
Barrelfish Project
ETH Zurich

Barrelfish on ARMv7-A

Barrelfish Technical Note 017

Simon Gerber Stefan Kaestle Timothy Roscoe
Pravin Shinde Gerd Zellweger

31.05.2016

Systems Group
Department of Computer Science

ETH Zurich
CAB F.79, Universitätstrasse 6, Zurich 8092, Switzerland

http://www.barrelfish.org/

Revision History

Revision Date Author(s) Description

0.1 05.12.2013 SK Initial version
0.2 08.12.2015 TR Rewritten for new ARMv7 code
1.0 31.05.2016 TR Newly-factored ARMv7 platform support

ARMv7-A - 2 Barrelfish TN-017

Contents

1 Introduction 5

2 Compilation 6
2.1 Building for GEM5 . 6

3 Hardware assumptions and limitations 8
3.1 No support for Large Physical Address Extensions . 8
3.2 Physical RAM starts at 2GB . 8
3.3 Physical RAM is limited to 1GB . 8

4 Organization of the address space 9

5 Boot sequence 11
5.1 BSP (initial) core . 11

6 Exception code paths 12
6.1 Reset exception . 12
6.2 Undefined Instruction exception . 12
6.3 Supervisor call (software interrupt) . 13
6.4 Prefetch Abort exception . 13
6.5 Data Abort exception . 13
6.6 Hyp Trap, or Hyp mode entry . 13
6.7 IRQ interrupt . 13
6.8 Fast interrupt . 13

7 The Dispatch mechanism 14

8 Key data structures 15

9 Hardware abstraction layers 16
9.1 The ARMv7-A HAL . 16

10 Code organization 17

11 Versatile Express platform 18

12 GEM5 specifics 19
12.1 Boot process: first (bootstrap) core . 19
12.2 Boot process: subsequent cores . 20

13 OMAP44xx platform 22
13.1 Compiling and booting . 22
13.2 Booting the second OMAP A9 core . 22
13.3 Physical address space . 23
13.4 Interconnect driver . 23

Barrelfish TN-017 ARMv7-A - 3

13.5 M3 cores . 23

ARMv7-A - 4 Barrelfish TN-017

Chapter 1

Introduction

This document describes the state of support for ARMv7-A processors in Barrelfish.

ARM hardware is highly diverse, and has evolved over time. As a research OS, Barrelfish focusses
ARM support on a small number of platforms based on wide availability, ease of maintenance, and
research interest. However, since management of hardware complexity and diversity is also a research
goal of the Barrelfish project, we aim to make it easy to add new ARM-based platforms with a mixture
of traditional and non-traditional engineering techniques.

The principal processors with 32-bit ARM support in Barrelfish at present are ARMv7-A (Cortex A-
series), in particular the Cortex A9.

Past support for older ARM 32-bit architectures in Barrelfish included:

• ARMv7m (Cortex M-series), in particular the Cortex M3.

• ARMv5 processors, in particular the Intel iXP2800 network processor (which uses an XScale core).

• ARMv6 (ARM11MP) processors running under simulation in qemu.

The main 32-bit ARM-based systems we target at present are:

• The Texas Instruments OMAP4460 SoC used in the Pandaboard ES platform.

• The ARM VExpress EMM board, under emulation in the GEM5 simulator.

Barrelfish TN-017 ARMv7-A - 5

Chapter 2

Compilation

Building Barrelfish with ARMv7 is straightforward; detailed requirements for packages are described
in the latest README file.

Compiling ARM support in Barrelfish requires a cross-compilation toolchain on the programmers PATH.
For ARMv7 support we track the GNU toolchain shipped with Ubuntu LTS (14.04.3 at time of writing).

Once you have the right tools, run hake with the correct options, e.g.:

$ cd /build/barrelfish

$ /git/barrelfish/hake/hake.sh -a armv7 -s /git/barrelfish

...

$

After running hake with appropriate architecture support (i.e. use -a armv7), you can ask the Makefile
what platforms it supports:

$ make help-platforms

--

Platforms supported by this Makefile. Use ’make <platform name>’:

(these are the platforms available with your architecture choices)

Documentation:

Documentation for Barrelfish

PandaboardES:

Standard Pandaboard ES build image and modules

ARMv7-GEM5:

GEM5 emulator for ARM Cortex-A series multicore processors

--

$

Then build:

$ make -j 8 PandaboardES

2.1 Building for GEM5

To boot Barrelfish in GEM5, in addition to the previous steps you will need a supported version of
GEM5. The GEM5 website (gem5.org) has comprehensive information.

Unfortunately, different versions of GEM5 manifest different subtle bugs when emulating ARM sys-
tems. We recommend revision 0fea324c832c of GEM5 at present; please let us know if you find a more
recent version that works well.

ARMv7-A - 6 Barrelfish TN-017

To fetch and build GEM5 on Ubuntu LTS:

$ sudo apt-get install scons swig python-dev libgoogle-perftools-dev m4 protobuf-compiler libprotobuf-dev

$ hg clone http://repo.gem5.org/gem5 -r 0fea324c832c gem5

adding changesets

adding manifests

adding file changes

added 9356 changesets with 53499 changes to 6576 files

updating to branch default

3269 files updated, 0 files merged, 0 files removed, 0 files unresolved

$ cd ./gem5

$ scons build/ARM/gem5.fast

...

$

GEM5 is a large system and may take some time to build. In addition, you may have to install mi-
nor fixes to ensure compilation (I had to add some initializers to mem/ruby/network/orion/Wire.cc, for
example).

After the compilation of GEM5 is finished, add the binary to your PATH.

Now, build Barrelfish like this:

$ make -j 8 ARMv7-GEM5

It’s a good idea to set armv7_platform in <build_dir>/hake/Config.hs to gem5 in order to enable the cache
quirk workarounds for GEM5 and proper offsets for the platform simulated by GEM5.

You can also build Barrelfish and boot inside GEM5 in a single step:

$ make help-boot

--

Boot instructions supported by this Makefile. Use ’make <boot name>’:

(these are the targets available with your architecture choices)

gem5_armv7:

Boot an ARMv7a multicore image in GEM5

gem5_armv7_detailed:

Boot an ARMv7a multicore image in GEM5 using a detailed CPU model

$ make gem5_armv7

...

To get the output of Barrelfish you should:

$ telnet localhost 3456

GEM5 is a highly configurable simulator. You can print the supported options of the GEM5 script as
follows:

$ gem5.fast gem5/gem5script.py -h

Note that if you boot using make arm_gem5_detailed rather than make arm_gem5, the simulation takes a
long time (depending on your machine up to an hour just to boot Barrelfish).

Barrelfish TN-017 ARMv7-A - 7

Chapter 3

Hardware assumptions and limitations

The current state of ARMv7 support in Barrelfish makes a number of assumptions about the underlying
hardware platform, and also imposes some limitations. We discuss these here.

3.1 No support for Large Physical Address Extensions

The current Barrelfish design does not support LPAE for 32-bit ARM processors. Instead, it assumes a
32-bit physical address space. Supporting LPAE would require changes to the paging code, but would
also require a mechanism to address user memory from the kernel effectively (see below).

3.2 Physical RAM starts at 2GB

Within the 32-bit physical address space, RAM is assumed to start at the 2GB boundary (i.e. 0x80000000).
This is the architectural recommendation for Cortex-A series processors, and we have yet to encounter
non-LPAE ARMv7-A hardware which does not do this. Changing this assumption in the code should
be possible, but in practice is likely to be dominated by the other limitations mentioned here.

3.3 Physical RAM is limited to 1GB

The Barrelfish ARMv7 CPU drivers can handle up to 1GB RAM, contiguously situated in the physical
address space starting at 2GB. This limit could be raised by half a Gigabyte or so, at the cost of space
for mapping kernel devices. In practice, the CPU does not need to map many kernel devices since
most drivers run in user space on Barrelfish. Consequently, the allocation of the top 2GB of the virtual
address space betwen 1-1 mapped RAM and kernel hardware devices could easily be moved.

However, it remains that the total RAM visible to the CPU plus the mappings for any devices needed
by the CPU driver must fit into the top 2GB of the address space (mapped by the TTBR1 register).

In particular, the CPU driver assumes that all physical RAM is mapped 1-1, and relies on this when
performing capability invocations. If the system had more RAM that could be mapped 1-1 into kernel
virtual address space, we would need a method for the CPU driver to quickly access arbitrary physical
addresses, entailing some kind of paging system.

ARMv7-A - 8 Barrelfish TN-017

Chapter 4

Organization of the address space

Like many other popular operating systems, Barrelfish employs a memory split. The idea behind a
memory split is to separate kernel code from user space code in the virtual address space. This allows
the kernel to be mapped in every virtual address space of each user space program, which is necessary
to allow user space code to access kernel features through the system call interface. If the kernel was
not mapped into the virtual address space of each program, it would be impossible to jump to kernel
code without switching the virtual address space.

figures/virtual_addressing.pdf

Figure 4.1: Barrelfish virtual address space layout for ARMv7-A

Additionally ARMv7-A provides two translation table base registers, TTBR0 and TTBR1. We configure
the system to use TTBR0 for address translations of virtual addresses below 2GB and TTBR1 for virtual
address above 2GB. This saves us the explicit mapping of the kernel pages into every L1 page table of
each process. Even though the kernel is mapped to each virtual address space, it is invisible for the
user space program. Accessing memory, which belongs to the kernel, leads to a pagefault. Since many
mappings can point to the same physical memory, memory usage is not increased by this technique.

Figure 4.1 shows the memory layout of the complete virtual address space of a single ARMv7-A core
running Barrelfish.

We have a memory split at 2GB, where everything upwards is only accessible in privileged modes and

Barrelfish TN-017 ARMv7-A - 9

the lower 2GB of memory is accessible for user space programs.

The kernel runs out of the kernel virtual address space where system RAM is mapped 1-1; in the region
between 0x80000000 and 0xC0000000 RAM is mapped directly physical-to-virtual.

The L1 page table of the kernel address space is located inside the data segment of the kernel right after
the kernel and naturally aligned to 16KB.

We map the whole available physical memory into the kernels virtual address space using “sections”
(1MB large pages), obviating the need for a kernel L2 page table.

Above 0xC0000000, the CPU driver maps regions of physical memory corresponding to hardware de-
vices it needs to directly access (typically the UARTs, interrupt controller, timers, Snoop Control Unit,
and a few others). These are also mapped using sections. Virtual address regions are allocated in 1MB
increments (the size of a section mapping) working down from the top section, which is used to map
the area of RAM containing the CPU driver’s exception vectors.

Below the 0x80000000, all mappings are handled by TTBR0 and changed on every context switch. At
startup, the kernel uses another page table (also 16kB-aligned and located inside its data segment) to
map low memory virtual-to-physical as well, as a way to access hardware devices in this region before
the rest of the system has come up. However, after the early stages of bootstrap this table is no longer
used.

Instead, TTBR0 is always loaded with the address of a user domain’s hardware page table and changes
on a context switch. TTBR1 does not change, ensuring the kernel mappings are static after boot.

ARMv7-A - 10 Barrelfish TN-017

Chapter 5

Boot sequence

5.1 BSP (initial) core

1. boot.S:start is called by the bootloader. It sets the processor System mode, sets up the (single)
kernel stack, the global object table pointer, and jumps to arch_init.

2. init.c:arch_init is called with a single argument: the address of the multiboot info block. It first
initializes the serial console serial_early_init and checks to see if this is the BSP. If so, it calls
bsp_init.

3. init.c:bsp_init reads information from the multiboot info into the global data structure, initial-
izing it. It also resets global spinlocks, and sizes RAM (though this information is not yet used).
It returns.

4. init.c:arch_init continues by initialzing paging, calling:

5. paging.c:paging_init populates the two initial page tables (one for each base register). The kernel
(upper) page table is initialized to map 1GB of RAM at 0x80000000, and the exception vectors at
the top of memory. The initial user (lower) page table is set to map the lower 2GB of the physical
address space 1-1 to enable early device access. The MMU is then enabled.

6. init.c:arch_init continues with the MMU enabled by jumping at:

7. init.c:arch_init_2 which initializes exceptions, relocating the current KCB, parses the command
line arguments, and re-initializes the serial ports so that the UART hardware is now mapped
correctly into kernel address space with a section mapping.

It then initializes the GIC, the Snoop Control Unit, the Global Timer, and the Time Slice Counter.
Cycle counter access from User mode is enabled, and the coreboot spawn handler set up. It then
calls:

8. startup_arch.c:arm_kernel_startup which initializes a simple memory allocator from the global
structure, allocates the a new KCB, and calls:

9. startup_arch.c:spawn_bsp_init which creates the initial kernel data structures for spawning the
init process. It also creates the initial capabilities for init to use to allocate memory, and returns.

10. startup_arch.c:arm_kernel_startup continues but calling dispatch on the init DCB, and we are
now up and running.

Barrelfish TN-017 ARMv7-A - 11

Chapter 6

Exception code paths

ARMv7-A exceptions are initialized in exceptions.S:exceptions_init, which for some reason is written
in assembly. It assumes the core is running in System mode.

There is a 256-byte statically-allocated stack for each exception mode, and an 8kB stack used for subse-
quently calling into C in System mode, all defined in exceptions.S.

Most exception handlers in the vector table start by checking whether the processor was in User mode
or not when the trap happened. In most cases, if the processor was not in User mode, the result is that
System mode is entered and the processor jumps to exn.c:fatal_kernel_fault, which panics. Excep-
tions to this rule are noted below.

For exceptions taken while the processor is in User mode, the address of the current (user space) dis-
patcher is loaded (macro
get_dispatcher_shared_arm), and a check is made to see if the dispatcher is “enabled” (in other words,
whether the dispatcher should be upcalled when next dispatched).

This latter check is performed by the macro disp_is_disabled, and returns non-zero if:

1. The disabled value in the dispatcher (at offset OFFSET_OF_DISP_DISABLED) is non-zero, or

2. The PC lies between the two values in the dispatcher with offsets OFFSETOF_DISP_CRIT_PC_LOW and
OFFSETOF_DISP_CRIT_PC_HIGH1.

Depending on this, context is saved in a different area of the dispatcher, System mode is entered, and a
call is made to C code as noted below.

Taking each exception in turn:

6.1 Reset exception

This is vector 0x00, and is not used.

6.2 Undefined Instruction exception

This is vector offset 0x04, and is referred to as ARM_EVECTOR_UNDEF in the source. The processor enters
undef_handler in Undefined mode. Context is saved in either the ENABLED or TRAP area. C is entered at
exn.c:handle_user_undef.

1A trick suggested by Justin Cappos to allow an atomic resume of a user-level thread without entering the kernel

ARMv7-A - 12 Barrelfish TN-017

6.3 Supervisor call (software interrupt)

This is vector offset 0x08, and referred to as ARM_EVECTOR_SWI in the source. The processor enters swi_handler
in Supervisor mode.

If the syscall was issued from user space, context is saved in either the ENABLED or DISABLED area. C is
entered at syscall.c:sys_syscall.

If the syscall was issued from kernel space, no context is saved and C is entered at syscall.c:sys_syscall_kernel.

6.4 Prefetch Abort exception

This is vector offset 0x0C, and referred to as ARM_EVECTOR_PABT in the source. The processor enters
pabt_handler in Abort mode.

Context is saved in either the ENABLED or TRAP area. C is entered at exn.c:handle_user_page_fault.

6.5 Data Abort exception

This is vector offset 0x10, and referred to as ARM_EVECTOR_DABT in the source. The processor enters
dabt_handler in Abort mode.

Context is saved in either the ENABLED or TRAP area. C is entered at exn.c:handle_user_page_fault with
the faulting address in r0.

6.6 Hyp Trap, or Hyp mode entry

This is vector offset 0x14, and is not used in Barrelfish.

6.7 IRQ interrupt

This is vector offset 0x18, and referred to as ARM_EVECTOR_IRQ in the source. The processor enters irq_handler
in IRQ mode.

If the syscall was issued from user space, context is saved in either the ENABLED or DISABLED area. C is
entered at exn.c:handle_irq.

If the syscall was issued from kernel space, context is saved in irq_save_area, System mode is entered,
and C is called at exn.c:handle_irq.

6.8 Fast interrupt

This is vector offset 0x1C, and referred to as ARM_EVECTOR_FIQ in the source. The processor enters
fiq_handler in FIQ mode.

If the syscall was issued from user space, context is saved in either the ENABLED or DISABLED area. C is
entered at exn.c:handle_irq (as for IRQ).

If the syscall was issued from kernel space, context is saved in irq_save_area, System mode is entered,
and C is called at exn.c:handle_irq (as for IRQ).

Barrelfish TN-017 ARMv7-A - 13

Chapter 7

The Dispatch mechanism

Each time a CPU driver decides to switch to running a domain, it dispatches the domain in one of two
ways:

RESUME , also known as “disabled”: in this mode, the domain is resumed exactly where it was pre-
empted before, much as in operating systems like Unix.

UPCALL , also known as “enabled”: as with Scheduler Activations, the domain is upcalled at a fixed
address with a new context on a small, dedicated stack. The context of the previously-running
thread in teh domain is available to be resumed in user space, if the user-level scheduler (also
known as the activation handler) decides to.

Which one of these happens depends on the state of the domain.

When a domain is running in user space (i.e. the kernel is not executing) the domain is in one of two
states, indicated by a combination of:

• the disabled field of the struct dispatcher_shared_generic structure,

• the current program counter,

• the crit_pc_low and crit_pc_high fields of the struct dispatcher_shared_generic structure.

Note that all of these values can be written by the user program.

Specifically, the domain is in RESUME state iff :

1. disabled is true, or

2. the current program counter lies between crit_pc_low and crit_pc_high

Otherwise, it is in state UPCALL.

Once the kernel is entered, the disabled flag of the domain’s struct dcb structure (as opposed to the
struct dispatcher_shared_generic) is updated to reflect the state of the preempted domain.

ARMv7-A - 14 Barrelfish TN-017

Chapter 8

Key data structures

• struct dcb: in kernel/include/dispatch.h; the main domain control block.

dcb_current is a global pointer in the CPU driver that points to the current DCB.

If dp is of type struct dcb *, then dp->disabled is a flag which is 1 if the current DCB has activations
disabled (i.e. it should be resumed when next scheduled to run) and 0 otherwise (in which case
it should be upcalled) - the analogy is with enabling and disabling interrupts. The flag is set on
entry to the kernel.

• struct dispatcher_shared_generic: in include/barrelfish_kpi/dispatcher_shared.h: the architecture-
independent part of the a dispatcher, the user-space datastructure corresponding to a DCB. This
is the first struct in architecture-dependent variants, such as struct dispatcher_shared_arm.

If dp is of type struct dispatchersharedgeneric∗, thendp->disabledisaflagwhichis1ifthecurrentDCBhas

Barrelfish TN-017 ARMv7-A - 15

Chapter 9

Hardware abstraction layers

Barrelfish distinguishes between:

• General code

• Architecture-specific code (e.g. ARMv7-A code)

• Platform-specific code (e.g. code for the OMAP4460 SoC)

Since most Barrelfish device drivers run in userspace, the difference between “platform” as a chip (such
as the OMAP4460) and “platform” as a board or complete machine (such as the PandaBoard ES) are
relatively unimportant inside the CPU driver, since most of the platform-specific CPU driver code is
actually specific to a chip or SoC.

Barrelfish CPU driver source code for ARMv7-A systems therefore consists of the following categories:

• Portable, architecture-independent code.

• ARMv7-A-specific code which common to all ARMv7-A platforms

• Code for particular devices or macrocells which are only used on ARMv7-A, but might appear on
multiple ARMv7-A platforms.

• Platform-specific code.

We restrict platform-specific code to a single source file, which roughly corresponds to ARM’s concept
of an “integrator”, and acts as a compilation-time indirection layer between commmon ARMv7-A-
specific code and individual device and macrocell drivers.

9.1 The ARMv7-A HAL

Platform code for a Barrelfish ARMv7-A CPU driver must implement the following interfaces:

serial.h : Low-level drivers for a multiple UART devices.

spinlock.h : Some number of static spinlocks, used for coordinating access to e.g. serial devices be-
tween CPU drivers on different cores.

ARMv7-A - 16 Barrelfish TN-017

Chapter 10

Code organization

The variety of ARM platforms make organizing source trees to maximise code reuse across different
platforms a challenge.

Barrelfish distinguishes between Architectures, which are typically processor architectures like “ARMv7-
A”, and Platforms, which are complete system targets, like “PandaBoard-ES”.

Code and headers specific to a particular architecture are found in the source tree is various subdirec-
tories of the form ../arch/armv7/.

Barrelfish TN-017 ARMv7-A - 17

Chapter 11

Versatile Express platform

ARMv7-A - 18 Barrelfish TN-017

Chapter 12

GEM5 specifics

The GEM5 [1] simulator combines the best aspects of the M5 [2] and GEMS [3] simulators. With its
flexible and highly modular design, GEM5 allows the simulation of a wide range of systems. GEM5
supports a wide range of ISAs like x86, SPARC, Alpha and, in our case most importantly, ARM. In the
following we will list some features of GEM5.

GEM5 supports four different CPU models: AtomicSimple, TimingSimple, In-Order and O3. The first
two are simple one-cycle-per-instruction CPU models. The difference between the two lies in the way
they handle memory accesses. The AtomicSimple model completes all memory accesses immediately,
whereas the TimingSimple CPU models the timing of memory accesses. Due to their simplicity, the
simulation speed is far above the other two models. The InOrder CPU models an in-order pipeline and
focuses on timing and simulation accuracy. The pipeline can be configured to model different numbers
of stages and hardware threads. The O3 CPU models a pipelined, out-of-order and possibly super-
scalar CPU model. It simulates dependencies between instructions, memory accesses, pipeline stages
and functional units. With a load/store queue and reorder buffer its possible to simulate superscalar
architectures as well as multiple hardware threads.

The GEM5 simulator provides a tight integration of Python into the simulator. Python is mainly used
for system configuration. Every simulated building block of a system is implemented in C++ but are
also reflected as a Python class and derive from a single superclass SimObject. This provides a very
flexible way of system construction and allows to tailor nearly every aspect of the system to our needs.
Python is also used to control the simulation, taking and restoring snapshots as well as all the command
line processing.

We use a VExpress EMM based system to run Barrelfish. The number of cores can be passed as an
argument to the GEM5 script. Cores are clocked at 1 GHz and main memory is 64 MB starting at 2 GB.

12.1 Boot process: first (bootstrap) core

This section gives a high-level overview of the boot up process of the Barrelfish kernel on ARMv7-a. In
subsequent sections we will go more into details involved in the single steps.

1. Setup kernel stack and ensure privileged mode

2. Allocate L1 page table for kernel

3. Create necessary mappings for address translation

4. Set translation table base register (TTBR) and domain permissions

5. Activate MMU, relocate program counter and stack pointer

6. Invalidate TLB, setup arguments for first C-function arch init

Barrelfish TN-017 ARMv7-A - 19

7. Setup exception handling

8. Map the available physical memory in the kernel L1 page table

9. Parse command line and set corresponding variables

10. Initialize devices

11. Create a physical memory map for the available memory

12. Check ramdisk for errors

13. Initialize and switch to inits address space

14. Load init image from ramdisk into memory

15. Load and create capabilities for modules defined by menu.lst

16. Start timer for scheduling

17. Schedule init and switch to user space

18. init brings up the monitor and mem serv

19. monitor spawns ramfsd, skb and all the other modules

12.2 Boot process: subsequent cores

The boot up protocol for the multi-core port differs in various ways from the boot up procedure of
our previous single-core port. We therefore include this revised overview here. The first core is called
the bootstrap processor and every subsequent core is called an application processor On bootstrap
processor:

1. Pass argument from bootloader to first C-function arch init 18

2. Make multiboot information passed by bootloader globally available

3. Create 1:1 mapping of address space and alias the same region at high memory

4. Configure and activate MMU

5. Relocate kernel image to high memory

6. Reset mapping, only map in the physical memory aliased at high memory

7. Parse command line and set corresponding variables

8. Initialize devices

9. Initialize and switch to inits address space

10. Load init image into memory

11. Create capabilities for modules defined by the multiboot info

12. Schedule init and switch to user space

13. init brings up the monitor and mem serv

14. monitor spawns ramfsd, skb and all the other modules

15. spawnd parses its cmd line and tells the monitor to bring up a new core

16. monitor setups inter-monitor communication channel

17. monitor allocates memory for new kernel and remote monitor

18. monitor loads kernel image and relocates it to destination address

ARMv7-A - 20 Barrelfish TN-017

19. monitor setups boot information for new kernel

20. spawnd issues syscall to start new core

21. Kernel writes entry address for new core into SYSFLAG registers

22. Kernel raises software interrupt to start new core

23. Kernel spins on pseudo-lock until other kernel releases it

24. repeat steps 15 to 23 for each application processor

Barrelfish TN-017 ARMv7-A - 21

Chapter 13

OMAP44xx platform

The OMAP4460 is a system on a chip (SoC) by Texas Instruments, intended for use in consumer devices
like smartphones and tablet computers. It contains:

• A dual core ARM Cortex-A9 processor

• Two ARM Cortex-M3 processors

• A hardware spinlock module

• A mailbox module

• Many devices to process media input and output

The intention is that the Cortex-A9 will be running a general purpose operating system, while the
Cortex-M3 processors will only be running a real-time operating system to control the imaging subsys-
tem.

The processor configuration in the OMAP4460 is somewhat unconventional; for example, the Cortex-
M3 processors share a custom MMU with page faults handled by code running on the Cortex-A9 pro-
cessors and hence are constrained to run in the same virtual address at all times. They are also not
cache-coherent with the Cortex-A9 cores.

13.1 Compiling and booting

To compile Barrelfish for the Pandaboard, first configure your toolchain as described in Section 2. Then
execute:

cd SRC

mkdir build

cd build

../hake/hake.sh -a armv7 -s ../

make pandaboard_image

The resulting image can be booted on the Pandaboard over the USB OTG connector using the standard
usbboot utility. It will generate console output on the Pandaboard’s serial connector.

13.2 Booting the second OMAP A9 core

Here is a brief overview of how the bootstrapping process for the second core works: it waits for a
signal from the BSP core (an interrupt), and when this signal is received, the application core will read

ARMv7-A - 22 Barrelfish TN-017

an address from a well- defined register and start executing the code from this address.

To boot the second core, one can write the address of a function to the register and send the inter-
processor interrupt. Following are some pointers to the documentation to help understand the boot-
strapping process in more detail:

• Section 27.4.4 in the OMAP44xx manual talks about the boot process for application cores.

• Pages 1144 ff. in the OMAP44xx manual have the register layout for the registers that are used in
the boot process of the second core.

Note that the Barrelfish codebase distinguishes between the BSP (bootstrap) processor and APP (ap-
plication) processors. This distinction and naming originates from Intel x86 support where the BIOS
will choose a distinguished BSP processor at start-up and the OS is responsible for starting the rest of
the processors (the APP processors). Although it works somewhat differently on ARM, the naming
convention is applicable here as well.

Note also that the second core will start working with the MMU disabled, so is running in physical
address space. The bootstrapping code sets up a stack, initial page tables and an initial Barrelfish
dispatcher.

13.3 Physical address space

At present, a temporary limitation in the core boot protocol means that running Barrelfish on both A9
cores requires static partitioning of the available RAM into two halves, with an independent memory
server running on each core. This is will fixed in a subsequent release.

13.4 Interconnect driver

Communication between A9 cores on the OMAP processor is performed using a variant of the CC-UMP
interconnect driver, modified for the 32-byte cache line size of the ARMv7 architecture. A notification
driver for inter-processor interrupts exists.

The OMAP4460 also has mailbox hardware which can be used by both the A9 and M3 cores. Barrelfish
support for this hardware is in progress.

13.5 M3 cores

Barrelfish also has rudimentary support for running on both the A9 and M3 cores. This is limited by
the requirement that the M3 cores must run in the same virtual address space, and do not have a way
to automatically change address space on a kernel trap. For this reason, we only execute on a single M3
core at present.

Before the Cortex-M3 can start executing code, the following steps have to be taken by the Cortex-A9:

1. Power on the Cortex-M3 subsystem

2. Activate the Cortex-M3 subsystem clock

3. Load the image to be executed into memory

4. Enable the L2 MMU

5. Set up mappings for the loaded image in the L2 MMU (can be written directly into the TLB)

6. Write the first two entries of the vectortable (initial sp and reset vector)

Barrelfish TN-017 ARMv7-A - 23

7. Take the Cortex-M3 out of reset

It is important to note that the Cortex-M3 is in a virtual address space from the very beginning, reading
the vector table at virtual address 0. Inserting a 1:1 mapping for the kernel image greatly simplifies the
bootstrapping of memory management on the Cortex-M3 once it is running, because it needs to know
the physical address of the page tables it sets up.

ARMv7-A - 24 Barrelfish TN-017

References

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt. The m5
simulator: Modeling networked systems. Micro, IEEE, 26(4):52–60, 2006.

[3] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore,
M. D. Hill, and D. A. Wood. Multifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset. ACM SIGARCH Computer Architecture News, 33(4):92–99, 2005.

Barrelfish TN-017 ARMv7-A - 25

