Barrelfish Project
ETH Zurich

Tracing and Visualisation

Barrelfish Technical Note 8

Barrelfish project

28.02.2013

Systems Group
Department of Computer Science
ETH Zurich
CAB E.79, Universitatstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description
1.0 28.02.2013 Alexander Initial version
Grest, David
Stolz

Tracing - 2

Barrelfish TN-8

Contents

1 Overview 4
2 Design and Implementation of the Tracing Framework in Barrelfish 5
21 Overview e 5
2.2 DefinitionofaTrace Event L L L. 6
2.3 Pleco: A new Domain Specific Language 7
231 Overview 7

232 Interpreting PlecoFiles. 8

2.3.3 The Generated Header File 8

234 The Generated [SONFile 9

24 FeatureOverview e 10
241 Preparing the Tracing Framework 10

2.4.2 Enabling and Disablingof Events 11

243 AutomaticFlushing 11

25 Bfscope 12

3 Design and Implementation of the Analysis Tool Aquarium 13
31 Designof Aquarium 13
311 Goals 13

3.1.2 Architecture 14

3.2 Extending Aquarium with Scripts o o000 15
321 ScriptFilters 15

322 Script Activities 16

3.3 Working with Aquarium Lo L 17

4 Usage 21
4.1 Getting traces to Aquarium 2 over thenetwork 22

5 Performance Analysis 23
51 Introduction 23
52 MemoryOverhead 23

53 Execution TimeOverhead 24
531 CosttoTraceaSingleEvent 24

532 CosttoFlush 24

Barrelfish TN-8 Tracing - 3

Chapter 1

Overview

The tracing framework in Barrelfish consists of three major components:
¢ The tracing library.
¢ Bfscope (a Barrelfish program).
e Aquarium 2.

The tracing library can be used to instrument code in order to trace events. The events are
stored core local and can later be flushed, either to console or — with the help of Bfscope — to
a remote machine. On the remote machine you can analyze the trace data using Aquarium 2.
Aquarium 2 can be customized with scripts, making it easy to integrate specific needs into the
existing analysis framework. In addition it supports various export functionalities that allow
you to analyze trace data with external tools in an easy fashion.

Tracing - 4 Barrelfish TN-8

Chapter 2

Design and Implementation of the
Tracing Framework in Barrelfish

2.1 Overview

The tracing framework inside of Barrelfish existed already before this project has been started.
In order to break as little as possible in existing code to work with the tracing system (e.g. tools
that have been developed analyzing trace logs) we decided to change as little as possible on the
interface of the tracing framework. In the end the structure of the trace logs that are generated
did not change, but only some mappings between constants in code and their interpretation.

In this section we want to look at the part of the tracing framework that is implemented in
Barrelfish, i.e. the actual functionality that developers use in order to create trace logs. One
part of the tracing framework allows developers to trace events at any point in the code, where
the data that is actually stored is defined in the Section 2.2. The second part is responsible for
delivering the generated trace logs to Aquarium. To achieve the second goal we changed the
existing Barrelfish application Bfscope in such a way, that it integrates with the new version of
the tracing framework. Bfscope is described in Section 2.5.

The typical lifecycle of using the tracing framework in Barrelfish looks like this:
0.a (Optional) Prepare the tracing framework.

0.b (Optional) Specify which Subsystems should be logged.

1. Define the type of event that will trigger the start of tracing.

2. Execute your code, that will log the events.

3. Flush the logged events, e.g. on the console.

To get more information about the optional steps, see Sections 2.4.1 and 2.4.2. The first manda-
tory step is to define the type of the event that will start the logging process. Having a mecha-
nism for starting and stopping the actual tracing may seem like a benefit, but not like a neces-
sity at first — but our experiments have shown that even with rather small instrumentation of
code (i.e. number of events that actually generate an entry in the trace log), having the tracing
framework log events all the time is no option. Thus having the possibility to start and stop
the tracing framework is essential. Having the flexibility of specifying a type of trace event

Barrelfish TN-8 Tracing - 5

Application Tracing Library chips bfscope

flush

is bfscope running?

bfscope running

IS N
| someone is

| connected

I nobody is

| connected

bfscope not running

Console Network

Figure 2.1: A sequence diagram illustrating the flow of events when using the flush function-
ality. “Application” is the application that is using the tracing framework, and chips is the
Barrelfish nameserver. The grey boxes indicate the destination onto which is flushed.

that will trigger the start and stop of the logging is an additional benefit compared to having
simple “start” and “stop” commands, as it allows developers to easily vary the portion of code
they want to trace, without changing the placement of a “start” and “stop” command all the
time.

While the second mandatory step is pretty self-explanatory, the third step is more interesting
again: The old version of the tracing system allowed only for dumping the stored trace into
a provided buffer. This functionality has now been improved in such a way that we offer
developers a method to flush the current trace log, and the flush functionality automatically
detects the best way to flush. Currently there are two possible destinations onto which can be
flushed: The console and the network. The tracing framework detects automatically if Bfscope
is running and someone is connected to it — if so, it flushes over the network — else it will flush
to the console. The flushing functionality could also be extended, a possible idea would be
to store the trace log in a file. In Figure 2.1 you can see a sequence diagram illustrating the
process of invoking the new flushing functionality.

2.2 Definition of a Trace Event

Let us now define the structure of events that can be traced. Each event belongs to a Subsystem
and an Event, and has an optional payload called Argument that can hold 32 bits of arbitrary
information. Both the Subsystem and the Event are 16 bit identifiers, allowing us to have up
to 65535 Subsystems and for each Subsystem 65535 Events. Note that the Events are relative

Tracing - 6 Barrelfish TN-8

0 16 32 48

Timestamp

Subsystem Event Argument

Figure 2.2: Representation of a single trace event in memory in Barrelfish.

to the Subsystems, i.e. a Subsystem called kernel might have the Event Context Switch with the
identifier 0, but the same Event identifier 0 has an entirely different meaning in every other
Subsystem.

Having all these different Subsystem and Event identifier available, we think that the tracing
framework will have sufficient space to deal with future change in Barrelfish'.

In addition to the Subsystem, Event and Argument information, the tracing framework adds
a timestamp to each event that gets logged (the timestamp is measured in CPU cycles) and
remembers the core on which the event was logged. The core is only implicitly stored, as we
have a separate tracing buffer on each core, allowing us to identify the core for an event at a
later stage automatically, without storing it for each event.

As timestamps are stored as a 64 bit number, we need a total of 128 bits (respectively 16 bytes)
per event that has been logged. The data structure layout of a single event can be seen in
Figure 2.2.

2.3 Pleco: A new Domain Specific Language

2.3.1 Overview

As trace events are identified by the type of their Subsystem and Event (which is a two tier
hierarchical structure), the best way to specify those Subsystems and Events is using a domain
specific language. For this purpose we designed a new domain specific language called pleco,
that resembles the domain specific language for error codes in Barrelfish (called fugu) a lot —
due to the fact that it solves a very similar task.

Pleco allows programmer to easily add new Subsystems to the tracing framework and to ex-
tend existing Subsystems with new Events. Note that the Argument parameter of the trace
events is not specified in Pleco, as this parameter is intended to be a payload, and not to be
a means to distinguish different trace events. A small sample pleco file can be seen in List-
ing 2.1. In this file we define two Subsystems: kernel and memserv. Note that the keyword
subsystem is used to define a new Subsystem. The Events for a Subsystem are defined in the
block following its name. Events have both a name and a verbose description, following the
keyword event. The textual description is not used in the tracing framework inside of Barrelfish,
but Aquarium will use the textual description to display it when analyzing generated traces.
Note that the textual description is not a strict requirement; if the empty string is provided,
during the interpretation of the pleco file, the name of the event will be substituted for the
textual description.

!Currently there exist 16 different Subsystems.

Barrelfish TN-8 Tracing - 7

Barrelfish build process

Barrelfish OS

.h file

.pleco file

.json file
A

uses

Aquarium

Figure 2.3: Pleco files get translated into both a C header file and a JSON file. This translation
is taking place during the regular build process of Barrelfish.

subsystem kernel {
event CSWITCH "Context_ Switch",
event BZERO "Buffer zeroing",

event TIMER ",
event TIMER_SYNC ",

3
subsystem memserv {

event ALLOC me
};

Listing 2.1: A small example pleco file with two Subsystems.

2.3.2 Interpreting Pleco Files

Parsing and interpreting of pleco files is part of the Barrelfish build process, meaning that the
according tools are written in Haskell and are integrated into the Hake build process. An
overview of how pleco files are integrated into the Barrelfish toolchain can be seen in Figure
2.3. Note that the header file that is created during the build process is directly used in the
very same build process, i.e. it is just an intermedjiate file.

2.3.3 The Generated Header File

For the pleco file of Listing 2.1, the header file shown in Listing 2.2 has been generated during
the build process. In Barrelfish source code, this file can be included with the statement:

Tracing - 8 Barrelfish TN-8

#include <trace_definitions/trace_defs.h>

Note that the macro that are created for events also contain the subsystem name, so that there
will not be any name collisions when two different subsystem define an Event with the same
name.

The generated numbers are not randomized. The reason for this is not that people can avoid
using macros, but rather for a new feature that has been introduced into the tracing framework
to work: enabling and disabling of Subsystems that are logged. See Section 2.4.2 for detailed
information.

#ifndef TRACE_DEFS_BARRELFISH__
#define TRACE_DEFS_BARRELFISH__

#define TRACE_SUBSYS_KERNEL O

#define TRACE_EVENT_KERNEL_CSWITCH O
#define TRACE_EVENT_KERNEL_BZERO 1
#define TRACE_EVENT_KERNEL_TIMER 2
#define TRACE_EVENT_KERNEL_TIMER_SYNC 3
#define TRACE_SUBSYS_MEMSERV 1

#define TRACE_EVENT_MEMSERV_ALLOC 0

#define TRACE_NUM_SUBSYSTEMS 2

#endif // TRACE_DEFS_BARRELFISH__

Listing 2.2: A header file that has been generated based on the pleco file shown in Listing 2.1.

2.3.4 The Generated JSON File

As the pleco file shown in Listing 2.1 does not only get translated into a header file, but also
into a JSON file, we want to have a look at this file now. The JSON file that has been generated
for said pleco file can be seen in Listing 2.3.

Barrelfish TN-8 Tracing - 9

0 : {
"name" : "kermnel",
"events" : {
0 : "Context Switch",
1 : "Buffer,zeroing",
2 : "TIMER",
3 "TIMER_SYNC"
}
},
1 {
"name" : "memserv",
"events" : {
0 : "ALLOC"
}
}
}

Listing 2.3: A JSON file that has been generated based on the pleco file shown in Listing 2.1.
This file can be used by Aquarium to decode log traces.

As you can see, the textual description in the pleco file was used where provided, and where
it wasn’t, the name of the Event has been used as a substitution. The generated numbers are
the same as the ones in the header file. This is no coincidence, as the usage of this JSON file is
exactly to decode the numbers from the trace logs into human readable events again.

For the purpose of decoding the events, the old version of Aquarium had the mapping from
numbers to human readable events directly hard coded into the source code. This new way
of defining Subsystems and Events in pleco files allows programmers to omit duplicate work
(and having to check that both programs are always consistent), and provides them with an
automated way of having a consistent tracing framework and analysis tool.

2.4 Feature Overview

2.4.1 Preparing the Tracing Framework

The tracing framework does not strictly need any extra preparation, nevertheless depending
on the environment, a preparation might be necessary. For this reason we added the function-
ality to prepare the tracing framework. Currently the preparation process estimates the offset
between the CPU cycle counters on the different cores. This functionality is not needed on
machines that have synchronized cycle counters, but in the future it might be possible to run a
single instance of Barrelfish on multiple machines, and in this case the different cycle counters
will not be synchronized anymore.

The cycle counter offsets are all measured relative to core 0. To measure the offset between
a core i and core 0, we execute the Network Time Protocol clock synchronization algorithm
between the two cores. Figure 2.4 illustrates the steps of the clock synchronization between
two cores. Four time measurements are performed and the estimated offset § between the two
cores is calculated as follows:

Tracing - 10 Barrelfish TN-8

core 0 core i

to
t

t3

Figure 2.4: NTP clock synchronization. Four time measurements ¢, to ¢3 are performed.

(tl — to) + (tQ — t3)
2

0=

2.1)

The tracing framework performs measurements between every core i (i > 0) and core 0 se-
quentially, so that the measurements are as precise as possible. The messages needed to per-
form those measurements are sent using the monitor, meaning that the tracing framework
does not need to setup any new channel.

2.4.2 Enabling and Disabling of Events

With the new version of Aquarium it is possible to filter out events in the analysis for a given
trace log. But it showed that this functionality is not sufficient, as there are use cases where
applications log so many events, that filtering must already be performed on the fly, i.e. already
during the tracing process itself. An application where this is currently necessary in Barrelfish
is the tracing of the network stack. The current way of achieving this filtering is introducing
preprocessor statements at different locations in the code. Having the new domain specific
language available, we implemented a mechanism to enable and disable Subsystems directly
at runtime, using the Subsystem identifier generated from the pleco file.

It is now possible to change which Subsystems are logged directly at runtime, removing the
need of recompiling the entire tracing framework just because the type of events that a devel-
oper is interested changed. With the hierarchical structure of Subsystems and Events it was
possible to implement this enabling facility in a lightweight manner, as the number of Subsys-
tems is quite small.

2.4.3 Automatic Flushing

The flush procedure described in Section 2.1 can be triggered by manually calling the according
trace framework function. In addition to the manually triggered flushing, we added a new
functionality, namely the one that the trace buffer is flushed automatically. This functionality
is implemented with in Bfscope, as we think the main use-case for automatic flushing is when

Barrelfish TN-8 Tracing - 11

the generated logs are automatically forwarded to a remote machine?. When a developer

decides to enable the automatic flushing and Bfscope is running, Bfscope will automatically
flush the content of the trace buffers periodically. This feature removes the need of having to
call the flush procedure manually, but it developers should note that if timing is critical for
your application, the automatic flushing functionality can lead to issues. The issues that can
arise come from the fact that it is possible that Bfscope flushes in the middle of your application
executing its code — this does not lead to a problem of correctness, but it can heavily skew the
flow of events in the Barrelfish as a whole.

2.5 Bfscope

Bfscope is a Barrelfish program that enhances the functionality of the tracing framework by the
possibility to directly flush trace logs over the network. Note that the tracing in the Barrelfish
code itself runs independently of Bfscope — and it even notices when Bfscope is running and
changes its behavior accordingly. Bfscope allows developers to connect from a remote machine
to the Barrelfish OS, using a TCP connection and to get the trace logs directly onto the remote
machine. Note that when a remote machine is connected, regular flush commands in Barrelfish
will automatically be redirected onto the network, and you will not see the trace logs on the
console any longer.

As the remote machine is merely a utility that wants to get the trace log data, there are no
messages exchanged as part of a protocol — Bfscope simply sends the trace log data onto the
TCP connection, once the flush command is issued (or periodically if automatic flushing is
enabled). This has, beneath being a simple protocol, the additional benefit that it is no longer
necessary to run Aquarium in order to be able to get the trace log onto a remote machine, but
you rather can use any tool that allows you to open a TCP connection, such as netcat. Using
such a tool will allow you to get the trace log data on a different machine, where you can either
later analyze it with Aquarium, or with custom scripts.

Nevertheless the main intention is to directly connect to Bfscope using Aquarium, which can
interpret and visualize the trace log data directly on the fly.

*Having the console cluttered with events from the tracing framework can render the application unusable
rather quickly.

Tracing - 12 Barrelfish TN-8

Chapter 3

Design and Implementation of the
Analysis Tool Aquarium

3.1 Design of Aquarium

3.1.1 Goals

When we designed Aquarium we had several goals in mind, namely the following ones:
1. Support for live tracing.

2. Support for different ways of input (e.g. reading from file or receiving data over the
network).

3. Being able to handle large trace log data.
4. Being extensible and easily customizable.
5. Aquarium must run on different operating systems.

We decided to tackle the first three goals with the design of the architecture of Aquarium,
which we will discuss in Section 3.1.2. The fourth goal also did influence the architecture on
one hand, but also led to the idea of making Aquarium scriptable, i.e. to create an interface
that allows developers to add their own scripts to Aquarium. Since those scripts do not work
on the raw trace log data, but rather on already from Aquarium interpreted data, it offers
developers on one hand a more powerful means to write scripts in a very easy way, and on the
other hand the scripts are directly integrated into the visualization of Aquarium, alleviating
the need to write visualization code for custom developer scripts. In Section 3.2 we will discuss
the different ways how Aquarium can be extended with scripts.

The fifth goal, i.e. the goal that people should be able to run Aquarium on different Operating
Systems, such as Linux and Windows, arose from a shortcoming in the old version of Aquar-
ium — namely that it was written in C# and only runs on Windows. To tackle this requirement
we decided to implement our version of Aquarium in Java, so that cross platform portability
will certainly not become an issue.

Barrelfish TN-8 Tracing - 13

3.1.2 Architecture

When you analyze trace log data with Aquarium, the main object is a TracingSession object.
Each trace log data is at runtime represented by exactly one TracingSession object. Figure 3.1
shows the most important classes that are dealing with getting from trace log data to the ac-
cording TracingSession. A TracingSession is associated with a single event provider, currently
there are two different input ways implemented:

¢ Reading trace log data from a file, using a LogfileReader.
* Reading trace log data directly from a Barrelfish machine, using a NetworkReader.

The actual interpretation of the trace log data is done using an EventParser; EventParser objects
are independent of the type of data source. Note that the EventConfigurtion is the responsible
for interpreting the JSON file that has been generated during the build process of Barrelfish,
based on the pleco file.

The trace log data gets interpreted to Events and Activities, that are stored in the TracingSes-
sion object. Note that the flow of data is push based, i.e. it is the data source that actively
creates new Events as soon as more data is available, and pushes the Events to the TracingSes-
sion. Having an active data source allows us to treat different types of data sources uniformly.

While Events are quite self explanatory, i.e. they are the Aquarium representation of the actual
events in the trace log data, Activities are a new concept that we introduced in Aquarium.
An Activity is a sequence of Events, that are grouped into a single activity. Activities are a
typical constructs that are needed when analyzing trace log data; an example for that is when
analyzing the network stack, the fact that memory has been allocated (a single event) might
not be very interesting, but the duration of the entire construction of the packet (an Activity)
is what is actually very interesting. Thinking about Activities, it becomes immediately clear
that the different types of Activities must be flexibly definable. We achieved this by allowing
developers to create their own scripts that decode Activities.

Let us now look at how events are processed once the TracingSession retrieves a new Event.
A class diagram illustrating the handling of Events and Activities can be seen in Figure 3.2.
A TracingSession stores both a list with the Events that have been extracted from the trace
log data, as a list with all the activities that have been created based on those events. Once
an Event is received by the TracingSession, it notifies all registered EventHandlers to handle
the new Event. Such EventHandlers can either be Ul elements, such as an EventListUpdate-
Handler (an object being responsible to present a list of all interpreted Events in the UI), or
an ActivityDecoder. ActivityDecoders are objects that create Activities, and one possibility
for that is, as already mentioned, to have external scripts which decode Activities. If an Ac-
tivityDecoder creates a new Activity, this Activity will be added to the TracingSession and
all registered ActivityHandlers will receive it. As you can see, the only module that is cur-
rently both receiving Events and Activities is the GraphViewUpdateHandler, an object that is
responsible for visualizing the trace log data graphically.

When developing Aquarium, we initially planned to add a statistics module as well. Due to a
lack of time, we had to omit it in the end. Nevertheless from the design it can be seen, that such
a module could easily be added to Aquarium: It would simply have to be an EventHandler
and an ActivityHandler. Note that the design with having the TracingSession at the core, we
achieved that all handler classes are always in a consistent state. For example if an activity is
seen by one handler, it is always also seen by all other handlers. This becomes especially handy

Tracing - 14 Barrelfish TN-8

==Java Interface=> =«Java Class>=
€ IEventProvider (& TracingSession
org.barrelfish.aguarium?2 .model org barrelfish.aquarium?2 .core
7 >3
==Java Class=» ==Java Class=»
(@ LogfileReader (9 NetworkReader
org.barrelfish.aguariumz2 .core .datasource org barrelfish aquarium?2 .core datasource

=<Java Class=>
(JEventParser 0.* 0.*
org banelfish. aguarium2. core eventparsing [e e RACETPR) == Java Classs== ==Java Interface==
l (@ Event 3 IActivity
eeen org.barrelfish.aguarium2 .model event org barrelfish aquarium model activity

==Java Class=>
(3 Eventractory

org barrelfish.aquarium? .core eventparsing

==Java Class>>
(9 EveniConfiguration
org barrelfish.agquarium?2 .core eventparsing

Figure 3.1: UML class diagram showing the main classes that are concerned with dealing with
input.

when considering the filtering functionality of Aquarium. In Aquarium we added the func-
tionality to filter out Events based on various different criteria, ranging from the core on which
the Event happened, over the Subsystem type up to custom scripts that developers can write
to create their own filter. When a filter is applied, it is always applied on the TracingSession,
and not on e.g. a Ul element. With this globally applied filtering mechanism a new Handler
that is created to extend Aquarium would immediately benefit from the filtering functionality,
without having to take care of it at all.

3.2 Extending Aquarium with Scripts

As mentioned in Section 3.1.2, it is possible to extend the functionality of Aquarium by adding
custom scripts. The scripts are interpreted using the Java Scripting API, and currently JavaScript
is the language for which support in Aquarium has been implemented. Based on the Java
Scripting API support for other languages could be added.

3.2.1 Script Filters

Script filters are custom scripts that can be written by developers to filter out events in which
they are not interested. Aquarium itself already provides the possibility to filter out events
based on the following criteria:

e Filter out entire cores (e.g. filter out core 1).

Barrelfish TN-8 Tracing - 15

=< Java Class=>

(3 TracingSession
org barrelfish.aquarium?2.core

=< Java Class== / \ ==Java Interface==
(& Event @ IActvity

org barrelfish . agquarium2 model . event org barrelfish . agquarium2 model. activity
. A
=<Java Interface== =<Java Interface== ==Java Interface==
3 IActivityDecoder —= @ IEventHandler 3 IAcavityHandler
org barrelfish.agquarium?2 model activity org barrelfish aguarium2 . model event org.barrelfish aguariurn model activity
=< Java Class==
(& ScriptActivityDecoder

org.barrelfish.aquarium2 .core scripting activity

==Java Class>> ==Java Class>> ==Java Class>>

(3 EveniListUpdateHandler (3 GraphViewUpdateHandler (® ActivityListUpdateHandler
org.barrelfish.aquanium2 rcp views eventlist org barrelfish.aquarium2 rcp views .graph org.barrelfish.aquariumz2 rcp.views activitylist

Figure 3.2: UML class diagram showing the main classes that are concerned with handling
events and activities.

¢ Filter out entire Subsystems (e.g. filter out the kernel Subsystem).

¢ Filter out Events from a Subsystem (e.g. filter out ALLOC Events from the Subsystem
memserv).

¢ Filter out trace events based on their application (e.g. filter out all events that the appli-
cation monitor logged).

If a user is not satisfied with these possibilities to filter out events, Aquarium can be extended
with script filters. An example for a script filter would be to filter out all events, except those
that are an ALLOC Event initiated by the monitor. Such scripts allow users to quickly spot
specific events, even when they are analyzing large trace logs.

3.2.2 Script Activities

Another possibility to extend Aquarium with the help of scripts is to write custom activity
scripts. Such a script works in the following way: It receives all events that exist in the trace log,
in the order they exist in the trace log itself, and based on these events it can create activities,
and deliver them to Aquarium. In Figure 3.2 we can see that such a Script is wrapped in a
ScriptActivityDecoder inside of Aquarium, which is — as just described — an EventHandler.

An example for an activity script could be to create an activity for all the MUTEX_LOCK and
MUTEX_UNLOCK pairs — in order to analyze the locking behaviour. For each activity, certain
parameters such as the duration of each activity, is automatically calculated by Aquarium.

Tracing - 16 Barrelfish TN-8

3.3 Working with Aquarium

In this section we briefly want to look at how some of the already described functionality
looks in Aquarium with the help of some examples. Figure 3.3 shows a screenshot displaying
a single trace log data file opened in Aquarium. The largest part of the GUI is used by the so
called GraphView, presenting the information contained in the log in a two dimensional man-
ner. From left to right we see the timestamps (measured in clock cycles), and on the vertical
axis we see the different cores.

For each core we show the actual events that have been traced, indicated using black circles
on the bar of the core. The color of the bar shows which application was running on the core
on that time, where the colors are shown as well in the left menu labeled Filter. In addition
to the per core events, arrows are drawn where messages have been sent between the cores,
indicating the send and receive event. As the messages have the potential to clutter up the GUI
quite a bit, the arrows can be hidden easily using the envelope button on the right top corner.

Below the GraphView we see a list representation of the event data. With the help of the sync
button (shown on the right top corner of the list), the GraphView and the list can be linked,
meaning that if you select an event in either of the two, the other view scrolls to that event.
Using this functionality coarse navigation can be done using the GraphView, to then allow for
detailed analysis by quickly looking at the list.

On the left part of the GUI we see the Filter menu. It allows to filter out events based on
the different criteria, as already described. Scripts can be added using the Scripts tab, and
afterwards they will directly appear in the Filter menu as well.

As we can see in the screenshot shown in Figure 3.4, for all the objects in the GraphView exist
tooltips, when you hover over the according object with the mouse cursor. On this screenshot
you can see that two custom script activities have been added, and they have already been
evaluated. The created activities are integrated into the GraphView (on a per core basis) as
well as in the Activity tab next to the Events list on the bottom of a Aquarium. All created
activities can also be seen in a list fashion there.

In Figure 3.5 we activated several filters, thus compared to what we saw in Figure 3.4, the
information displayed in Aquarium has been reduced. We filtered out several things:

e The entire core 0.
e The Event MUTEX_UNLOCK.

¢ The Subsystems for sending and receiving messages, hence the message arrows are fil-
tered as a consequence as well.

¢ Events belonging to the application spawnd.

You can see that using the filter mechanism, it is possible to quickly find the part of the trace
log data, that is interesting to you.

Barrelfish TN-8 Tracing - 17

File View
& %
3¢ Filter 8 | |2 Seripts = B L1 = 7
P ¥ bflib [
Number of Events: 106779 I=|| @ @
4 bret ﬁ &= ‘ o
100'000'000 200'000'000 300'000'000 400'000'000 500'000'000 600'000'C
P ¥ bomp | ! ! | !
> ¥ chips @ °
4 kernel
= mEE B!
ALLoC
PERCORE_ALLOC
PERCORE_ALLOC_CO
PERCORE_INIT
4 memtest
4 monitor
4 multihop
4 net
4 nnet
4 route
4 threads
4 tweed
ump receive
ump send
P] xmpl
(I [] |5
Applications =
Unknown Application
bfscope
] I mem_serv (< B
it
<1 I monitor [=l Events - 1 52 4| Activities <§>J H = a
multihop o
Timestamp Core ID Subsystem Event Argument Application
-nstd
13063357611 0 nnet Ethersrv saw pkg 5279712 rtl8nzg
-ramfsd
13063359863 0 nnet Ethersrv checked frag 5279712 rtl8nzg
) I 18029
13063385648 0 nnet Ethersrv app filtered 5279712 rtl8nzg
| [serial
13063387146 0 nnet Ethersrv app c2u starte 5279712 rtl8nzg
skb
13063393426 0 nnet Ethersrv copied pk 5279712 rtl8nzg
| [spawnd pled pkg
13063396648 0 nnet Ethersrv spp produce d 5279712 rtl8029
13063594128 0 nnet Ethersrv saw pkg 5279712 rtl8029
Custom Filters =
13063596368 0 nnet Ethersrv checked frag 5279712 rtl8029
Activities 2 [«] 13063622168 0 nnet Ethersrv app filtered 5279712 rtl8029 [~

Figure 3.3: Screenshot of Aquarium displaying one trace log file.

Tracing - 18 Barrelfish TN-8

File View

=%

S Filter 2 Scripts

bench
bflib

bnet

3 bomp

b chips

3 kernel
memsery
memtest
monitor
multihop
net

nnet

route
3 threads
b tweed

ump receive

ump send

xmpl

Applications —————————

Unknown Application
¥ bfscope
7 I mem_serv
I monitor
multihop
B et
I ramfsd
I 118029
- serial
skb
| [spawnd

Custom Filters ————

Activities

Mutex

.!12@]

@& o

= 0
Number of Events: 106779 ﬂ L")\ Cl
000'000 58'000'000 100'000'000 102'000'000 104'000'000 106'00

Monitor

Mutesx

*» e

Monitor

Mutex 1 [| Jsuosystem: threads

Event: MUTEX_LO CK_LEAVE|
Argument: 80168
pplication: multihop

Events - 1 & ¢ Activities

= 0

Timestamp Core ID Subsystem Event Argument Application
0 0 multihop BENCH_START 0 Unknown Application [
644897 0 multihop MESSAGE_SEND o] Unknown Application
782560 0 threads MUTEX_LOCK_ENTER 80168 Unknown Application
864625 0 threads MUTEX_LOCK_LEAVE 80168 Unknown Application
966217 0 threads MUTEX_UNLO CK 80168 Unknown Application
1941240 0 kernel Context Switch manitor monitor

2706157 0 threads MUTEX_LOCK_ENTER 80168 monitor

2770740 0 threads MUTEX_LOCK_LEAVE 80168 monitor

2856734 0 threads MUTEX_UNLOCK 80168 monitor ~

Figure 3.4: Screenshot of Aquarium displaying two script activities, one for mutex activities

and one for the monitor application.

Barrelfish TN-8

Tracing - 19

File View

= %

3 Filter 32 cripts = A1m = 0
COND_SIGNAL | | Number of Events: 106779 0] ®
COND_WAIT_ENTER 000'000 98000000 100'000'000 102'000'000 104'000'000 106'00
COND_WAIT_LEAVE
MUTEX_LOCK_ENTER a1 00U -

MUTEX_LOCK_LEAVE Monitor T

MUTEX_LOCK_NESTED_ | | mutex 1 1]
MUTEX_LOCK_NESTED_
MUTEX_TRYLOCK
SEM_POST
SEM_TRYWAIT
SEM_WAIT_ENTER
SEM_WAIT_LEAVE

b ¥ tweed B

) ump receive

) ump send
b & xmpl
[a [)
Applications ———— 2
Unknown Application
[0 bfscope
/I mem_serv
7/ I monitor
multihop
I retd (e] [>)
- ramfsd
Events - 1 8 % Activities =
[rus029
B erial Timestamp Core ID Subsystem Event Argument Application
kb 96901429 T nel Context Switch multihop multihop
97324208 1 kernel Context Switch monitor monitor
98051294 1 threads MUTEX_LOCK_ENTER 2259240 monitor
Custom Filt " 98127472 1 threads MUTEX_LOCK_LEAVE 2259240 monitor
ustom Filters ———————— &
99146088 1 kernel Context Switch multihop multihop
Activitles —————————— # 99697035 1 threads MUTEX_LOCK_ENTER 80168 multihop
Mutex 99777715 1 threads MUTEX_LOCK_LEAVE 80168 multihop
100180995 1 threads MUTEX_LOCK_ENTER ~ 80168 multinop
) | 100184251 1 threads MUTEX_LOCK_LEAVE 80168 multihoo

Figure 3.5: Screenshot of Aquarium where core 0 is filtered out, as well as certain events and
applications.

Tracing - 20 Barrelfish TN-8

Chapter 4

Usage

This chapter describes how to use the Tracing framework in Barrelfish.
¢ Add trace events to trace_definitions/trace_defs.pleco
¢ Enable tracing in hake/Config.hs
® Add addLibraries = [‘‘trace’’], to your Hakefile
* Modify the source code of your programs as described in Listing 4.1

¢ Download and compile Aquarium2 as described in the README as part of the source
code

Barrelfish TN-8 Tracing - 21

#include <trace/trace.h>
int main(..) {

// initialize the trace framework
trace_reset_all();
trace_prepare(..); // do clock synchronization

// tell the framework when to start recording
err = trace_control (TRACE_EVENT (TRACE_SUBSYS_<A>,
TRACE_EVENT_<START >,
arg),
TRACE_EVENT (TRACE_SUBSYS_,
TRACE_EVENT_<END>,
arg),
_duration);

// enable the subsystems that should be traced
trace_set_subsys_enabled (TRACE_SUBSYS_XXX, true);
// or activate for all:
trace_set_all_subsys_enabled(true);

// fire the event that triggers start of recording
trace_event (TRACE_SUBSYS_XXX, TRACE_EVENT_XXX_AAA, _payload);

execute_something_useful ();

// fire the event that triggers end of recording
trace_event (TRACE_SUBSYS_XXX, TRACE_EVENT_XXX_BBB, _payload);

// Flush the buffer
trace_flush (MKCLOSURE (..));

Listing 4.1: Enable tracing for an application

4.1 Getting traces to Aquarium 2 over the network

Assuming you have network hardware that works with Barrelfish you can also connect Aquar-
ium 2 directly to the tracing infrastructure inside Barrelfish. The current default port for that
is 6666. If your Barrelfish and Aquarium 2 machines are on the same subnet you can just con-
nect to the Barrelfish machine’s IP or host name from Aquarium 2. Otherwise, if you have ssh
access to a machine that can talk to the Barrelfish machines you can use ssh port-forwarding
to connect Aquarium 2 to Barrelfish directly using the ssh invocation below.

ssh -L 6666:<IP of Barrelfish machine>:6666 <ssh-machine>

Tracing - 22 Barrelfish TN-8

Chapter 5

Performance Analysis

5.1 Introduction

This chapter analyzes the performance of the tracing framework only inside of Barrelfish. The
analysis tool Aquarium is not analyzed for its performance, as it is intended to run “offline” in
the sense that if it is fast enough the consume the data on live mode from a Barrelfish machine,
it is considered to be fast enough. The impact on performance is also a lot bigger on the tracing
inside of Barrelfish; This stems from the fact that if you do not want to analyze trace data, you
simply do not start Aquarium, and if you want to analyze data, you are willing to wait until
the analysis is performed. Looking at the tracing framework in Barrelfish, it is on one hand
less easy to disable — once compiled into the system, a certain overhead will exist — and on the
other hand it is important that the tracing does not affect measured code too heavily, or it will
become useless.

5.2 Memory Overhead

The memory overhead for buffers inside the tracing framework is constant during the entire
runtime of Barrelfish, as the only used buffers are allocated at startup of the system. The used
buffer space currently consists of two main parts that exist for each core:

Application Buffer Up to 128 currently running applications can be stored per core.

Event Buffer Up to 8000 Events can be stored per core, where ringbuffer containing these
events is cleared during a flush process.

To store an event or an application 16 bytes are used. As the tracing framework works inde-
pendently of the actual number of cores, the number of cores is bounded assuming a limit of
64 cores. This leads to the following memory usage:

M = (128 4+ 8000) * 16B x 64 = 8323072 ~ 8MB (5.1)

In addition to those buffers, a handful of pointers are stored, which in total use less than 1 KB
of memory. Therefore that the total amount of memory that the tracing framework uses is 8
MB, which does not vary over time.

Barrelfish TN-8 Tracing - 23

5.3 Execution Time Overhead

5.3.1 Cost to Trace a Single Event

We benchmarked the number of cycles that it takes to trace a single event in the tracing frame-
work. We tested both the case where the Subsystem is enabled, i.e. we are interested in the
event for which the trace_event function is called, and the case where we are not interested
in the even that is traced, i.e. the Subsystem is disabled. The “enabled” case is straightforward
to benchmark, but we also think the “disabled” case is interesting, as it might be often the case
that code is instrumented with a lot trace_event calls, even though you are currently not in-
teresting in analyzing this part of the code. Since we added the functionality do dynamically
disable the appropriate Subsytemes, it is also important to know by what degree the execution
of the code will be slower, compared to removing the statement from the actual code.

The results of the benchmark can be seen in Figure 5.1. The benchmark shows that on the
machine nos5, the average number of cycles that it takes to trace an event, when the Subsystem
is enabled is 40.384. The average number of cycles for a call, when the Subsystem is disabled
is 9.950.

It can be seen that both benchmarks returned very stable results - there are a few outliers, but
the vast majority of the events are closely around the average. Both benchmarks have been
run twice with 1000 measurements each run.

5.3.2 Cost to Flush

The cost to flush the collected trace data can vary a lot depending on the destination onto
which is flushed: Directly on the console, using Bfscope to send it over the network, etc. As the
tracing framework is not intended to be used in a way where flushing is performed during a
measurement, but afterwards, we did not do measurements for the different flushing methods.
We only want to mention that flushing, especially over the network, is not to be considered
a lightweight operation that can be done at any time during your code, without potentially
affecting the outcome of the tracing heavily.

Tracing - 24 Barrelfish TN-8

250 R

e+

200 R

150 R

Cycles

100 + R

; : |
__F

enabled disabled

Figure 5.1: Boxplots showing the number of cycles that it takes to trace a single event. On
the left: The Subsystem is enabled, i.e. the event is stored in the buffer. On the right: The
Subsystem is disabled, i.e. the event is not stored in the buffer.

Barrelfish TN-8 Tracing - 25

	Overview
	Design and Implementation of the Tracing Framework in Barrelfish
	Overview
	Definition of a Trace Event
	Pleco: A new Domain Specific Language
	Overview
	Interpreting Pleco Files
	The Generated Header File
	The Generated JSON File

	Feature Overview
	Preparing the Tracing Framework
	Enabling and Disabling of Events
	Automatic Flushing

	Bfscope

	Design and Implementation of the Analysis Tool Aquarium
	Design of Aquarium
	Goals
	Architecture

	Extending Aquarium with Scripts
	Script Filters
	Script Activities

	Working with Aquarium

	Usage
	Getting traces to Aquarium 2 over the network

	Performance Analysis
	Introduction
	Memory Overhead
	Execution Time Overhead
	Cost to Trace a Single Event
	Cost to Flush

