
Barrelfish Project
ETH Zurich

Barrelfish Specification

Barrelfish Technical Note 10

Barrelfish project

01.01.2015

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

0.1 01.01.2009 AB,SP,TR,AS,AK Initial Version
0.2 01.01.2015 GZ Update ABI etc.

Specification - 2 Barrelfish TN-10

Contents

1 Barrelfish Kernel API 4
1.1 System Calls . 4

1.1.1 SYSCALL INVOKE – Capability Invocation Interface 4
1.1.2 SYSCALL YIELD – Yield the CPU . 5
1.1.3 SYSCALL DEBUG – Debug system calls 5
1.1.4 SYSCALL REBOOT – Reboot the system 7
1.1.5 SYSCALL NOP . 7
1.1.6 SYSCALL PRINT . 8
1.1.7 SYSCALL SUSPEND . 8
1.1.8 SYSCALL GET ABS TIME . 8

1.2 Dispatch and Execution . 8
1.2.1 Disabled . 8
1.2.2 Register save areas . 8
1.2.3 Dispatcher Entry Points . 10
1.2.4 Interrupt delivery . 10
1.2.5 Exception delivery . 11

1.3 Scheduling . 11
1.4 TODO . 12

2 Barrelfish Library API 13
2.0.1 Initial Capability Space . 13

Barrelfish TN-10 Specification - 3

Chapter 1

Barrelfish Kernel API

1.1 System Calls

The section defines the specification of the common system call API that is provided by a
Barrelfish CPU driver. Currently we have the following system calls:

SYSCALL INVOKE Invoke a capability.
SYSCALL YIELD Yield the CPU.
SYSCALL LRPC Fast LRPC.
SYSCALL DEBUG Benchmarking and debug syscalls.
SYSCALL REBOOT Reboot the machine.
SYSCALL NOP No operation.
SYSCALL PRINT Write to console.
SYSCALL SUSPEND Suspend the CPU.
SYSCALL GET ABS TIME Get time elapsed since boot.

1.1.1 SYSCALL INVOKE – Capability Invocation Interface

The invoke call acts as a generic system call to apply operation on various OS objects (also
known as capabilities). For any given object, a distinct set of operations are applicable depend-
ing on the capability type.

This system call takes at least one argument, which must be the address of a capability in the
caller’s CSpace. The remaining arguments, if any, are interpreted based on the type of this first
capability.

Other than yielding, all kernel operations including IDC are (or should be) provided by capa-
bility invocation, and make use of this call. The possible invocations for every capability type
are described in the capability management document (TN-013).

This system call may only be used while the caller is enabled. The reason is that the caller
must be prepared to receive a reply immediately and that is only possible when enabled, as it
requires the kernel to enter the dispatcher at the IDC entry point.

Specification - 4 Barrelfish TN-10

1.1.2 SYSCALL YIELD – Yield the CPU

This system call yields the CPU. It takes a single argument, which must be either the CSpace
address of a dispatcher capability, or CPTR_NULL. In the first case, the given dispatcher is run
unconditionally; in the latter case, the scheduler picks which dispatcher to run.

This system call may only be used while the caller is disabled. Furthermore, it clears the caller’s
disabled flag, so the next time it will be entered is at the run entry point.

1.1.3 SYSCALL DEBUG – Debug system calls

The debug system call (SYSCALL DEBUG) de-multiplexes using the second system call argu-
ment and is defined for the following operations. Those calls may not be supported, depending
on build options, and are not part of the regular kernel interface.

DEBUG CONTEXT COUNTER RESET

Sets the context switch counter to 0.

DEBUG CONTEXT COUNTER READ

Returns context switch counter.

DEBUG TIMESLICE COUNTER READ

Returns kernel now.

DEBUG FLUSH CACHE

Executes wbinvd on x86-64.

DEBUG SEND IPI

Sends an interrupt to a remote core.
Arguments
destination Target core.
shorthand ?
vector IRQ number.

Note
Is this needed with the IPI capability?

DEBUG SET BREAKPOINT

Sets a hardware breakpoint at an address.
Arguments
addr Where to break.

Barrelfish TN-10 Specification - 5

mode ?
length ?

Note
Use dr7 and dr0 on x86-64.

DEBUG SEND NOTIFY

Does only exist as a definition?

DEBUG SLEEP

Does only exist as a definition?

DEBUG HARDWARE TIMER READ

Returns tsc read.

Note
Exists only for ARM.

DEBUG HARDWARE TIMER HERTZ READ

Returns tsc get hz.

Note
Exists only on ARM.

DEBUG HARDWARE GLOBAL TIMER LOW

Returns gt read low. The lower 32 bits of the timer.

Note
Exists only in OMAP, and returns 0 on GEM 5.

DEBUG HARDWARE GLOBAL TIMER HIGH

Returns global timer gt read high. The higher 32 bits of the timer.

Note
Exists only in OMAP, and returns 0 on GEM 5.

DEBUG GET TSC PER MS

Returns TSC (rdtsc) clock rate in ticks per ms.

Note
Implemention for x86 only.

Specification - 6 Barrelfish TN-10

DEBUG GET APIC TIMER

Returns the XAPIC timer counter.

Note
Implemention for x86-64 only.

DEBUG GET APIC TICKS PER SEC

Returns ticks per seconds of the APIC timer.

Note
Calibrated against RTC clock. Implemention for x86-64 only.

DEBUG FEIGN FRAME CAP

Fabricates an arbitrary DevFrame cap.

Note
Implemention for x86-32 bit only. Not used?

DEBUG TRACE PMEM CTRL

Enables tracing for capabilities.
Arguments
types ?
start ?
size ?

Note
Implemention for x86-64 and aarch64 only.

DEBUG GET APIC ID

Returns the xAPIC ID.

Note
Implemention for x86-64 only.

1.1.4 SYSCALL REBOOT – Reboot the system

This call unconditionally hard reboots the system. [This call should be removed -AB]

1.1.5 SYSCALL NOP

This call takes no arguments, and returns directly to the caller. It always succeeds.

Barrelfish TN-10 Specification - 7

1.1.6 SYSCALL PRINT

This call takes two arguments: an address in the caller’s vspace, which must be mapped, and
a size, and prints the string found at that address to the console. It may fail if any part of the
string is not accessible to the calling domain.

1.1.7 SYSCALL SUSPEND

[should probably be a cap invocation]

1.1.8 SYSCALL GET ABS TIME

[Figure out proper time API, they appear in various DEBUG syscalls as well.]

1.2 Dispatch and Execution

A dispatcher consists of code executing at user-level and a data structure located in pinned
memory, split into two regions. One region is only accessible from the kernel, the other region
is shared read/write between user and kernel. The fields in the kernel-defined part of the
structure are described in Table 1.1.

Beyond these fields, the user may define and use their own data structures (eg. a stack for the
dispatcher code to execute on, thread management structures, etc).

1.2.1 Disabled

A dispatcher is considered disabled by the kernel if either of the following conditions is true:

• its disabled word is non-zero

• its program counter is within the range specified by the crit pc low and crit pc high fields

The disabled state of a dispatcher controls where the kernel saves its registers, and is described
in the following subsection. When the kernel resumes a dispatcher that was last running while
disabled, it restores its machine state and resumes execution at the saved instruction, rather
than upcalling it at an entry point.

1.2.2 Register save areas

The dispatcher structure contains enough space for three full copies of the machine register
state to be saved. The trap save area is used whenever the dispatcher takes a trap, regardless
of whether it is enabled or disabled. Otherwise, the disabled save area is used whenever the
dispatcher is disabled (see above), and the enabled save area is used in all other cases.

Figure 1.1 (Trap and PageFault states have been left out for brevity) shows important dispatcher
states and into which register save area state is saved upon a state transition. The starting state
for a domain is “notrunning” and depicted with a bold border in the Figure.

Specification - 8 Barrelfish TN-10

Table 1.1: Dispatcher control structure

Field name Size Kernel R/W Short description

disabled word R/W If non-zero, the kernel will not
upcall the dispatcher, except to
deliver a trap.

haswork pointer R If non-zero, the kernel will
consider this dispatcher eligible
to run.

crit pc low pointer R Address of first instruction in
dispatcher’s critical code section.

crit pc high pointer R Address immediately after last
instruction of dispatcher’s
critical code section.

entry points 4 function descriptors R Functions at which the
dispatcher code may be invoked

enabled save area arch specific W Area for kernel to save register
state when enabled

disabled save area arch specific R/W Area for kernel to save and
restore register state when
disabled

trap save area arch specific W Area for kernel to save register
state when a trap or a pagefault
while disabled occurs

recv cptr capability pointer R Address of CNode to store
received capabilities of next local
IDC into

recv bits word R Number of valid bits within
recv cptr

recv slot word R Slot within CNode to store
received capability of next local
IDC into

running
enabled

running
disabled

enabled_save_area

notrunning
enabled

enabled_save_area

enabled_save_area

notrunning
disabled

disabled_save_area

Figure 1.1: Dispatcher state save areas. Trap and PageFault states omitted for brevity. Regular
text and lines denote state changes by the kernel. Dashed lines and italic text denote state
changes by user-space, which do not necessarily have to use the denoted save area. The
starting state is in the bold node.

Barrelfish TN-10 Specification - 9

Arrows from right to left involve saving state into the labeled area. Arrows from left to right
involve restoring state from the labeled area. It can be seen that no state can be overwritten.
The kernel can recognize a disabled dispatcher by looking at the disabled flag, as well as the
domain’s instruction pointer. Nothing else needs to be examined.

The dispatcher states are also depicted in Figure 1.2.

1.2.3 Dispatcher Entry Points

Unless restoring it from a disabled context, the kernel always enters a dispatcher at one of the
following entry points. Whenever the kernel invokes a dispatcher at any of its entry points, it
sets the disabled bit on. One (ABI-specific) register always points to the dispatcher structure.
The value of all other registers depends on the entry point at which the dispatcher is invoked,
and is described below.

The entry points are:

Run A dispatcher is entered at this entry point when it was not previously running, the last
time it ran it was either enabled or yielded the CPU, and the kernel has given it the CPU.
Other than the register that holds a pointer to the dispatcher itself, all other registers are
undefined. The dispatcher’s last machine state is saved in the enabled save area.

PageFault A dispatcher is entered at this entry point when it suffers a page fault while enabled.
On entry, the dispatcher register is set, and the argument registers contain information
about the cause of the fault. Volatile registers are saved in the enabled save area; all other
registers contain the user state at the time of the fault.

PageFault Disabled A dispatcher is entered at this entry point when it suffers a page fault
while disabled. On entry, the dispatcher register is set, and the argument registers contain
information about the cause of the fault. Volatile registers are saved in the trap save area;
all other registers contain the user state at the time of the fault.

Trap A dispatcher is entered at this entry point when it is running and it raises an exception
(for example, illegal instruction, divide by zero, breakpoint, etc.). Unlike the other entry
points, a dispatcher may be entered at its trap entry even when it was running disabled.
The machine state at the time of the trap is saved in the trap save area, and the argument
registers convey information about the cause of the trap.

LRPC A dispatcher is entered at this entry point when an LRPC message (see below) is
delivered to it. This can only happen when it was not previously running, and was
enabled. On entry, four registers are delivered containing the message payload, one
stores the endpoint offset, and another contains the dispatcher pointer.

This diagram shows the states a dispatcher can be in and how it gets there. The exceptional
states Trap and PageFault have been omitted for brevity.

1.2.4 Interrupt delivery

Hardware interrupts are delivered by the kernel as asynchronous IDC messages to a registered
dispatcher. A dispatcher can be registered as for a specific IRQ by invoking the IRQTable

Specification - 10 Barrelfish TN-10

idc

notrunning

Preempt

running

resume()idc_local()

run

schedule() Preempt resume()

syscall()

Preempt

Figure 1.2: Typical dispatcher states. Trap and PageFault states omitted for brevity. Regular
text and lines denote state changes by the kernel. Dashed lines and italic text denote state
changes by user-space. The starting state is in bold.

capability, passing it an IDC endpoint to the dispatcher and the IRQ number. It is not possible
for multiple IDC endpoints to be registered with the same IRQ number at any one time.

Henceforth, the kernel will send an IDC message using asynchronous delivery to the regis-
tered endpoint. Asynchronous IDC is used as it does not cause priority inversion by directly
dispatching the target dispatcher.

1.2.5 Exception delivery

When a CPU exception happens in user-space, it is reflected to the dispatcher on which it
appeared. Page faults are dispatched to the page-fault entry point of the dispatcher. All other
exceptions are dispatched to the trap entry point of the dispatcher. The disabled flag of the
dispatcher is ignored in all cases and state is saved to the trap save area.

1.3 Scheduling

Upon reception of a timer interrupt, the kernel calls ‘schedule()‘, which selects the next dis-
patcher to run. At the moment, a simple round-robin scheduler is implemented that walks a
circular singly-linked list forever. [RBED, gang-scheduling]

Barrelfish TN-10 Specification - 11

1.4 TODO

• virtual machine support

• timers

• resource management

• thread migration

• event tracing / performance monitoring

Specification - 12 Barrelfish TN-10

Chapter 2

Barrelfish Library API

[Documentation of libbarrelfish]

2.0.1 Initial Capability Space

The initial capability space of other domains is similar, but lacks the other cnodes in the root
cnode, as illustrated in Figure 2.1.

Barrelfish TN-10 Specification - 13

DCB

rootcn

dispatcher

rootcn

0x0 taskcn

0x1 pagecn

0x2 smallcn

...

0x4 segcn

taskcn

0x0 NULL

0x1 DCB

0x2 rootcn

0x4 dispframe

0x5 IRQTable

0x6 IO

0x7 BootInfo

0x8 Kernel

0x9 VMM request EP

0xa self EP

0xb Args frame

0xc Init EP

...

0...0 (20 bits)

pagecn

0x0 PML4

0x1 PDPT

...

PDIR

...

PTABLE

...

Figure 2.1: initial capability space layout of user tasks

Specification - 14 Barrelfish TN-10

Acknowledgements

Paul, Rebecca, Tim, et al.

Barrelfish TN-10 Specification - 15

	Barrelfish Kernel API
	System Calls
	SYSCALL_INVOKE – Capability Invocation Interface
	SYSCALL_YIELD – Yield the CPU
	SYSCALL_DEBUG – Debug system calls
	SYSCALL_REBOOT – Reboot the system
	SYSCALL_NOP
	SYSCALL_PRINT
	SYSCALL_SUSPEND
	SYSCALL_GET_ABS_TIME

	Dispatch and Execution
	Disabled
	Register save areas
	Dispatcher Entry Points
	Interrupt delivery
	Exception delivery

	Scheduling
	TODO

	Barrelfish Library API
	Initial Capability Space

