some of the following:

1. A CPP macro DP DATATYPE size, which is an integer literal cast to a size t giving the
length in bytes of the data type.

2. If the register array has fields which are readable, a function to read the contents of a
register:

Mackerel - 24 Barrelfish TN-2

DP REGTYPE t DP REG rd(DN t *dev, int i);

3. If the register array has fields which are writeable, a function to write the contents of a
register:

void DP REG wr(DN t *dev, int i, DP REGTYPE t val);

Note that this is not a simple write of the value: any fields which must be 1 or 0 are
set accordingly, and reserved fields are read from the register before writing back the
value. Therefore, this function will only write the bit fields of val which are meaningful
to write according to the register specification. However, this function will not perform
a read from the register unless the register contains reserved fields.

4. For every readable field FLD (of type FLDTYPE) of the register array, a function to read just
that single field from a register:

FLDTYPE DP REG FLD rdf(DN t *dev, int i);

5. For every writeable field FLD of the register array, a function to write just that single field
to a register:

void DP REG FLD wrf(DN t *dev, int i, FLDTYPE val);

These functions should be used with care. It is of course impossible to write only one
field, hence a complete write to the register will occur. Furthermore, the values of the
other read/writeable or reserved register fields will be determined first by doing a hid-
den read from the register. Any write-only fields will then be initialized from the shadow
copy. Any “must be zero” or “must be 1” fields will be set to their respective values.

6. For every write-only field FLD (of type FLDTYPE) of the register array, a function to read
just that single field from the shadow copy of a register’s contents:

FLDTYPE DP REG FLD rd shadow(DN t *dev);

7. An snprintf-like function to pretty-print the current value of one register in the array,
or its shadow copy if the field is write-only, with prototype:

int DP REG pri(char *s, size t sz, DN t *dev, int i);

8. An snprintf-like function to pretty-print the current value of all registers in the array,
or their shadow copies if the field is write-only, with prototype:

int DP REG pr(char *s, size t sz, DN t *dev);

4.8 Address spaces

It is the responsibility of the programmer to supply functions to access registers in user-defined
address spaces (though it’s common to call Mackerel-generated code in turn to do this). The
register access code generated by Mackerel for a 32-bit wide register declared in an address
space SPACE will call the following function for a read:

uint32 t DP SPACE read 32(DN t *dev, size t offset);

– and the following function for a write:

void DP SPACE write 32(DN t *dev, size t offset, uint32 t value);

Barrelfish TN-2 Mackerel - 25

These functions must be supplied by the programmer in a file named DP spaces.h, which is
included by the generated header file if and only if the device specification defines new address
spaces. Note that only one header file is required, rather than one for each user-defined address
space.

Since the device is passed as an argument, the functions can access any device fields (including
device arguments and shadow copies of write-only registers)

They are not declared anywhere in the generated header file, which means that not all the
read/write functions for an address space need to be supplied, only the ones actually used.
Furthermore, these can be declared to be static inline, or extern, etc. according to taste.

4.9 Overall header file structure

The generated header file is not too difficult to read, and doing so can be useful for debugging
purposes. The declarations emitted by Mackerel occur in the file in the following order (to
minimise the need for forward declarations):

1. Preamble, naturally.

2. Type, print, and check declarations for each “constants” clause.

3. Type, union, and print declarations for each register type (including implicit types).

4. The device structure, and its initialization function.

5. Read, write, and print functions for each register

6. The device print function.

In addition, comments in the generated file are intended to help you find the relevant declara-
tions quickly if you need to.

Mackerel - 26 Barrelfish TN-2

Chapter 5

Bitfield C mapping for device drivers

Important

This appendix contains the deprecated C mapping which uses bitfield structures to represent
registers. This back end should not be used, since it is not portable across architectures and
does not guarantee that register accesses will be of the same size as the register, which breaks
some architectures (such as Rock Creek). It is included here to help understand legacy code.
Such code should be converted as soon as possible.

For each device specification, Mackerel generates a single C header file giving all the necessary
definitions and declarations. While developers are not expected to look at this file in normal
use, it is designed to be fairly readable to curious humans, and is worth examining to under-
stand what Mackerel is generating (and to find bugs in Mackerel).

This chapter will describe the contents of this header file.

5.1 Preamble

The header file is protected by the customary macro to ensure that it is only included once -
for example, for a device called DEV this is “ DEV H”.

The file includes only one other header file: mackerel.h. This latter header file includes decla-
rations for the low-level read and write functions that Mackerel code requires, and some other
preprocessor macros to ensure correct C code generation.

Mackerel prefixes all declarations in the file with the name of the file plus an underscore
(“DEV ”).

In the rest of this chapter, we’ll use “DN ” as the device prefix that cannot be redefined in this
manner, and “DP ” as device prefix that can.

Barrelfish TN-2 Mackerel - 27

5.2 Device-level declarations

Mackerel provides a C structure type to represent what it knows about the device, called DN t.
To access a device from C via Mackerel, you first need to declare one of these, and the call a
function to initialize it.

The initialize function is called DN initialize. For a device type with an argment of “io
base”, the initialization function looks like:

void DN initialize(DN t * dev, mackerel io t base);

The idiom for accessing a device at IO address ia would be:

DN t dev;

DN initialize(&dev, ia);

. . .
code to access registers via dev

In addition, Mackerel generates an snprintf-like function to pretty-print all the register con-
tents of the device, with prototype:

int DN pr(char *s, size t sz, DP CNSTS t v);

For a complex device, this is a lot of information, and may require a large buffer to fully cap-
ture. This is also potentially a large function to inline. It will result in reads from all readable
device registers, including “read to clear” (rc) registers and fields. For write-only registers, this
function will print the shadow copy of the register maintained in the device structure, which
holds the last value written to the register (or 0 if the register has not been written since the
initialization function was called). The output identifies which values are “real” and which are
shadow copies, includes descriptions of all register fields, and translates symbolic values into
their names and descriptions.

5.3 Constants

For a constants declaration of type CNSTS, having fields FIELD1 and FIELD2, Mackerel will
generate the following:

1. An enumeration type DP CNSTS t with fields DP FIELD1 and DP FIELD2. Note that the
field names are not prefixed by the enumeration name, only the device prefix.

2. An snprintf-like function to pretty-print values of the enumeration, with prototype:

int DP CNSTS prt(char *s, size t sz, DP CNSTS t e);

3. A function which returns 1 if an enumeration value is valid, 0 if otherwise:

int DP CNSTS chk(DP CNSTS t e);

5.4 Register types

.

Mackerel - 28 Barrelfish TN-2

For a regtype declaration REGTYPE, Mackerel will generate the following:

1. A bitfield structure type DP REGTYPE t, whose field names are those of the fields speci-
fied in the Mackerel file, with no prefix, and whose physical layout corresponds to the
hardware register type.

2. A union type DP REGTYPE un, whose members are the bitfield struct above (as “val”) and
the smallest enclosing unsigned integer type (as “raw”),.

3. An snprintf-like function to pretty-print values of the register type, with prototype:

int DP REGTYPE prtval(char *s, size t sz, DP CNSTS t v);

This functionality is being replaced by one based on shifts and masks, rather than using bit-
fields, which have portability issues. For a regtype declaration REGTYPE, Mackerel will soon
generate the following:

1. A type definition DP REGTYPE t which is an unsigned integer of the same size as the
register.

2. For every field FLD (of type FLDTYPE) of the register type, a function to insert a value into
that field of a value of type DP REGTYPE t:

DP REGTYPE t DP REGTYPE FLD ins(DP REGTYPE t r, FLD TYPE val);

3. For every field FLD (of type FLDTYPE) of the register type, a function to extract a single
field from a value of type DP REGTYPE t:

FLDTYPE DP REGTYPE FLD ext(DP REGTYPE t r);

5.5 Data types

.

For a datatype declaration DATATYPE, Mackerel will generate the following:

1. A bitfield structure type DP DATATYPE t, whose field names are those of the fields spec-
ified in the Mackerel file, with no prefix, and whose physical layout corresponds to the
hardware data type.

2. An snprintf-like function to pretty-print values of the data type, with prototype:

int DP DATATYPE prtval(char *s, size t sz, DP CNSTS t v);

5.6 Registers

For a register REG that defines its own type, Mackerel defines a register type with the same
name and generates the declarations defined in section 5.4.

For each register REG with type REGTYPE, Mackerel will generate some of the following:

1. If the register has fields which are readable, a function to read a “raw” (integer) value
from the register:

Barrelfish TN-2 Mackerel - 29

uintx t DP REG rd raw(DN t *dev);

– where uintx t is a standard C unsigned integer type with a fixed size, such as uint32 t.,

2. If the register has fields which are readable, a function to read a bitfield value from the
register:

DP REGTYPE t DP REG rd(DN t *dev);

3. If the register has fields which are not readable, a function to read a bitfield value from a
saved copy of the last value written to the register using this device struct:

DP REGTYPE t DP REG rd shadow(DN t *dev);

4. If the register has fields which are writeable, a function to write a “raw” (integer) value
to the register:

void DP REG wr raw(DN t *dev, uintx t val);

– where uintx t is smallest suitable standard C unsigned integer type with a fixed size,
such as uint32 t.

5. If the register has fields which are writeable, a function to write a bitfield value to the
register:

void DP REG wr(DN t *dev, DP REGTYPE val);

Unlike the raw write function, this will (only if necessary) perform a read first from the
register to ensure that “reserved” fields will be written back with their correct values. It
will also force any “must be zero” or “must be 1” fields to be their respective values.

6. For every writeable field FLD of the register, a function to write just that single field to the
register:

void DP REG FLD wrf(DN t *dev, uintx t val);

– where uintx t is smallest suitable standard C unsigned integer type with a fixed size,
such as uint8 t.

These functions should be used with care. It is of course impossible to write only one
field, hence a complete write to the register will occur. Furthermore, the values of the
other read/writeable or reserved register fields will be determined first by doing a hid-
den read from the register. Any write-only fields will then be initialized from the shadow
copy. Any “must be zero” or “must be 1” fields will be set to their respective values.

7. An snprintf-like function to pretty-print the current value of the register, or its shadow
copy if the register is not readable, with prototype:

int DP REG pr(char *s, size t sz, DN t *dev);

5.7 Register Arrays

For a register array RARR that defines its own type, Mackerel defines a register type with the
same name and generates the declarations defined in section 5.4.

For each register array RARR with type REGTYPE, Mackerel will generate some of the following:

Mackerel - 30 Barrelfish TN-2

1. A static constant giving the length of the array (42 in this example):

static const int DP RARR length = 0x26;

2. If the registers have fields which are readable, a function to read a “raw” (integer) value
from a register:

uintx t DP RARR rd raw(DN t *dev, int i);

– where uintx t is a standard C unsigned integer type with a fixed size, such as uint32 t,
and i is an index into the array.

3. If the registers have fields which are readable, a function to read a bitfield value from a
register:

DP REGTYPE t DP RARR rd(DN t *dev, int i);

4. If the registers have fields which are not readable, a function to read a bitfield value from
a saved copy of the last value written to each register using this device struct:

DP REGTYPE t DP RARR rd shadow(DN t *dev, int i);

5. If the registers have fields which are writeable, a function to write a “raw” (integer) value
to a register:

void DP RARRG wr raw(DN t *dev, int i, uintx t val);

– where uintx t is smallest suitable standard C unsigned integer type with a fixed size,
such as uint32 t.

6. If the registers have fields which are writeable, a function to write a bitfield value to a
register:

void DP RARR wr(DN t *dev, int i, DP REGTYPE val);

– where uintx t is smallest suitable standard C unsigned integer type with a fixed size,
such as uint32 t.

Unlike the raw write function, this will (only if necessary) perform a read first from the
register to ensure that “reserved” fields will be written back with their correct values. It
will also force any “must be zero” or “must be 1” fields to be their respective values.

7. An snprintf-like function to pretty-print the current value of one element of the array,
or its shadow copy if the register is not readable, with prototype:

int DP RARR pri(char *s, size t sz, DN t *dev, int i);

8. An snprintf-like function to pretty-print the entire register array, or its shadow copies
if the registers in the array are not readable, with prototype:

int DP RARR pr(char *s, size t sz, DN t *dev);

5.8 Address spaces

It is the responsibility of the programmer to supply functions to access registers in user-defined
address spaces (though it’s common to call Mackerel-generated code in turn to do this). The

Barrelfish TN-2 Mackerel - 31

register access code generated by Mackerel for a 32-bit wide register declared in an address
space SPACE will call the following function for a read:

uint32 t DP SPACE read 32(DN t *dev, size t offset);

– and the following function for a write:

void DP SPACE write 32(DN t *dev, size t offset, uint32 t value);

These functions must be supplied by the programmer in a file named DP spaces.h, which is
included by the generated header file if and only if the device specification defines new address
spaces. Note that only one header file is required, rather than one for each user-defined address
space.

Since the device is passed as an argument, the functions can access any device fields (including
device arguments and shadow copies of write-only registers)

They are not declared anywhere in the generated header file, which means that not all the
read/write functions for an address space need to be supplied, only the ones actually used.
Furthermore, these can be declared to be static inline, or extern, etc. according to taste.

5.9 Overall header file structure

The generated header file is not too difficult to read, and doing so can be useful for debugging
purposes. The declarations emitted by Mackerel occur in the file in the following order (to
minimise the need for forward declarations):

1. Preamble, naturally.

2. Type, print, and check declarations for each “constants” clause.

3. Type, union, and print declarations for each register type (including implicit types).

4. The device structure, and its initialization function.

5. Read, write, and print functions for each register

6. The device print function.

In addition, comments in the generated file are intended to help you find the relevant declara-
tions quickly if you need to.

Mackerel - 32 Barrelfish TN-2

Chapter 6

Migrating from the bit-field based
version of Mackerel

Previous versions of Mackerel generated a C API by defining packed C bitfield structs for
register types. This version of Mackerel avoids this in favor of masks and shifts, hidden be-
hind inline functions. This chapter gives some hints for migrating code written using the old
Mackerel to the new version.

• The initialize function for a device structure remains the same.

• DEV REG wr raw() and DEV REG rd raw() functions should be replaced with DEV REG wr()

and DEV REG rd() with the same arguments.

• The following code to set individual register fields:

//deassert PHY_RESET

{

e1000_ctrl_t c = e1000_ctrl_rd(d);

c.phy_rst = 0;

e1000_ctrl_wr(d, c);

e1000_status_t s = e1000_status_rd(d);

s.phyra = 0;

e1000_status_wr(d, s);

}

– must be replaced with:

//deassert PHY_RESET

e1000_ctrl_phy_rst_wrf(d, 0);

e1000_status_phyra_wrf(d, 0);

• The following code to read individual register fields:

speed = e1000_status_rd(d).speed;

– must be replaced by:

speed = e1000_status_speed_rdf(d);

• The following code to access a field from a register:

Barrelfish TN-2 Mackerel - 33

// test LAN ID to see if we need to modify the MAC from EEPROM

{

e1000_status_t s = e1000_status_rd(d);

if (s.lan_id == e1000_lan_b) {

mac_word2 ^= e1000_lan_b_mask;

}

}

– must be replaced by:

// test LAN ID to see if we need to modify the MAC from EEPROM

{

e1000_status_t s = e1000_status_rd(d);

if (e1000_status_lan_id_extract(s) == e1000_lan_b) {

mac_word2 ^= e1000_lan_b_mask;

}

}

• The following idiom for setting fields using struct literals:

e1000_rxdctl_wr(d, 0, (e1000_rxdctl_t){ .gran=1, .wthresh=1 });

– should be replaced by:

e1000_rxdctl_t tmp = e1000_rxdctl_default;

tmp = e1000_rxdctl_gran_insert(tmp,1);

tmp = e1000_rxdctl_wthresh_insert(tmp,1);

e1000_rxdctl_wr(d, 0, tmp);

Mackerel - 34 Barrelfish TN-2

Chapter 7

Source code structure

The Mackerel source directory contains the files listed below.

Attr.hs Dealing with register field attributes.

BitFieldDriver.hs Old code generator for device drivers using bitfields, deprecated.

CAbsSyntax.hs Contains combinators for rendering C code.

CSyntax.hs Old-style C combinators, deprecated.

Checks.hs Compile-time checks.

Dev.hs Overall device representation.

Fields.hs Representing register fields.

MackerelParser.hs ParSec parser for language.

Main.hs Top level file, which is used to run Mackerel.

Poly.hs Polynomial arithmetic for compile-time expression reduction (currently unused)

RegisterTable.hs Representing registers and register arrays.

ShiftDriver.hs Code generator for device drivers using shifts and masks.

Space.hs Representing address spaces.

TypeName.hs Data type for scoping type names when importing.

TypeTable.hs Representing register, data, and constants types.

Barrelfish TN-2 Mackerel - 35

Chapter 8

Quick reference

In the following quick reference, the following identifiers are used as examples, assuming a
Mackerel file named dev1.dev:

dev1 A device definition.

const1 A constants definition.

cval1 One value of the constants definition.

rtype2 A register type definition.

field2 A field in the above register type.

ftype2 The type of this field.

dtype3 A data type definition.

field3 A field in the above data type.

ftype3 The type of this field.

reg4 A register definition with its own type.

rtype4 Type of the above register.

field4 A field in the above register.

ftype4 The type of this field.

array5 A register array.

field5 A field in the elements of the above array.

ftype5 The type of this field.

Mackerel - 36 Barrelfish TN-2

Quick list of Mackerel C declarations:

C declaration Description
Device declarations
struct dev1 t Device structure
typedef dev1 t Device type defintion (as above)
enum dev1 initials Initial register values
void dev1 initialize(dev1 t *dev, ...) Initialization
int dev1 pr(char *s, size t sz, device t *v) Print
Constants declarations
typedef dev1 const1 t Integer type
#define dev1 cval1 Macro giving integer value
char *dev1 const1 describe(dev1 const1 t e) Description
int dev1 const1 prtval(char *s, size t sz, dev1 const1 t e) Print
int dev1 const1 chk(dev1 const1 t e) Check value
Register type declarations
typedef dev1 rtype2 t Type defintion
#define dev1 rtype2 default Default value
int dev1 rtype2 prtval(char *s, size t sz, dev1 rtype2 t v) Print
dev1 rtype2 t dev1 rtype2 field2 insert(dev1 rtype2 t r, ftype2 t val) Insert a field value
ftype2 t dev1 rtype2 field2 extract(dev1 rtype2 t r) Extract field value
Datatype declarations
typedef dev1 dtype3 t Pointer to datatype
const size t dev1 dtype3 size Size
typedef dev1 dtype3 array t Byte array of the same size
int dev1 dtype3 prtval(char *s, size t sz, dev1 dtype3 t v) Print
void dev1 dtype3 field3 insert(dev1 dtype3 t r, ftype3 t val) Insert field
ftype3 t dev1 dtype3 field3 extract(dev1 dtype3 t r) Extract field
Register declarations
dev1 rtype4 t dev1 reg4 rd(dev1 t *dev) Read register
dev1 rtype4 t dev1 reg4 rawrd(dev1 t *dev) Raw read
void dev1 reg4 wr(dev1 t *dev, dev1 rtype4 t val) Write register
void dev1 reg4 rawwr(dev1 t *dev, dev1 rtype4 t val) Raw write
ftype4 t dev1 reg4 field4 rdf(dev1 t *dev) Read field
void dev1 reg4 field4 wrf(dev1 t *dev, ftype4 val) Write field
ftype4 t dev1 reg4 field4 rd shaddow(dev1 t *dev) Read shadow
int dev1 reg4 pr(char *s, size t sz, dev1 t *dev) Print
Register array declarations
const int dev1 array5 length Num. registers
dev1 rtype5 t dev1 reg5 rd(dev1 t *dev, int i) Read register
dev1 rtype5 t dev1 reg5 rawrd(dev1 t *dev, int i) Raw read
void dev1 reg5 wr(dev1 t *dev, int i, dev1 rtype5 t val) Write register
void dev1 reg5 rawwr(dev1 t *dev, int i, dev1 rtype5 t val) Raw write
ftype5 t dev1 reg5 field5 rdf(dev1 t *dev, int i) Read field
void dev1 reg5 field5 wrf(dev1 t *dev, int i, ftype5 val) Write field
ftype5 t dev1 reg5 field5 rd shaddow(dev1 t *dev, int i) Read shadow
int dev1 reg5 pri(char *s, size t sz, dev1 t *dev, int i) Print
int dev1 reg5 pr(char *s, size t sz, dev1 t *dev) Print array
Space access functions
uintx t dev1 space6 read x (dev1 t *dev, size t offset) Read a value
void dev1 space6 writex (dev1 t *dev, size t offset, uintx t value) Write a value

Barrelfish TN-2 Mackerel - 37

